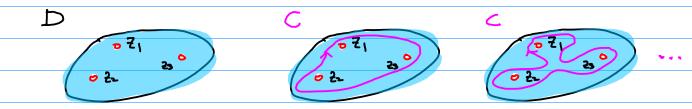
Residue Integrals and Laurent Series with non-annular region

20170217

Copyright (c) 2016 - 2017 Young W. Lim.


Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Based on
T.J. Cavicchi, Digital Signal Processing
Complex Analysis for Mathematics and Engineering
J. Mathews

Residue Theorem

- D: Simply connected domain
- C: Simple closed contour (CCW) in D
- if f(z) is analytic inside c and on c except at the points [21, 22, ..., 2k] in C

then
$$\frac{1}{2\pi i} \int_{C} f(z) dz = \sum_{j=1}^{k} Res(f(z), z_{j})$$

Integration of a function of a complex var.

$$\oint_{c} f(z)dz = 2\pi i \sum_{k=1}^{n} Res(f(z), Z_{k})$$
finite number k of

Singular points Z_{k}

residue theorem

$$\oint_{c} f(z)dz = 0 \quad \text{if } f(z) \text{ is analytic within and on } C$$

$$\text{No singularity}$$

$$\oint_{C} f(z)dz = 0 \quad \text{if } f(z) = F'(z) \quad \text{on } C$$

$$: F(z) \text{ is an antiderivative of } f(z)$$

$$fundamental \quad \text{theorem of } calculus$$

Thomas J. Cavicchi Digital Signal Processing, Wiley, 2000 $\oint_{C} f(z)dz = 0 \quad \text{if } f(z) \text{ is continuous in } D \text{ and}$ f(z) = F'(z): F(z) is an antiderivative of f(z)fundamental theorem of calculus

Series Expansion

can expand f(2) about any point Z_m over powers of $(2-Z_m)$

whether or not f(2) is singular at 2m or at other points between 2 and 2m

$$f(z) = \sum_{n=N_1}^{\infty} a_n^{(n)} (z - z_m)^n$$

- D Laurent Series Expansion of f(z) at zm general no - depend on f(z) and zm
- 2 z-transform of a_n^{m} general m_1 depend on f(z) $z_m = 0$
- 3 Taylor Series Expansion of f(z) at zm
 positive (n) depend on f(z) and zm (n,70)
- Marlaurin Series Expansion of f(z) at z_m positive π_i depend on f(z) (n, >0) $z_m = 0$

$$f(z) = \sum_{n=n}^{\infty} a_n^{(n)} (z - z_m)^n$$

n, >0 pas powers

	Laurent Series	3 Taylor Series
$z_{m} = 0$	② Z-tromsform	@ MacLaurin Series

 \times Expansion of f(2) about any point Z_m over powers of $(2-Z_m)$

$$f(z) = \sum_{n=n_i}^{\infty} a_n^{(m)} (z - z_m)^n$$

$$\alpha_n^{(m)} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_m)^{n_m}} dz$$

for general f(2)

$$a_n^{(m)} = \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_n)^{n}}, z_k\right)$$

for general fla)

$$\alpha_{lm}^{u} = \frac{u_{l}}{l} + \frac{u_{l}}{l} = \frac{u_{l}}{l} + \frac$$

for analytic f(2) within C

analytic
$$f(z) \longrightarrow \frac{f(\overline{z})}{(\overline{z}-\overline{z}_n)^{n+1}}$$
 has a pole at \overline{z}_n
order of $n+1$

Thomas J. Cavicchi Digital Signal Processing, Wiley, 2000

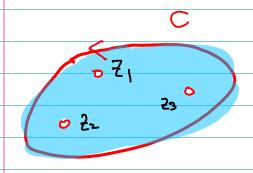
$$f(z) = \sum_{n=n_1}^{\infty} a_n^{\{m\}} (z - z_m)^n$$

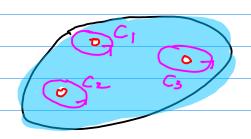
Zm: possible poles of f(z)
not necessarily poles

$$\alpha_{n}^{[m]} = \frac{1}{2\pi i} \begin{cases} f(z') \\ (z'-z_{m})^{nH} \end{cases} dz'$$

$$= \sum_{k} \text{Res}\left(\frac{f(z)}{(z-z_{m})^{nH}}, z_{k}\right) \quad \overline{z_{k}} : \text{poles of } \frac{f(z)}{(z-\overline{z_{m}})^{nH}}$$

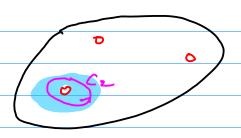
$$\frac{2}{100}$$
: poles of $\frac{f(2)}{(2-2)^{n}}$

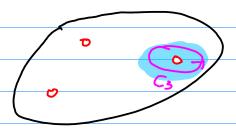

within 2


$$= \frac{N_i}{\downarrow} \downarrow_{(y)} (\xi^w) \qquad \lambda^i > 0$$

Residue Theorem and Laurent Series

assumed there are 1K) singularities (poles) of f(z) in a region


at Cki s taken to enclose only one pole the



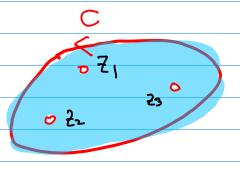
 $\alpha_n^{\{1\}}$ expanded at ξ_1 C_1 encloses ξ_1 only $\widetilde{\alpha}_{-1}^{\{1\}} = \operatorname{Res}(f(\xi), \xi_1)$

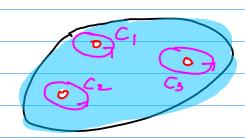
 $\mathcal{Q}_{n}^{\{2\}}$ expanded at \mathbb{Z}_{2} \mathcal{C}_{2} encloses \mathbb{Z}_{2} only $\widetilde{\mathcal{Q}}_{n}^{\{2\}} = \operatorname{Res}(f(z), \mathbb{Z}_{2})$

 $\mathcal{Q}_{n}^{\{3\}}$ expanded at \mathcal{Z}_{3} $\mathcal{C}_{s} \text{ encloses } \mathcal{Z}_{3} \text{ only}$ $\widetilde{\mathcal{Q}}_{-1}^{\{3\}} = \text{Res}(f(z), z_{3})$

Cauchy's Residue

Theorem


fle): analytic on and within c


then

$$\int_{c} f(2) d2 = 2\pi i \sum_{k=1}^{n} Res(f(2), Z_{k})$$

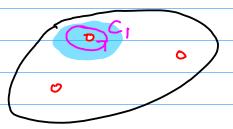
D: a simply connected domain

C: a simple closed contour in D

$$f(z) = \sum_{z=0}^{\infty}$$

$$f(z) = \sum_{k=0}^{\infty} \alpha_k (z-z_i)^k \qquad \alpha_{ij}^{(i)} = \lim_{k \to \infty} \oint_{C_i} f(s) \, ds = \operatorname{Res}(f(v), z_i)$$

$$f(z) = \sum_{k=-\infty}^{+\infty} \alpha_k (z-z_2)^k$$


$$f(z) = \sum_{k=0}^{+\infty} a_k (z-z_2)^k$$
 $a_{-1}^{(2)} = \sum_{k=0}^{+\infty} \int_{0}^{\infty} f(s) ds = \text{Res}(f(z), z_2)$

