Dispersion (3A)

- 1-D Dispersion

Copyright (c) 2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Dispersionless Wave

Dispersionless Wave wave speed is independent of ω and k

Wave Equation

$$
\frac{\partial^{2} \psi}{\partial t^{2}}=c^{2} \frac{\partial^{2} \psi}{\partial x^{2}}
$$

A form of possible solutions

$$
\psi(x, t)=A e^{i(k x-\omega t)}
$$

$$
\frac{\partial^{2} \psi}{\partial t^{2}}=-\omega^{2} A e^{i(k x-\omega t)}
$$

$$
\frac{\partial^{2} \psi}{\partial x^{2}}=-k^{2} A e^{i(k x-\omega t)}
$$

A trivial dispersion relation:

$$
\omega^{2}=c^{2} k^{2}
$$

wave velocity

$$
v=\frac{\omega}{k}= \pm c
$$

Phase Velocity of a Dispersionless Wave

A trivial dispersion relation:

$$
\omega^{2}=c^{2} k^{2}
$$

wave velocity

$$
v=\frac{\omega}{k}= \pm c
$$

The speed of $\sin (k x-\omega t)$
How fast a point with constant phase $(k x-\omega t)$ moves

$$
(k x-\omega t)=\text { const } \Rightarrow \frac{d}{d t}(k x-\omega t)=0 \Rightarrow k \frac{d x}{d t}-\omega=0
$$

$$
\frac{d x}{d t}=\frac{\omega}{k} \quad \text { phase velocity }
$$

Dispersionful Wave

A Dispersionless System

A linear relationship between ω and k
All of the wave components move with the same speed ${ }_{p}$ Any function of the form $f(x-c t)$: dispersionless

A Dispersionful System

A non-linear relationship between ω and k
The different sinusoidal waves that make up the bump travel at different speeds

Which value of k is chosen to get the group velocity? The value of k where the bump dominates - at the peak of the Fourier Transform of the bump

$$
v_{p}=\frac{\omega}{k}=c \quad v_{g}=\frac{d \omega}{d k}=0
$$

$$
v_{p}=\frac{\omega}{k} \neq c \quad v_{g}=\frac{d \omega}{d k} \neq 0
$$

$$
v_{g}=\frac{d \omega}{d k} \quad \text { group velocity }
$$

Dispersionful Wave Example

Group Velocity Derivation: Method I (1)

$$
\begin{aligned}
& \psi_{1}(x, t)=A \cos \left(\omega_{1} t-k_{1} x\right) \\
& \psi_{2}(x, t)=A \cos \left(\omega_{2} t-k_{2} x\right)
\end{aligned}
$$

$$
\omega_{\Sigma}=\frac{\omega_{1}+\omega_{2}}{2} \quad \omega_{\Delta}=\frac{\omega_{1}-\omega_{2}}{2}
$$

$$
\omega_{1}=\omega_{\Sigma}+\omega_{\Delta}
$$

$$
\omega_{2}=\omega_{\Sigma}-\omega_{\Delta}
$$

$$
\begin{array}{ll}
k_{\Sigma}=\frac{k_{1}+k_{2}}{2} & k_{\Delta}=\frac{k_{1}-k_{2}}{2} \\
k_{1}=k_{\Sigma}+k_{\Delta} & k_{2}=k_{\Sigma}-k_{\Delta}
\end{array}
$$

$$
\begin{aligned}
\psi_{1}(x, t) & =A \cos \left(\left(\omega_{\Sigma}+\omega_{\Delta}\right) t-\left(k_{\Sigma}+k_{\Delta}\right) x\right) \\
& =A \cos \left(\left(\omega_{\Sigma} t-k_{\Sigma} x\right)+\left(\omega_{\Delta} t-k_{\Delta} x\right)\right) \\
\psi_{2}(x, t) & =A \cos \left(\left(\omega_{\Sigma}-\omega_{\Delta}\right) t-\left(k_{\Sigma}-k_{\Delta}\right) x\right) \\
& =A \cos \left(\left(\omega_{\Sigma} t-k_{\Sigma} x\right)-\left(\omega_{\Delta} t-k_{\Delta} x\right)\right)
\end{aligned}
$$

