Algorithmic State Machine (1A)

Copyright (c) 2011-2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

D Latch \& D FlipFlop

Level Sensitive D Latch

$$
\begin{array}{ll}
\text { CK=1 } & \text { transparent } \\
\text { CK=0 } & \text { opaque }
\end{array}
$$

Edge Sensitive D FlipFlop

CK=1 $\rightarrow 0$ transparent else opaque

D FlipFlop with Enable

Register Transfer \& Data Path

Control the time \& the source of a transfer

Finite State Machine

Finding Next State Logic

State Transition

Moore FSM

Mealy Machine

Flow Chart \& Algorithmic State Machine

State Box

Moore Output

Condition Symbol
Conditional Output Box

Mealy Output

Restriction

Restriction

Next State Logic

Output Logic

FSM Output

Current State

FSM Inputs

Examples

Examples

```
int }x=10,y=3
int R1 = x;
int R2 = 0;
while (R1 >= y) {
        R1 = R1-y;
    R2 = R2 + 1;
}
R1 = x % y
R2 = x / y
```


References

[1] http://en.wikipedia.org/
[2] M. M. Mano, C. R. Kime, "Logic and Computer Design Fundamentals", $4^{\text {th }}$ ed.
[3] D.M. Harris, S. L. Harris, "Digital Design and Computer Architecture"
[4] M. G. Arnold, "Verilog Digital Computer Design : Algorithms into Hardware", 1999
[5] F.P. Prosser, D.E. Winkel, "The Art of Digital Design : An Intro to Top-Down Design", $2^{\text {nd }} e d, 1986$