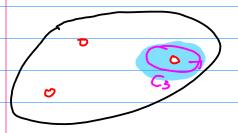
$$f(z) = \sum_{k=-\infty}^{+\infty} \alpha_k (z - z_s)^k$$

$$f(z) = \sum_{k=-\infty}^{+\infty} A_k (z-z_s)^k$$
 $A_{-1}^{(3)} = \frac{1}{2\pi i} \oint_{C_3} f(s) ds = \text{Res}(f(v), z_s)$

Laurent Series with Annulan Region expanded at each pole of f(Z)

$$f(z) = \sum_{n=1}^{\infty} Q_n^{\{i\}} (z-z_i)^n$$

$$\widetilde{\mathcal{K}}_{-1}^{\{1\}} = \mathbf{Res}(f(z), z_1)$$

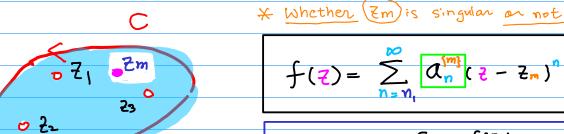

$$= \frac{1}{2\pi i} \oint_{c_1} f(z) dz$$

$$f(z) = \sum_{n=1}^{\infty} Q_n^{\{z\}} (z - z_z)^n$$

$$\widetilde{\mathcal{K}}_{-1}^{\frac{2}{2}} = \mathbf{Res}(f(z), z_2)$$

$$= \frac{1}{2\pi i} \oint_{c_2} f(z) dz$$

$$f(z) = \sum_{n=1}^{\infty} Q_n^{\{3\}} (z - z_3)^n$$

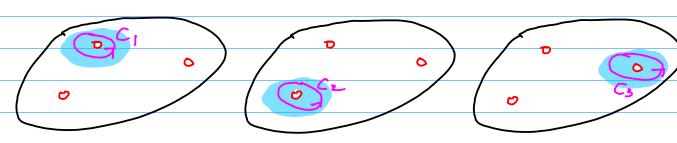


$$\widetilde{\mathcal{K}}_{-1}^{5} = \mathbf{Res}(f(z), z_3)$$

$$= \frac{1}{2\pi i} \oint_{C3} f(z) dz$$

$$\int_{c} f(2) d2 = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f(2), 2k)$$

Residue Theorem + Laurent Series



$$\frac{a_n^{(m)}}{a_n} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_n)^{n+1}} dz$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_n)^{n+1}}, z_k\right)$$

$$a_{-1}^{[m]} = \frac{1}{2\pi i} \oint_{C} f(\overline{z}) d\overline{z}$$

$$= \sum_{k} \operatorname{Res} (f(\overline{z}), \overline{z}_{k})$$

$$\widetilde{\mathcal{A}}_{-1}^{\{1\}} = \mathbf{Res}(f(z), z_1)$$
 $\widetilde{\mathcal{A}}_{-1}^{\{2\}} = \mathbf{Res}(f(z), z_2)$

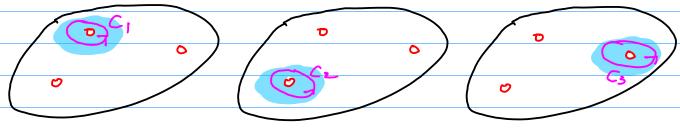
n=-1

$$\alpha_{-|}^{[m]} = \widetilde{\alpha}_{-|}^{[1]} + \widetilde{\alpha}_{-|}^{[2]} + \widetilde{\alpha}_{-|}^{[3]}$$

$$\mathcal{A}_{-1}^{[m]} = \underset{\text{Res}}{\text{Res}} (f(z), z_1) \qquad \underset{\text{coefficient } a_{-1}^{[2]}}{\text{coefficient } a_{-1}^{[2]}} \\
+ \underset{\text{Res}}{\text{Res}} (f(z), z_2) \qquad \underset{\text{punctured open disk}}{\text{.}}$$

This cannot be a residue because it is not

isolalated singular center nor punctured open disk


Laurent Series - Annulan Region of Convengence - no singularity in this region

Residue - Laurent Series expanded at a pole

a punctured open disk

• Annular

· I solated Singularity

$$\widetilde{\mathcal{A}}_{-1}^{\{1\}} = \mathbf{Res}(f(z), z_1)$$

$$\widetilde{\mathcal{K}}_{-1}^{\frac{2}{2}} = \mathbf{Res}(f(z), z_2)$$

$$\widetilde{\mathcal{C}}_{-1}^{\{1\}} = \mathbf{Res}(f(z), z_1) \qquad \widetilde{\mathcal{C}}_{-1}^{\{2\}} = \mathbf{Res}(f(z), z_2) \qquad \widetilde{\mathcal{C}}_{-1}^{\{3\}} = \mathbf{Res}(f(z), z_3)$$

$$\widetilde{\mathcal{A}}_{-1}^{[m]} = \mathbf{Res}(f(z), z_m)$$

Computing and

$$f(z) = \sum_{n=N_1}^{\infty} Q_n^{(m)} (z - z_m)^n$$

$$f(z) = \sum_{k=N_1}^{\infty} Q_k^{(m)} (z - z_m)^k$$

$$f(z) = \sum_{k=N_1}^{\infty} Q_k^{(m)} (z - z_m)^k$$

$$\frac{f(z)}{(z - z_m)^{n+1}} = \sum_{k=N_1}^{\infty} Q_k^{(m)} (z - z_m)^{k-n-1} \qquad \frac{1}{n} : \text{fixed value}$$

$$\int_{C} \frac{f(z)}{(z-z_{m})^{n_{H}}} dz = \int_{C} \sum_{k=N_{i}}^{\infty} a_{k}^{(m)} (z-z_{m})^{k-n-1} dz$$

$$= \sum_{k=N_{i}}^{\infty} \int_{C} a_{k}^{(m)} (z-z_{m})^{k-n-1} dz$$

$$\oint_{C} \frac{f(z)}{(z-z_n)^{n+1}} dz = \oint_{C} \alpha_n^{(m)} \frac{1}{(z-z_n)} dz = 2\pi i \cdot \alpha_n^{(m)}$$

$$\alpha_{im}^{n} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z^{n})^{n}} dz$$

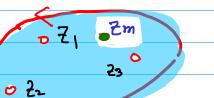
$$\int_{C}^{2} \cdots (z-z_{m})^{2} + (z-z_{m})^{2} + \frac{1}{(z-z_{m})} + 1 + (z-z_{m})^{2} + \cdots dz$$

$$= \oint_{C} \frac{1}{(z-z_{m})} dz = 2\pi i$$

Computing and using Residues

expansion at Zm

$$\alpha_{n}^{(m)} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_{m})^{nH}} dz \qquad \alpha_{-1}^{(m)} = \frac{1}{2\pi i} \oint_{C} f(z) dz$$


$$= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z-z_{m})^{nH}}, z_{k} \right) \qquad = \sum_{k} \operatorname{Res} \left(f(z), z_{k} \right)$$

$$\eta = -1 \qquad \gamma + 1 = 0 \quad (z - z_m)^{n_H} = 1$$

$$= \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_{m})^{nH}} dz \qquad \alpha_{-1}^{[m]} = \frac{1}{2\pi i} \oint_{C} f(z) dz$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z-z_{m})^{nH}}, z_{k} \right) \qquad = \sum_{k} \operatorname{Res} \left(f(z), z_{k} \right)$$

$$\alpha_{-1}^{(m)} = \frac{1}{2\pi i} \oint_{C} f(z) dz = \sum_{k} Res(f(z), z_{k})$$