$$
\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta
$$

$$
\begin{aligned}
\psi_{1}(x, t) & +\psi_{2}(x, t) \\
& =2 A \cos \left(\omega_{\Sigma} t-k_{\Sigma} x\right) \cos \left(\omega_{\Delta} t-k_{\Delta} x\right) \\
& =\frac{2 A \cos \left(\omega_{\Delta} t-k_{\Delta} x\right)}{\text { slow moving }} \begin{array}{l}
\text { envelope }\left(\omega_{\Sigma} t-k_{\Sigma} x\right) \\
\text { fast moving } \\
\omega_{\Sigma} \gg \omega_{\Delta}
\end{array} \quad \begin{array}{l}
\text { actual sum }
\end{array} \\
& k_{\Sigma} \gg k_{\Delta}
\end{aligned}
$$

Group Velocity Derivation: Method I (2)

$$
\begin{array}{ll}
\psi_{1}(x, t)=A \cos \left(\omega_{1} t-k_{1} x\right) \\
\psi_{2}(x, t)=A \cos \left(\omega_{2} t-k_{2} x\right) \\
\omega_{\Sigma}=\frac{\omega_{1}+\omega_{2}}{2} & \omega_{\Delta}=\frac{\omega_{1}-\omega_{2}}{2} \\
k_{\Sigma}=\frac{k_{1}+k_{2}}{2} & k_{\Delta}=\frac{k_{1}-k_{2}}{2} \\
& \\
\omega_{\Sigma} \gg \omega_{\Delta} & k_{\Sigma} \gg k_{\Delta} \\
\omega_{\Sigma} \approx \omega_{1} \approx \omega_{2} & k_{\Sigma} \approx k_{1} \approx k_{2}
\end{array}
$$

$$
\begin{aligned}
\psi_{1}(x, t) & +\psi_{2}(x, t) \\
& =2 A \cos \left(\omega_{\Delta} t-k_{\Delta} x\right) \cos \left(\omega_{\Sigma} t-k_{\Sigma} x\right)
\end{aligned}
$$

slow moving fast moving

$$
\text { envelope } \quad \text { actual sum }
$$

The phase velocity of fast moving wave

$$
\frac{\omega_{\Sigma}}{k_{\Sigma}} \approx \frac{\omega_{1}}{k_{1}} \approx \frac{\omega_{2}}{k_{2}}
$$

The phase velocity of the envelope wave wave formed by two waves

$$
\frac{\omega_{\Delta}}{k_{\Delta}}=\frac{\omega_{1}-\omega_{2}}{k_{1}-k_{2}}
$$

\Rightarrow The group velocity

$$
v_{p}=\frac{\omega}{k} \quad v_{q}=\frac{d \omega}{d k}
$$

$$
\begin{aligned}
c & \text { when } \omega=c k \\
\frac{d \omega}{d k} & \text { when } \omega(k) \quad\left(k_{1}-k_{2}\right) \rightarrow 0
\end{aligned}
$$

Group Velocity Derivation: Method I (3)

$$
\begin{aligned}
& \psi_{1}(x, t)+\psi_{2}(x, t) \\
& =\frac{2 A \cos \left(\omega_{\Delta} t-k_{\Delta} x\right)}{\text { slow moving } \left.^{2}\right)} \begin{array}{l}
\text { fast moving } \\
\text { envelope } \\
v_{p}=\frac{\omega}{k}
\end{array} \\
& \begin{array}{c}
\text { actual sum }
\end{array} \\
& v_{q}=\frac{d \omega}{d k}
\end{aligned}
$$

The fast wiggles move wrt the envelope
$v_{p}>v_{g}$
The little wiggles op into existence at the left end of an envelope bump
$v_{p}<v_{g}$
The little wiggles op into existence at the right end of an envelope bump

