Sec. 11

EGM 3520 Mechanics of Materials (MoM)
Beer et al. 2012, Mechanics of Materials, McGraw-Hill. P3.11, p. 155

P3.11, p. 155

$$
T_{\boldsymbol{B}}=144 \mathrm{~N} \cdot \mathrm{~m}
$$

T

 \bar{A} 48 N.

Knowing that each of the shafts $A B, B C$, and $C D$ consists of a solid circular rod, determine (a) the shaft in which the maximum shearing stress occurs, (b) the magnitude of that stress.

Pause video NOW!

Work out the next step

\rightarrow on your own firs \dagger
\rightarrow discuss with teammates if you get stuck then continue to watch the video
"Intelligence consists of this; that we recognize the similarity between different things, and the difference between similar things."

Baron de la Brède et de Montesquieu (1689-1755) quoted in [Quantum field theory, E. Zeidler, 2008, p.175]

$$
\begin{aligned}
& \underset{T_{A B}}{\stackrel{T_{B} B}{\leftrightarrows}} \underset{T_{B C}}{\leftrightarrows} T_{B C} \\
& \underset{T_{B C}}{\underset{C}{B}} \stackrel{C}{\stackrel{C}{T_{B C}}} \\
& \begin{array}{l}
\stackrel{T_{C}}{C} \\
\underset{T_{B C}}{C}
\end{array}{ }_{C}^{C D} \\
& \xrightarrow[T_{C D}]{C} \stackrel{D}{\frac{D}{T_{C D}}}
\end{aligned}
$$

Pause video NOW!

Work out the next step

\rightarrow on your own firs \dagger
\rightarrow discuss with teammates if you get stuck then continue to watch the video
"Intelligence consists of this; that we recognize the similarity between different things, and the difference between similar things."

Baron de la Brède et de Montesquieu (1689-1755) quoted in [Quantum field theory, E. Zeidler, 2008, p.175]

FBDs

Method
FBD of disk A
deduce $T_{A B}$ in terms of T_{A}
FBD of disk B
deduce $T_{B C}$ in terms of T_{A}, T_{B}
FBD of disk C deduce $T_{C D}$ in terms of T_{A}, T_{B}, T_{C}

Knowing the internal torque applied on each shaft, and knowing the diameter of each shaft, you can now compute the maximum shear stress on each shaft, using the elastic torsion formulas (or better yet reformulate these formulas).

Does the length of each shaft matter?

Pause video NOW!

Work out the next step

\rightarrow on your own firs \dagger
\rightarrow discuss with teammates if you get stuck then continue to watch the video
"Intelligence consists of this; that we recognize the similarity between different things, and the difference between similar things."

Baron de la Brède et de Montesquieu (1689-1755) quoted in [Quantum field theory, E. Zeidler, 2008, p.175]

Computation
FBD of disk A $\quad T_{A B}=T_{A}$
FBD of disk B $\quad T_{B C}=T_{A B}-T_{B}=T_{A}-T_{B}$

$$
\begin{equation*}
T _\{B C\}=T _\{A B\}-T _B=T _A-T _B \tag{2}
\end{equation*}
$$

FBD of disk $C \quad T_{C D}=T_{B C}-T_{C}=T_{A}-T_{B}-T_{C}$

$$
T_{-}(c)=T_{-}(B)-T_{-} c=T_{-}-T_{-}-T_{-} c
$$

Formulation of torsion problem:

Shear in terms of angle of twist:

$L \gamma=\rho \phi \Rightarrow \gamma=\frac{\rho \phi}{L}$, with $0 \leq \rho \leq c$

$\gamma_{\max }=\frac{c \phi}{L} \Rightarrow \frac{\phi}{L}=\frac{\gamma_{\max }}{c}$
(1)-(2): $\gamma=\frac{\rho \phi}{L}=\frac{\rho \gamma_{\max }}{c}$ \gamma $=\backslash$ frack\{ \backslash rho $\backslash p h i\}\{L\}=\backslash$ frack\{ \backslash rho $\operatorname{\text {gamma_\{max}\} \} \{ c\} }$
Hooke's law: $\tau=G \gamma=G \underline{\rho \gamma_{\max }}$
C $\backslash t a u=G \backslash g a m m a=G \backslash f r a c\left\{\backslash r h o \backslash g a m m a _\{\max \}\right\}\{c\}$
Resultant torque:
$T=\int_{A} \rho d F=\int_{A} \rho \tau d A=G \frac{\gamma_{\max }}{c} \int_{A} \rho^{2} d A$
$T=\backslash i n t _A \backslash r h o \backslash, d F=\backslash i n t _A \backslash r h o \backslash, \backslash t a u d A=G \backslash f r a c\left\{\backslash g a m m a _\{\max \}\right\}\{c\} \backslash i n t _A \backslash r h o^{\wedge} 2 \backslash, d A$

$$
T=G J \frac{\gamma_{\max }}{c}=\frac{G J}{L} \phi
$$

From the ind eq. in (6) p.11-6 for torsional deformation, one can observe the following similarity and difference with axial deformation (remember Montesquieu):
Axial deformation Torsional deformation

$$
\begin{equation*}
\delta=\frac{P L}{E A} \leftrightarrow \phi=\frac{T L}{G J} \tag{1}
\end{equation*}
$$