$$f(z) = \sum_{n=n_1}^{\infty} \alpha_n^{(m)} (z - z_m)^n$$

$$\alpha_n^{(m)} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_n)^{n}} dz$$

$$= \sum_k \operatorname{Res}\left(\frac{f(z)}{(z-z_n)^{n}}, z_k\right)$$

Residue -> Laurent senes -> annular region) a punctured -> expanded at a pole &

$$f(z) = \sum_{n=n_1}^{\infty} a_n^{(m)} (z - z_m)^n$$

$$\alpha_{n}^{(m)} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_{n})^{n}} dz$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_{n})^{n}}, z_{k}\right)$$

$$\alpha_{-1}^{(m)} = \frac{1}{2\pi i} \oint_{C} f(z) dz$$

$$= \sum_{k} \operatorname{Res} (f(z), z_{k})$$

•

$$a_{\frac{-3}{3}} = \sum_{k} \operatorname{Res} \left(f(z) \left(z - z_{k}\right)^{2}, z_{k} \right)$$

$$\alpha_{\frac{-1}{2}}^{\frac{1}{2}} = \sum_{k} \operatorname{Res} \left(f(z) \left(z - z_{m} \right)^{1}, z_{k} \right)$$

$$a_{-}^{(m)} = \sum_{k} \operatorname{Res} \left(f(z), \frac{1}{2} + \frac{1}{2} \right)$$

$$a_{\circ}^{(m)} = \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_{m})}, z_{k}\right)$$

$$\alpha_{1}^{m} = \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_{m})^{2}}, z_{k}\right)$$

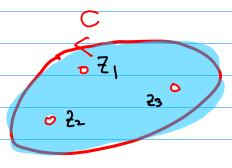
$$\mathcal{Q}_{\frac{2}{2}}^{\frac{m}{2}} = \sum_{k} \operatorname{Res}\left(\frac{f(2)}{(2-2m)^{\frac{1}{2}}}, 2_{k}\right)$$

Poles for Residue Computation

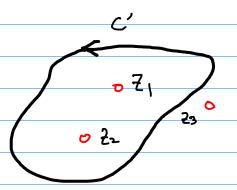
$$f(z) = \sum_{n=N_1}^{\infty} a_n^{(n)} (z - z_n)^n$$

$$\alpha_{n}^{(m)} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z - z_{n})^{n}} dz$$

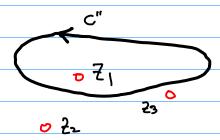
$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z - z_{n})^{n}}, z_{k}\right)$$

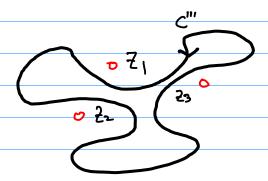

 Z_k within C: Singularities of $\frac{f(z)}{(z-z_n)^{n+1}}$

(I) non-singular Zm

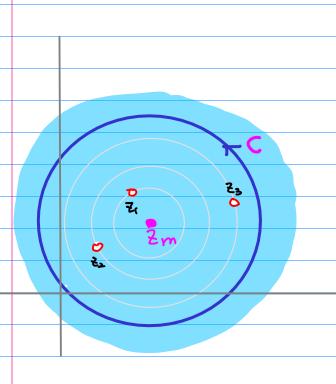

$$m \ge 0$$
 { poles of $f(z)$ } U { Z_m } $m=0,1,2...$
 $n < 0$ { poles of $f(z)$ } $n=1,-2,...$

Singular ≥ M


$$n \ge 0$$
 { poles of $f(z)$ }


$$\int_{c}^{c} f(2) d2 = 2\pi i \operatorname{Res}(f(2), Z_{1}) + 2\pi i \operatorname{Res}(f(2), Z_{2}) + 2\pi i \operatorname{Res}(f(2), Z_{3})$$

$$\int_{C'} f(2) dz = 2\pi i \operatorname{Res}(f(2), z_1) + 2\pi i \operatorname{Res}(f(2), z_2)$$



$$\int_{c''} f(2) d2 = 2\pi i \, \text{Res}(f(2), Z_1)$$

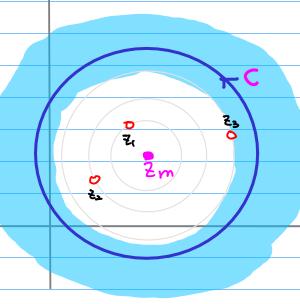
$$\int_{C_{i}}^{C_{i}} f(s) ds = 0$$

Series Expansion at Em

$$f(z) = \sum_{n=n_1}^{\infty} \left(z - z_n\right)^n$$

$$\frac{a_n^{(m)}}{a_n} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_n)^{n}} dz$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_n)^{n}}, z_k\right)$$


$$a_{-1}^{[m]} = \frac{1}{2\pi i} \oint_{C} f(z) dz$$

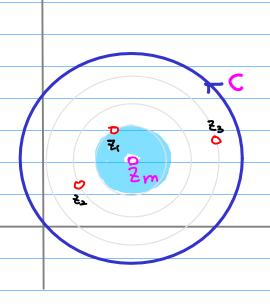
$$= \sum_{k} Res(f(z), z_{k})$$

 $a_{-1}^{m} \neq \text{Res}(f(a), z_m)$

Annular Region

a ≠ Res (f(2), 2m)

X for a nonsingular 2m Zm can be a pole of


$$\frac{f(z)}{(z-z^n)^{n+1}} \qquad \text{if } n > 0$$

When computing

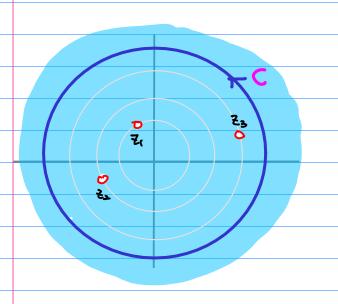
$$\boxed{\alpha_n^{[m]}} = \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_n)^{n}}, z_k\right)$$

Annular Region & [Zm: isolated singularity]

a punctured open disk

$$f(z) = \sum_{n=n_1}^{\infty} a_n^{(n)} (z - z_m)^n$$

$$a_{n}^{(m)} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_{n})^{n}} dz$$


$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_{n})^{n}}, z_{k}\right)$$

$$\alpha_{-1}^{[m]} = \frac{1}{2\pi i} \oint_{C} f(z) dz$$

$$= \sum_{k} \text{Res} (f(z), z_{k})$$

$$a_{-1}^{[m]} = \text{Res}(f(v), \tau_m)$$

Series Expansion at Z=0

$$f(z) = \sum_{n=n_1}^{\infty} \alpha_n^{(m)} z^n$$

$$\alpha_n^{(m)} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z^{nH}} dz$$

$$= \sum_{k} Res\left(\frac{f(z)}{z^{nH}}, z_k\right)$$

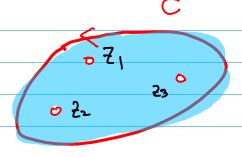
Poles Zx

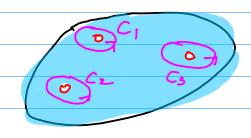
A punctured open disk

if c encloses only one pole to,

and the expansion at that pole zo is assumed, then

$$\boxed{a_{-1}^{(0)} = \frac{1}{2\pi i} \oint_{C_0} f(z) dz = Res(f(z), z_0)}$$


Let
$$\widetilde{\Omega}_{-1}^{[m]} = Res(f(z), z_m)$$
 notation \widetilde{e}



the vesidue of f(z) at Zm

Using Cm which is in the punctured open disk ROC

$$f(z) = \sum_{n=-\infty}^{\infty} Q_n^{\{m\}} (z - z_m)^n$$

$$\oint_{C} f(z) dz = 2\pi j \sum_{k=1}^{M} \widetilde{\alpha}_{-1}^{(k)} = 2\pi j \sum_{k=1}^{M} \operatorname{Res}(f(z), z_{k})$$