Group Velocity Derivation: Method I (4)

$$
v_{p}>v_{g}
$$

The little wiggles pop into existence at the left end of an envelope bump

They grow and then shrink as they move through the bump, until finally they disappear when they reach the right end of the bump

$$
\begin{aligned}
& v_{g}>0 \\
& v_{p}<0
\end{aligned}
$$

Group Velocity Derivation: Method II (1)

$$
v_{1}>v_{2} \quad \text { next bump }
$$

Group Velocity Derivation: Method II (2)

constructive

Interference
: bump

$$
\lambda_{1} \quad \lambda_{2}-\lambda_{1}
$$

$$
\begin{array}{ll}
\text { initial distance } & \lambda_{2}-\lambda_{1} \\
\text { relative velocity } & v_{1}-v_{2} \quad\left(v_{1}>v_{2}\right) \\
\text { time lapse } & t=\frac{\left(\lambda_{2}-\lambda_{1}\right)}{\left(v_{1}-v_{2}\right)}
\end{array}
$$

$$
\text { bump speed } \quad \frac{x}{t}
$$

$$
\frac{\chi}{t}=\frac{\lambda_{1}+v_{1} t}{t}=\frac{\lambda_{1}}{t}+v_{1}=\lambda_{1}\left(\frac{v_{1}-v_{2}}{\lambda_{2}-\lambda_{1}}\right)+v_{1}=\frac{\lambda_{1} v_{1}-\lambda_{1} v_{2}}{\lambda_{2}-\lambda_{1}}+\frac{\lambda_{2} v_{1}-\lambda_{1} v_{1}}{\lambda_{2}-\lambda_{1}}
$$

Group Velocity Derivation: Method II (3)

$$
\begin{aligned}
\frac{\chi}{t} & =\frac{\lambda_{1}+v_{1} t}{t}=\frac{\lambda_{1}}{t}+v_{1}=\lambda_{1}\left(\frac{v_{1}-v_{2}}{\lambda_{2}-\lambda_{1}}\right)+v_{1}=\frac{\lambda_{1} v_{1}-\lambda_{1} v_{2}}{\lambda_{2}-\lambda_{1}}+\frac{\lambda_{2} v_{1}-\lambda_{1} v_{1}}{\lambda_{2}-\lambda_{1}} \\
& =\frac{\lambda_{2} v_{1}-\lambda_{1} v_{2}}{\lambda_{2}-\lambda_{1}} \quad v=\frac{\omega}{k} \quad k=\frac{2 \pi}{\lambda} \\
& =\frac{\frac{2 \pi}{k_{2}} \frac{\omega_{1}}{k_{1}}-\frac{2 \pi}{k_{1}} \frac{\omega_{2}}{k_{2}}}{\frac{2 \pi}{k_{2}}-\frac{2 \pi}{k_{1}}}=\frac{\frac{2 \pi}{k_{1} k_{2}}\left(\omega_{1}-\omega_{2}\right)}{\frac{2 \pi}{k_{1} k_{2}}\left(k_{1}-k_{2}\right)} \\
& =\frac{\left(\omega_{1}-\omega_{2}\right)}{\left(k_{1}-k_{2}\right)}=v_{g}
\end{aligned}
$$

$$
\frac{x}{t}=\frac{\lambda_{1}+v_{1} t}{t}=\frac{\lambda_{1}}{t}+v_{1}=\lambda_{1}\left(\frac{v_{1}-v_{2}}{\lambda_{2}-\lambda_{1}}\right)+v_{1}=\frac{\lambda_{1} v_{1}-\lambda_{1} v_{2}}{\lambda_{2}-\lambda_{1}}+\frac{\lambda_{2} v_{1}-\lambda_{1} v_{1}}{\lambda_{2}-\lambda_{1}}
$$

Group Velocity Derivation: Method II (4)

A pair of waves

$$
\begin{aligned}
& k_{1} \approx k_{2} \\
& \omega_{1} \approx \omega_{2}
\end{aligned} \quad \square \quad \begin{aligned}
& \lambda_{1} \approx \lambda_{2} \\
& v_{1} \approx v_{2}
\end{aligned} \quad \square v_{g}=\frac{\left(\omega_{1}-\omega_{2}\right)}{\left(k_{1}-k_{2}\right)}
$$

The nearly equal wavelengths

$$
\lambda_{2}-\lambda_{1} \quad \text { very small }
$$

next bump

- the location of the alignment jumps ahead
- by a distance of one wavelength
- in essentially no time
this means that the effective speed is large
(at least as large as the λ_{1} / t)

Group Velocity Derivation: Method II (5)

A pair of waves

In between alignment of peaks the bump disappears,
then appears in the negative direction then disappears again
before reappearing at the next bump