\backslash delta $=\backslash f r a c\{P L\}\{E A\}$ Veftrightarrow $\backslash p h i=\backslash f r a c\{T L\}\{G J\}$
$P=\frac{E A}{L} \delta \leftrightarrow T \stackrel{G J}{L} \phi$
$P=\backslash f r a c\{E A\}\{L\} \backslash$ delta Veftrightarrow $T=\backslash f r a c\{G J\}\{L\} \backslash p h i$
$L /(E A)$ axial flexibility
$E A / L$ axial stiffness
$L /(G J)$ torsional flexibility
$G J / L$ torsional stiffness
(6) p.11-6:

$$
\begin{equation*}
\tau_{\max }=G \gamma_{\max }=\frac{T c}{J} \tag{1}
\end{equation*}
$$

\backslash tau_\{max\} $=G$ \backslash gamma_\{max\} $=\backslash$ frack $\{T \mathrm{C}\}\{\mathrm{J}\}$
Polar moment of inertia of solid circular section:
$J=\int_{A} \rho^{2} d A=\int_{\rho=0}^{\rho=c} \rho^{2}(2 \pi \rho d \rho)=\frac{1}{2} \pi c^{4}$

Maximum shear stress in bar AB:
$\tau_{\max , A B}=\frac{T_{A B} c_{A B}}{J_{A B}}=\frac{T_{A} d_{A B} / 2}{\frac{1}{2} \pi\left(d_{A B} / 2\right)^{4}}=\frac{4 T_{A}}{\pi\left(d_{A B}\right)^{3}}$
$\backslash t a u _\{\max , A B\}=\backslash \operatorname{frac}\left\{T _\{A B\} \backslash, c _\{A B\}\right\}\left\{J _\{A B\}\right\}=\backslash f r a c\left\{T _\{A\} \backslash, d _\{A B\} / 2\right\}\left\{\backslash f r a c 12 \backslash p i\left(d _\{A B\} / 2\right)^{\wedge} 4\right\}=\backslash f r a c\left\{4 T _A\right\}\left\{\backslash p i\left(d _\{A B\}\right)^{\wedge} 3\right\}$
Maximum shear stress in bar $B C$:

$$
\begin{align*}
\tau_{\max , B C} & =\frac{T_{B C} c_{B C}}{J_{B C}}=\frac{\left(T_{A}-T_{B}\right) d_{B C} / 2}{\frac{1}{2} \pi\left(d_{B C} / 2\right)^{4}} \\
& =\frac{4\left(T_{A}-T_{B}\right)}{\pi\left(d_{B C}\right)^{3}} \tag{4}
\end{align*}
$$

$11-9$

Maximum shear stress in bar $B C$:
$\begin{aligned} \tau_{\max , C D} & =\frac{T_{C D} c_{C D}}{J_{C D}}=\frac{\left(T_{A}-T_{B}-T_{C}\right) d_{C D} / 2}{\frac{1}{2} \pi\left(d_{C D} / 2\right)^{4}} \\ & =\frac{4\left(T_{A}-T_{B}-T_{C}\right)}{\pi\left(d_{C D}\right)^{3}}\end{aligned}$
\tau_\{max, $C D\}=\backslash f r a c\left\{T _\{C D\} \backslash, c _\{C D\}\right\}\left\{J _\{C D\}\right\}=\backslash f r a c\left\{\left(T _\{A\}-T _B-T _C\right) \backslash, d _\{C D\} / 2\right\}\left\{\backslash f r a c 12 \backslash p i\left(d _\{C D\} / 2\right)^{\wedge} 4\right\}$ $=\backslash f r a c\left\{4\right.$ (T_A - T_B - T_C) \}\{\pi $\left.\left(d _\{C D\}\right)^{\wedge} 3\right\}$

Pause video NOW!

Work out the next step

\rightarrow on your own firs \dagger
\rightarrow discuss with teammates if you get stuck then continue to watch the video
"Intelligence consists of this; that we recognize the similarity between different things, and the difference between similar things."

Baron de la Brède et de Montesquieu (1689-1755) quoted in [Quantum field theory, E. Zeidler, 2008, p.175]

Without doing any computation, we can determine which maximum shear stress is largest as follows:
$T_{A}>T_{A}-T_{B}>T_{A}-T_{B}-T_{C}$

$$
T_{-} A>T_{-} A-T_{-} B>T_{-} A-T_{-} B-T_{-} C
$$

$d_{A B}<d_{B C}<d_{C D}$
(3)-(4) p.11-8 and (1) p.11-7:
$\tau_{\text {max }, A B}>\tau_{\text {max }, B C}>\tau_{\text {max }, C D}$

Now use (3) p.11-8 to compute $\tau_{\max , A B}$