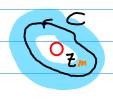
residue theorem

$$\Delta_n = \sum_{k=1}^{M} Res \left(\frac{f(z)}{(z-z_n)^{n+1}}, z_k \right)$$

Laurent coefficient

C encloses & poles

Che encloses only the b-th pole


The residue of the k-th pole enclosed by C, Zk

Non-anular region

$$f(z) = \sum_{n=0}^{\infty} \alpha_n^{\{n\}} (z - z_m)^n$$

$$Q_n^{\{m\}} = \frac{1}{2\pi i} \oint_C \frac{f(\xi')}{(\xi' - \xi_m)^{n+i}} d\xi'$$

$$= \sum_{\xi} \operatorname{Res} \left(\frac{f(\xi)}{(\xi - \xi_m)^{n+i}} , \xi_k \right)$$

C is in the same region of analyticity of f(z)

typically a circle centered on Zm non-annular ok

$$\mathcal{E}_k$$
 within \mathcal{C} : singularities of
$$\frac{f(z)}{(z-z_n)^{n+1}}$$

$$n_i = n_{f,m}$$
 depends on $f(z)$, z_m

$$a_n^{m}$$
 depends on $f(z)$, z_m , region of analyticity

Whether f(z) is singular at z=zm or not other points between z and zm. We can expand f(z) about any point zm over powers of (z-zm).

Laurent's Theorem

then

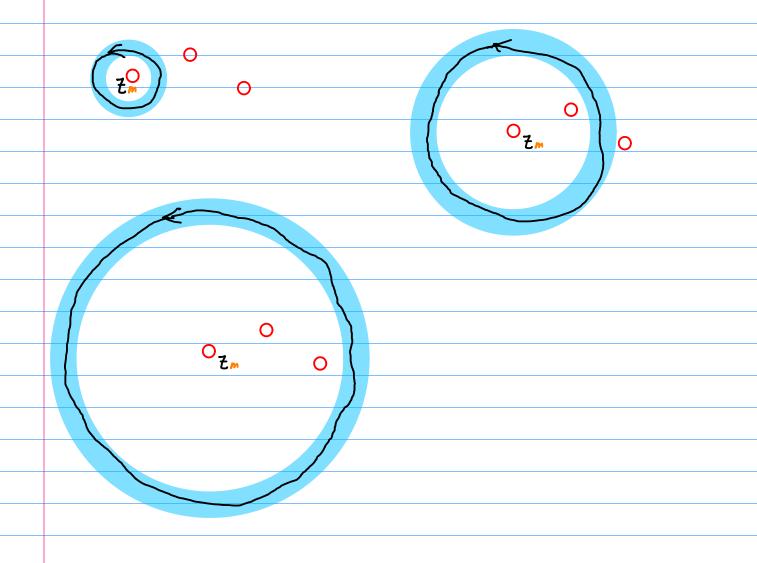
$$f(z) = \sum_{k=-\infty}^{+\infty} \alpha_k (z-z_0)^k$$

valid for
$$r < |z-z_0| < R$$

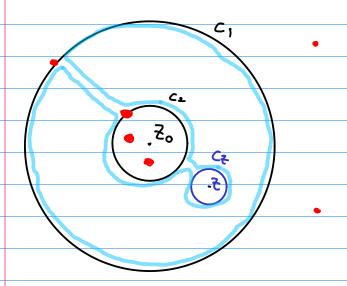
The coefficients at are given by

$$\Delta_{k} = \frac{1}{2\pi i} \oint_{C} \frac{f(s)}{(s-z_{o})^{k+1}} ds, \qquad k=0,\pm 1,\pm 2,\cdots$$

C: a simple closed curve that lies entirely within D that encloses Zo


Curve C & Domain D of the Lourent Series

$$f(z) = \sum_{n=1}^{\infty} \alpha_n^{\{n\}} (z - z_m)^n$$


$$Q_n^{\{m\}} = \frac{1}{2\pi i} \oint_C \frac{f(\xi')}{(\xi' - \xi_m)^{n+1}} d\xi'$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(\xi)}{(\xi - \xi_m)^{n+1}}, \xi_k \right)$$

Expansion Points and Evaluation Points

20: expansion point

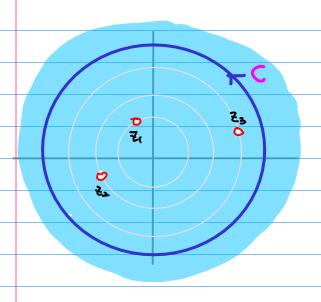
2: evaluation point

which poles of f(2) lie between the point of evaluation & and the point 2. about which the expansion is formed

f(t') is analytic between C, & (2

deformation theorem C1 - C2 Coincide

Common contou c

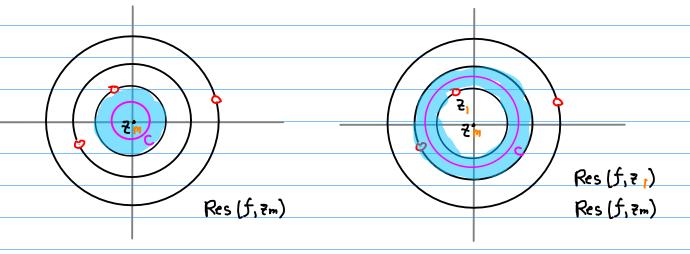

Residues

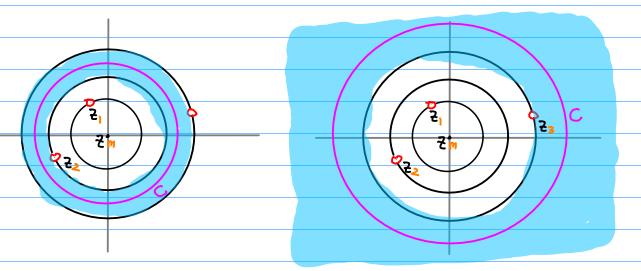
$$\alpha_{-1} = \frac{1}{2\pi i} \oint_{C} f(s) ds \qquad \oint_{C} f(s) ds = 2\pi i \cdot \alpha_{-1}$$

$$A_{-1} = \frac{1}{2\pi i} \oint_{C} f(s) ds = Res(f(z), z_{\bullet})$$

$$=\begin{cases} \lim_{\xi \to z_{0}} (z-z_{0})f(\xi) & \text{(simple)} \\ \frac{1}{(n-1)!} \lim_{\xi \to z_{0}} \frac{\lambda^{h-1}}{\lambda \xi^{n-1}} (z-z_{0})^{n} f(\xi) & \text{(order n)} \end{cases}$$