But on average, the bump effectively moves with velocity

$$
v_{g}=\frac{\left(\omega_{1}-\omega_{2}\right)}{\left(k_{1}-k_{2}\right)}
$$

Consistent with the fact that
the wiggly wave doesn't always touch the midpoint

- the highest point of the envelop bump.
(in fact rarely does)

Group Velocity Derivation: Method II (6)

A large number of waves
roughly the same values of
k and ω

$$
\begin{aligned}
v_{p 1} & =\omega_{1} / k_{1} \\
v_{p 2} & =\omega_{2} / k_{2} \\
v_{p 3} & =\omega_{3} / k_{3} \\
v_{p 4} & =\omega_{4} / k_{4} \\
v_{p 5} & =\omega_{5} / k_{5} \\
v_{p 6} & =\omega_{6} / k_{6}
\end{aligned}
$$

ω

different phase velocities
the same group velocity

$$
\frac{d \omega}{d k} \approx \frac{\left(\omega_{i}-\omega_{j}\right)}{\left(k_{i}-k_{j}\right)}
$$

$$
x=v_{g} t \quad v_{g}=x / t
$$

The various waves all travel with different phase velocity $v_{p}=\omega / k$ The group velocity depends only on the differences in ω and k Not on the actual values of ω and k

Group Velocity Derivation: Method II (7)

A large number of waves
roughly the same values of
k and ω
ω

$$
\begin{aligned}
v_{p 1} & =\omega_{1} / k_{1} \\
v_{p 2} & =\omega_{2} / k_{2} \\
v_{p 3} & =\omega_{3} / k_{3} \\
v_{p 4} & =\omega_{4} / k_{4} \\
v_{p 5} & =\omega_{5} / k_{5} \\
v_{p 6} & =\omega_{6} / k_{6}
\end{aligned}
$$

the same slope

$$
x=v_{g} t \quad v_{g}=x / t
$$

$$
\frac{d \omega}{d k} \approx \frac{\left(\omega_{i}-\omega_{j}\right)}{\left(k_{i}-k_{j}\right)}
$$

Group Velocity Derivation: Method III (1)

Fourier Analysis
A wave consists of components with many different frequencies

Bump at a certain place
The phases of the various components must be equal at the bump
for constructive interference
$\omega_{i} t-k_{i} x+\phi_{i}$
the same phase
Bump at the origin $\quad x=0, t=0$

$$
\begin{aligned}
& \omega_{i} \cdot 0-k_{i} \cdot 0+\phi_{i}=\omega_{j} \cdot 0-k_{j} \cdot 0+\phi_{j} \\
& \phi_{i}=\phi_{j} \quad \phi \quad \text { Independent of } \quad k
\end{aligned}
$$

ϕ Independent of k

$$
\frac{d \phi}{d k}=0 \quad \square \quad \frac{d \omega}{d k}=v_{g}
$$

ϕ Independent of t

$$
\frac{d \phi}{d t}=0 \quad \square \quad \frac{d x}{d t}=v_{p}
$$

Group Velocity Derivation: Method III (2)

$$
\begin{array}{ll}
\phi \quad \text { Independent of } & k \\
\frac{d}{d k}(\omega t-k x+\phi)=0 & \frac{d \phi}{d k}=0 \\
\frac{d \omega}{d k} t-x=0 & v_{g}=\frac{d \omega}{d k}=\frac{\chi}{t} \\
\phi \quad \text { Independent of } t & \frac{d \phi}{d t}=0 \\
\frac{d}{d t}(\omega t-k x+\phi)=0 & v_{p}=\frac{d x}{d t}=\frac{\omega}{k}
\end{array}
$$

Group Velocity Derivation: Method III (3)

$\frac{d \omega}{d k} \quad$ exists
if there is a bump
\Rightarrow
there is a bump with a group velocity v_{g}

It is traveling with the velocity $\quad v_{g}=\frac{d \omega}{d k}$
evaluated at the k value that dominates the bump
found by Fourier Transform of the bump

$$
v_{p}=\frac{d x}{d t}=\frac{\omega}{k}
$$

References

[1] http://en.wikipedia.org/
[2] http://www.people.fas.harvard.edu/~djmorin/book.html D Morin, "Waves"