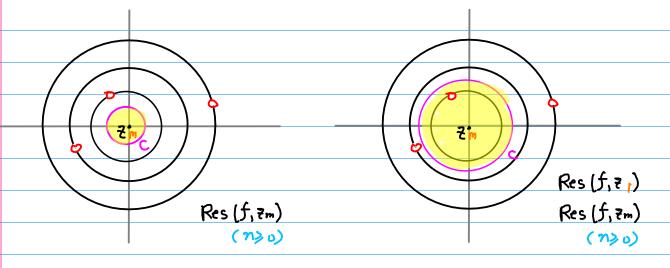
Series Expansion at Z=0

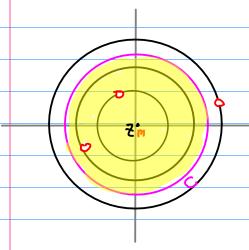


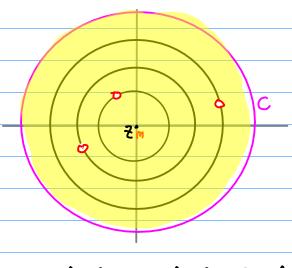

$$f(z) = \sum_{n=n_1}^{\infty} a_n^{(m)} z^n$$

$$\alpha_n^{(m)} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z^{nn}} dz$$
$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{z^{nn}}, z_k\right)$$

Poles Zh


$$\mathcal{N} \geqslant 0$$
 $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, 0$ $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$





Res (f, \overline{z}) + Res (f, \overline{z}) + Res (f, \overline{z}) + Res (f, \overline{z}) + Res (f, \overline{z})

Res (f, ?,)+ Res (f, ?,) + Res (f, ?) + Res (f, ?m)

Inverse z-Transform
$$X[n] = \frac{1}{2\pi i} \int_C X(z) z^m dz$$

$$\chi(s) = \sum_{k=0}^{\infty} \chi_k z^{-k}$$

$$Z^{n+} X(z) = \left(\sum_{k=0}^{\infty} x_k z^{-k}\right) z^{n+} \qquad \int z^{n+} LHs dz = \int kHs z^{n+} dz$$

$$=\sum_{k=0}^{\infty}\chi_{k} z^{-k+n-l} \qquad \boxed{[0,\infty)=[0,n+]\cup[n]\cup[n+l,\infty)}$$

$$= \sum_{k=0}^{N-1} \chi_{k} z^{-k+n-1} + \sum_{k=1}^{N} \chi_{k} z^{-k+n-1} + \sum_{k=n+1}^{\infty} \chi_{k} z^{-k+n-1}$$

$$= \sum_{k=0}^{N-1} \chi_{k} z^{-k+n-1} + \frac{\chi_{n}}{z!} + \sum_{k=n+1}^{\infty} \frac{\chi_{k}}{z^{k-n+1}}$$

$$\int_{C} \chi(z) z^{n-1} dz = \int_{R=0}^{\infty} \chi_{k} z^{-k+n-1} dz + \int_{C} \frac{\chi_{n}}{z^{1}} dz + \int_{C} \frac{\chi_{n}}{z^{2}} dz + \int_{C} \frac{\chi_{n}}{z^{2}} dz + \int_{C} \frac{\chi_{n}}{z^{2}} dz$$

$$= \int_{R=0}^{\infty} \chi_{k} z^{-k+n-1} dz + \chi_{n} \int_{C} \frac{1}{z^{1}} dz + \int_{R=n+1}^{\infty} \chi_{k} \int_{C} \frac{1}{z^{2}} \frac{1}{z^{2}} dz + \int_{R=n+1}^{\infty} \chi_{k} z^{2} dz$$

$$= \int_{R=0}^{\infty} \chi_{k} z^{-k+n-1} dz + \chi_{n} z^{2} dz + \int_{R=n+1}^{\infty} \chi_{k} z^{2} dz +$$

$$\chi[v] = \frac{1}{2\pi i} \left[\chi(\xi) \xi_{v-1} \, ds \right]$$

Z-transform

$$\chi[n] = \frac{1}{2\pi i} \oint_{C} f(z) z^{n-1} dz$$

$$= \sum_{k} \operatorname{Res} (f(z) z^{n-1}, z_{k})$$

no Zi: poles of f(t)

M= D Z: poles of f(E) + ₹=0 マペーを)=支

x[n] includes U[n] -> X[z] contains Z on its numerator

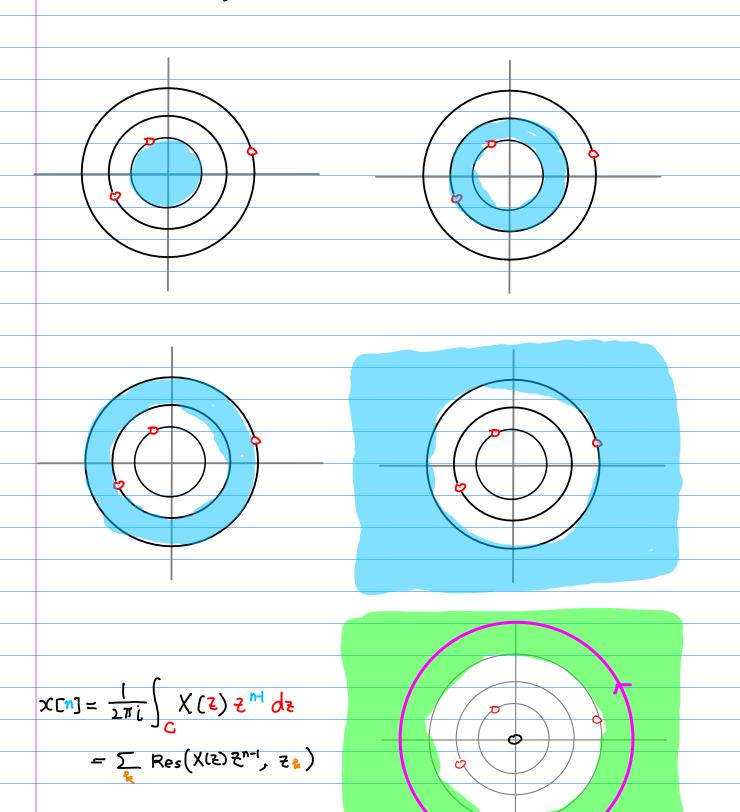
Also, think about modified partial fraction X[2]

Laurent Expansion

expansion at 2m

$$\alpha_n^{[m]} = \frac{1}{2\pi i} \left\{ \frac{f(z)}{(z - z_m)^{nH}} dz \right\}$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z - z_m)^{nH}}, z_k \right) = \sum_{k} \operatorname{Res} \left(\frac{f(z)}{z^{nH}}, z_k \right)$$


$$= \frac{1}{2\pi i} \oint_{C} \frac{1}{(z-z_{N})^{nH}} dz$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_{N})^{nH}}, z_{k}\right)$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{z^{nH}}, z_{k}\right)$$

$$\alpha_{-n}^{(0)} = \frac{1}{2\pi i} \oint_{C} f(z) z^{n-1} dz \qquad \alpha_{-n}^{(0)} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z^{n+1}} dz \\
= \sum_{k} \operatorname{Res} \left(f(z) z^{n-1}, z_{k} \right) \qquad = \sum_{k} \operatorname{Res} \left(\frac{f(z)}{z^{n+1}}, z_{k} \right)$$

Different D, Different Laurent Series

2-transform

$$f(5) = \frac{(5-1)(5-5)}{-1}$$

Complex Variables and Ap Brown & Churchill

$$f(z) = \frac{-1}{(z-1)(z-1)} = \frac{1}{z-1} - \frac{1}{z-2}$$

D1: 121 <1

Dz: 1 < |2| <2

P3: 2< |2|

$$f(z) = \frac{1}{z-1} - \frac{1}{z-2} = \frac{-1}{1-z} + \frac{1}{z} + \frac{1}{z}$$

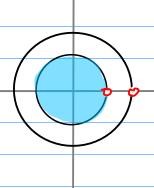
$$= -\sum_{n=0}^{\infty} \xi^n + \sum_{n=0}^{\infty} \frac{\xi^n}{2^{n+1}} = \sum_{n=0}^{\infty} (2^{-n-1} - 1)\xi^n \quad |\xi| < |\xi|$$

$$f(z) = \frac{1}{z^{-1}} - \frac{1}{z^{-2}} = \frac{1}{z} \cdot \frac{1}{1 - (\frac{1}{z})} + \frac{1}{z} \cdot \frac{1}{1 - (\frac{3}{z})}$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} + \sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}}$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n}} + \sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}}$$

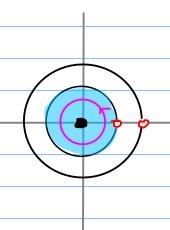
(3)
$$D_3$$
 $2 < |2|$ $\left| \frac{2}{2} \right| < \left| \frac{1}{2} \right| < \right|$


$$f(z) = \frac{1}{z-1} - \frac{1}{z-2} = \frac{1}{z} \frac{1}{1-(\frac{1}{z})} - \frac{1}{z} \frac{1}{1-(\frac{1}{z})}$$

$$= \sum_{h=0}^{\infty} \frac{1}{z^{h+1}} - \sum_{n=0}^{\infty} \frac{2^n}{z^{h+1}} = \sum_{n=0}^{\infty} \frac{1-2^n}{z^{n+1}}$$

$$= \sum_{k=0}^{\infty} \frac{1-2^{k+1}}{z^k}$$

$$f(5) = \frac{(5-1)(5-5)}{-1}$$


$$\frac{\mathcal{Z}_{M+1}}{f(s)} = \frac{(s-1)(s-r)S_{M+1}}{-1}$$

$$f(z) = \frac{1}{|z-1|} - \frac{1}{|z-2|} = \frac{-1}{|z-2|} + \frac{1}{2} \frac{1}{|z-2|}$$

$$= -\sum_{n=0}^{\infty} z^n + \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} = \sum_{n=0}^{\infty} (2^{-n-1} - 1)z^n \quad |z| < |z|$$

$$\Delta_n = \sum_{k=1}^{M} \text{Res}\left(\frac{f(\xi)}{(\xi - \xi_n)^{n+1}}, \xi_n\right) = \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 0\right)$$

$$\Delta_{n} = \sum_{k=1}^{M} \operatorname{Res}\left(\frac{f(z)}{(z-z_{n})^{n+1}}, z_{k}\right) = \operatorname{Res}\left(\frac{-1}{(z-1)(z-2)z^{n+1}}, 0\right)$$

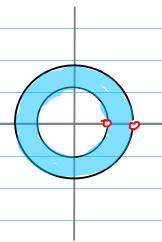
n>0 then the pole 2=0

$$\frac{d^{\frac{1}{2}}}{d^{\frac{1}{2}}}\left((\xi + 1)^{-1} - (\xi - 5)^{-1} \right) = (-1)\left((\xi + 1)^{-2} - (\xi - 5)^{-2} \right)$$

$$\frac{d^{\frac{1}{2}}}{d^{\frac{1}{2}}}\Big((\frac{1}{2}+1)^{-1}-(\frac{1}{2}-2)^{-1}\Big)=(-1)(-1)\Big((\frac{1}{2}+1)^{-3}-(\frac{1}{2}-2)^{-3}\Big)$$

$$\frac{d^{3}}{d^{2}}\left((2+1)^{-1}-(2+2)^{-1}\right)=(-1)(-1)(-1)(-3)\left((2+1)^{4}-(2-2)^{-4}\right)$$

$$\frac{d^{2n}}{d^{2n}} \left((\xi - 1)^{-1} - (\xi - 2)^{-1} \right) = (-1)^{n} \text{ in } \left((\xi - 1)^{-n-1} - (\xi - 2)^{-n-1} \right)$$

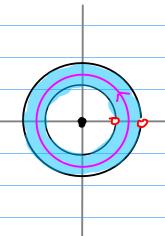

$$\frac{1}{\eta!} \lim_{z \to 0} \frac{d^{n}}{dz^{n}} \left((z + 1)^{-1} - (z + 2)^{-1} \right) = (-1)^{n} \lim_{z \to 0} \left((z + 1)^{-n-1} - (z + 2)^{-n-1} \right)$$

$$= (-1)^{n} \left((-1)^{-n-1} - (-2)^{-n-1} \right)$$

$$= -1 + 2^{-n-1}$$

$$f(z) = \sum_{n=1}^{\infty} Q_n z^n = \sum_{n=0}^{\infty} (z^{-n-1} - 1) \overline{z}^n$$

$$f(5) = \frac{(5-1)(5-5)}{-1}$$


$$f(z) = \frac{1}{z^{-1}} - \frac{1}{z^{-2}} = \frac{1}{z} \cdot \frac{1}{1 - (\frac{z}{z})} + \frac{1}{z} \frac{1}{1 - (\frac{z}{z})}$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} + \sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}}$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n}} + \sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}}$$

$$\Delta_{n} = \sum_{k=1}^{M} \text{Res}\left(\frac{f(\xi)}{(\xi - \xi_{m})^{n+1}}, \xi_{k}\right) = \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 0\right)$$

$$+ \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 1\right)$$

$$\Delta_{n} = \sum_{k=1}^{M} \operatorname{Res} \left(\frac{f(\xi)}{(\xi - \xi_{m})^{n+1}}, \xi_{k} \right) = \operatorname{Res} \left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 0 \right) \\
+ \operatorname{Res} \left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 1 \right) \\
\frac{1}{(n-1)!} \lim_{\xi \to \xi_{m}} \frac{A^{h-1}}{d\xi^{n+1}} (\xi - \xi_{m})^{n} f(\xi) \left(\operatorname{order} n \right) \\
\frac{1}{\eta!} \lim_{\xi \to 0} \frac{d^{\eta}}{d\xi^{\eta}} \left((\xi - 1)^{-1} - (\xi - 2)^{-1} \right) = (-1)^{\eta} \lim_{\xi \to 0} \left((\xi - 1)^{-n-1} - (\xi - 2)^{-n-1} \right) \\
= (-1)^{\eta} \left((-1)^{-n-1} - (-2)^{-n-1} \right) \\
= -1 + 2^{-n-1}$$

$$\operatorname{Res}\left(\frac{-1}{(\xi-1)(\xi-2)Z^{n+1}}, 0\right) = -1 + 2^{-n-1} \quad (n > 0)$$

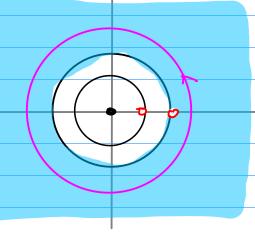
$$\operatorname{Res}\left(\frac{-1}{(\xi-1)(\xi-2)Z^{n+1}}, 1\right) = \lim_{z \to 1} (\xi-1)\frac{-1}{(\xi-1)(\xi-2)Z^{n+1}} = 1$$

$$\begin{cases} \Delta_n = 2^{-n-1} & n \ge 0 \\ \Delta_n = 1 & n < 0 \end{cases} \begin{cases} 2^{-n-1} \ge n \\ = 2^{-n} \end{cases}$$

$$f(z) = \sum_{n=1}^{\infty} \frac{1}{z^n} + \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$$

$$f(5) = \frac{(5-1)(5-5)}{-1}$$

$$\boxed{3} \quad \mathsf{D}_3 \qquad \mathsf{2} < |\mathsf{E}| \qquad \left| \frac{\mathsf{2}}{\mathsf{E}} \right| < | \qquad \left| \frac{\mathsf{1}}{\mathsf{E}} \right| < |$$



$$f(z) = \frac{1}{z-1} - \frac{1}{z-2} = \frac{1}{z} \frac{1 - (\frac{1}{z})}{1 - (\frac{1}{z})} - \frac{1}{z} \frac{1}{1 - (\frac{1}{z})}$$

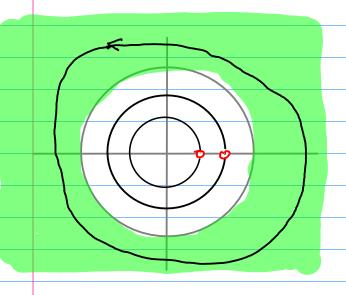
$$= \sum_{h=0}^{\infty} \frac{1}{z^{h+1}} - \sum_{n=0}^{\infty} \frac{2^n}{z^{h+1}} = \sum_{n=0}^{\infty} \frac{1 - 2^n}{z^{n+1}}$$

$$= \sum_{n=0}^{\infty} \frac{1 - 2^{n+1}}{z^n}$$

$$\Delta_{n} = \sum_{k=1}^{M} \text{Res}\left(\frac{f(\xi)}{(\xi - \xi_{n})^{n+1}}, \xi_{k}\right) = \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 0\right) + \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 1\right) + \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 1\right)$$

$$Res\left(\frac{-1}{(\xi-1)(\xi-2)\xi^{n+1}}, 0\right) = -1 + 2^{-n-1} \quad (n > 0)$$

$$Res\left(\frac{-1}{(\xi-1)(\xi-2)\xi^{n+1}}, 1\right) = \lim_{z \to 1} (\xi-1) \frac{-1}{(\xi-1)(\xi-2)\xi^{n+1}} = 1$$


$$Res\left(\frac{-1}{(\xi-1)(\xi-2)\xi^{n+1}}, 2\right) = \lim_{z \to 2} (\xi-2) \frac{-1}{(\xi-1)(\xi-2)\xi^{n+1}} = -\frac{1}{2^{n+1}}$$

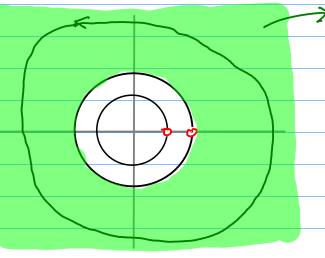
M=-3	N= -2	n=-1	N=O	n=1	m=2	
_ص	0	0	ーノナスト	1+2-2	-1 + 2 ⁻³	Res (f(2) , 0)
τ	l	ſ	ĵ	1	ţ	$\operatorname{Res}(\frac{f(t)}{2^{n+1}}, 1)$
-22	-2	-[-24	− 5 ₋₇	-2-3	Res(f(2) , 2)
[-22	1-2	6	٥	0	0	

$$\Delta_{n} = |-2^{-n+1}| \quad n < 0 \qquad = \sum_{n=1}^{\infty} \frac{|-2^{n+1}|}{z^{n}}$$

$$f(z) = \sum_{n=1}^{\infty} (1-2^{-n+1}) z^{n} = \sum_{n=1}^{\infty} \frac{|-2^{n-1}|}{z^{n}}$$

$$f(5) = \frac{(5-1)(5-5)}{-1}$$

$$\begin{array}{rcl}
x & \text{[n]} \\
&= \frac{1}{2\pi i} \int_{C} X(z) z^{n-1} dz \\
&= \sum_{j=1}^{k} \text{Res}(X(z) z^{n-1}, z_{j})
\end{array}$$


$$\chi(2) = \frac{-1}{(2-1)(2-1)}$$

$$\chi(z) z^{n+} = \frac{-1}{(z-1)(z-1)} z^{n+}$$

$$\operatorname{Res}\left(X(\mathbf{Z})\mathbf{Z}^{\mathsf{H}}\right) = (\mathbf{Z}+\mathbf{1})\frac{-1}{(\mathbf{Z}+\mathbf{1})(\mathbf{Z}-\mathbf{1})}\mathbf{Z}^{\mathsf{H}}\Big|_{\mathbf{Z}=\mathbf{1}} = \mathbf{1}$$

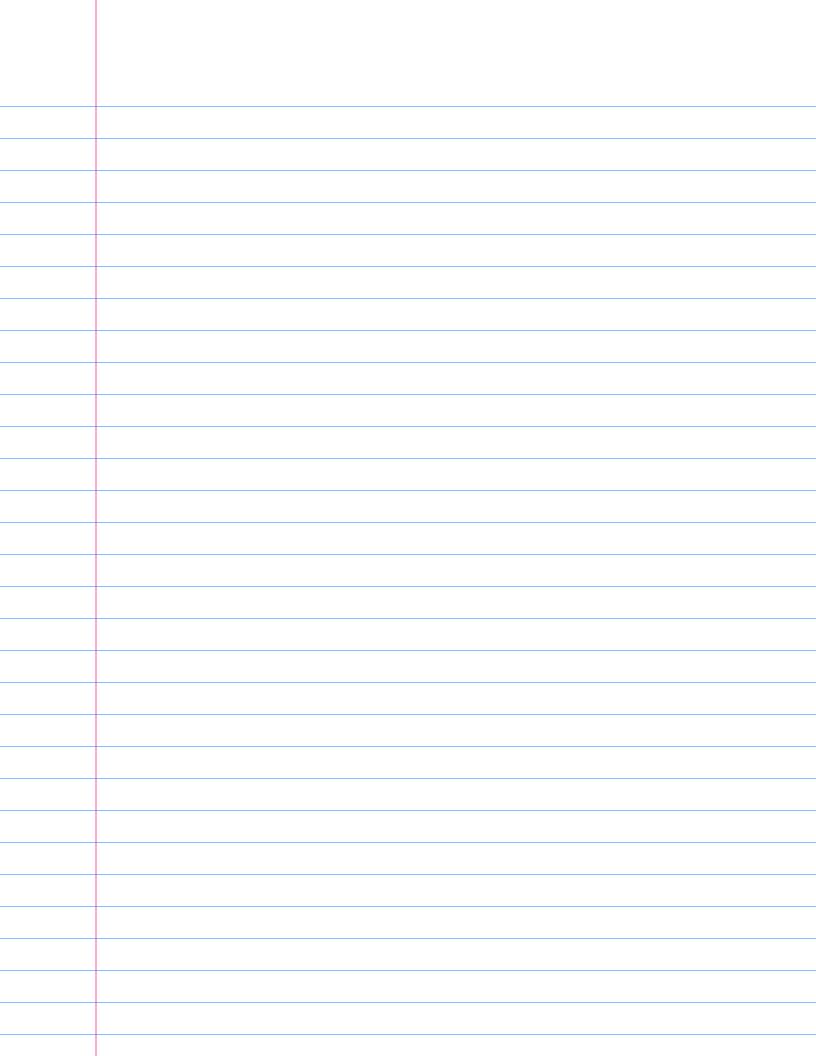
Res
$$(X(z)z^{n},2) = (z-1)\frac{-1}{(z-1)(z-1)}z^{n}|_{z=2} = -2^{n-1}$$

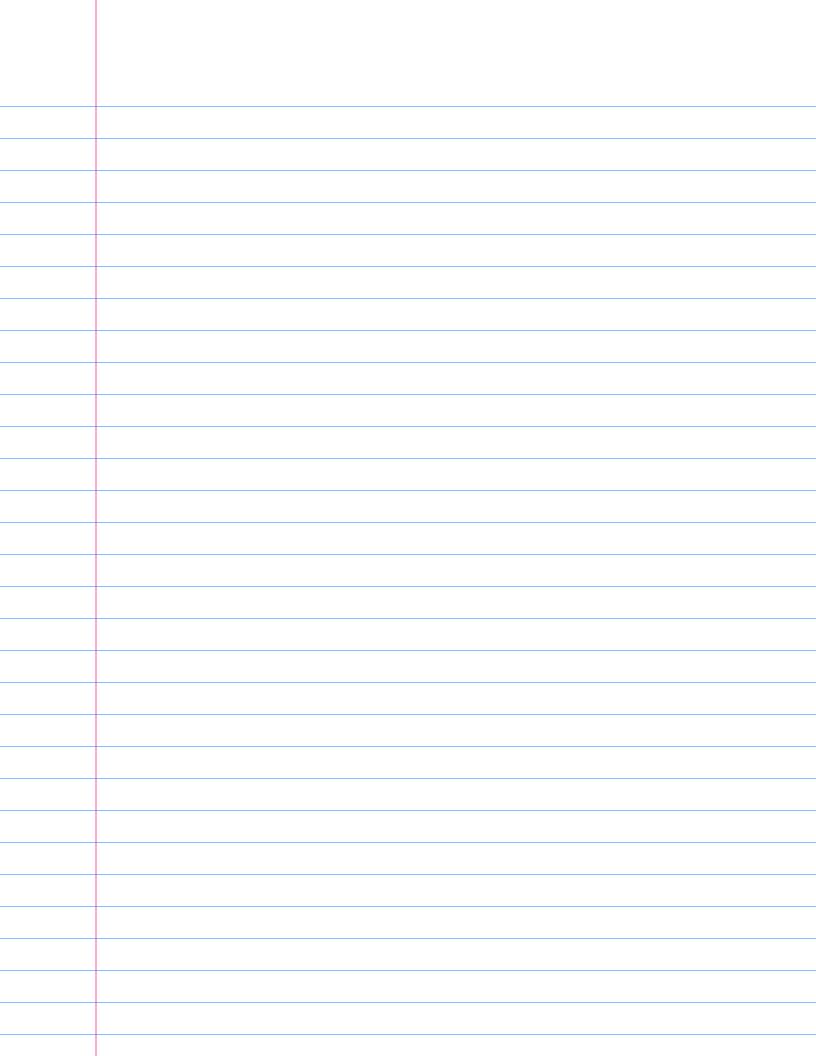
$$\chi \Gamma \eta = 1 - 2^{n4}$$

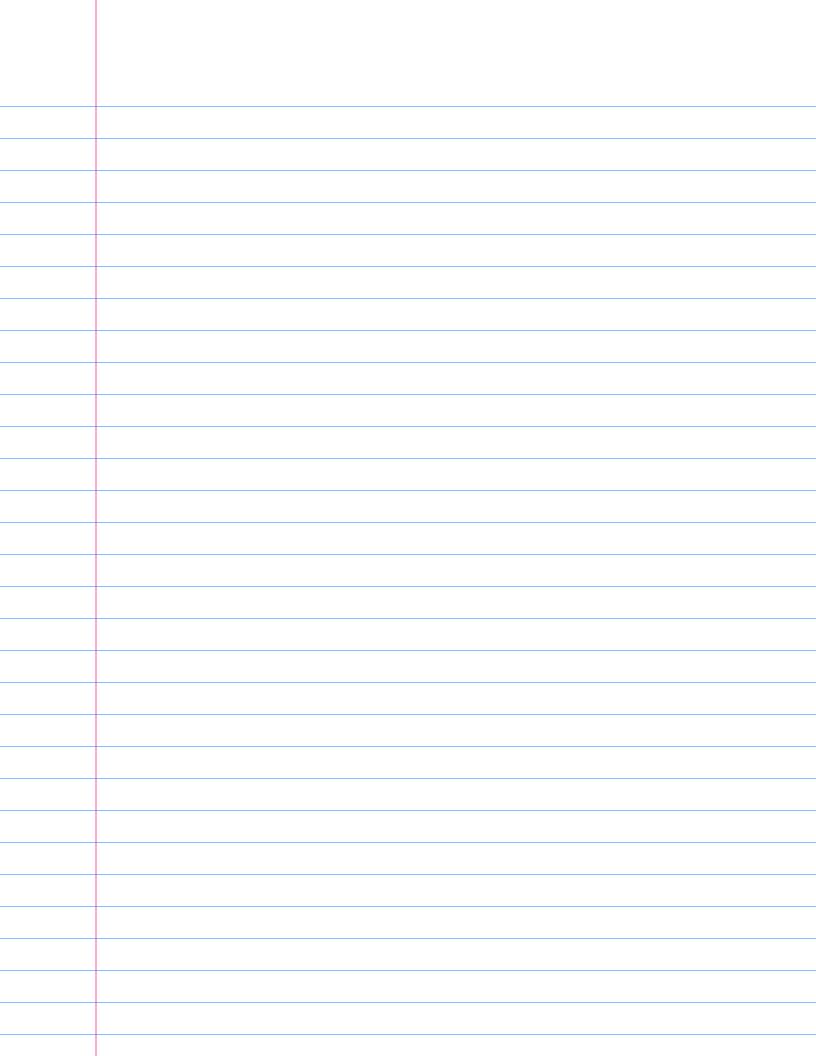
> ROC (Region of Convergence)

$$\left(\frac{2}{z}\right)^0 + \left(\frac{2}{z}\right)^1 + \left(\frac{2}{z}\right)^2 + \cdots$$
Converge

$$\left(\frac{1}{\xi}\right)^0 + \left(\frac{1}{\xi}\right)^1 + \left(\frac{1}{\xi}\right)^2 + \cdots$$
 Converge


$$f(z) = \frac{1}{z^{-1}} - \frac{1}{z^{-2}} = \frac{1}{z} \frac{1}{1 - (\frac{1}{z})} - \frac{1}{z} \frac{1}{1 - (\frac{1}{z})}$$


$$= \sum_{h=0}^{\infty} \frac{1}{z^{h+1}} - \sum_{n=0}^{\infty} \frac{2^n}{z^{h+1}} = \sum_{n=0}^{\infty} \frac{1 - 2^n}{z^{n+1}}$$


$$= \sum_{n=0}^{\infty} \frac{1 - 2^{n+1}}{z^n}$$

$$+\frac{1}{2}\left(\frac{5}{5}\right)+\left(\frac{5}{5}\right)^{\frac{1}{2}}+\left(\frac{5}{5}\right)^{\frac{1}{2}}+\cdots\right\} \qquad \qquad \frac{1}{1}-\frac{5-1}{1}-\frac{5-5}{1}=\frac{(54)(5-5)}{1}$$

$$X[n] = [-2^{n+1}] \times (2) = \frac{-1}{[2-1)(2-2)} (|2| > 2)$$

