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Goal Execution

?- mortal(socrates).

mortal(X) :- man(X).

man(socrates).

X

a variablesocrates

an atom

a query

a rule

a fact

mortal(socrates) an initial goal

mortal(X) :- man(X).
man(socrates).

try to match a first rule
try to match a first fact

instantitation

extend the variable instantiationmortal(socrates) :- 
man(socrates).

man(socrates) a new goal

mortal(X) :- man(X).
man(socrates).

try to match a first rule
try to match a first fact
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Select 

permutation([], []).

permutation(List, [Element | Result]) :-

select(Element, List, Rest),

permutation(Rest, Result).

If Element is in List, 
then remove Element from List
and return Rest

Select (Element, List, Rest), RestList Element (                           )

[Head | Tail]
bind Element
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Permutation – Recursive Call

permutation([], []).

permutation(List, [Element | Result] ) :-

select(Element, List, Rest),

permutation(Rest, Result).

bind Rest

Recursive calls
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Permutation – Backtracking

Permutation([], []).

permutation(List, [Element | Result]) :-
select(Element, List, Rest),
permutation(Rest, Result).

P([1,2,3], X).

P([2,3], X). P([1,3], X). P([1,2], X).

E=1 E=2 E=3

P([3], X). P([2], X). P([3], X). P([1], X). P([2], X). P([1], X).

E=3 E=1 E=3E=2 E=1 E=2
[2,3]

[3]

[1,2,3]

[2]

[3,2]

[3] [1] [2] [1]

[1,3] [3,1] [1,2] [2,1]

[1,3,2]
[2,1,3]
[2,3,1]

[3,1.2]
[3,2,1]

1 2 3 4 5 6

X = [1, 2, 3] ;
X = [1, 3, 2] ;
X = [2, 1, 3] ;
X = [2, 3, 1] ;
X = [3, 1, 2] ;
X = [3, 2, 1] ;
No
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Remove Duplicates

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail),

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Recursive calls

Recursive calls

bind Head, Tail

bind Head, Tail
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remove_duplicates – Backtracking

List = [b, c, a] ;  (alternative      backtracking)
List = [b, b, c, a] ; 
List = [a, b, c, a] ; 
List = [a, b, b, c, a] ; 
No

rd([H, T], List) 

rd([T], List) 

 List=[List]

rd([T], List) 

 List=[H, List]

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail),

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Recursive calls

Recursive calls

bind Head, Tail

bind Head, Tail
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Backtracking (1)

rd([a, b, b, c, a], List) 

rd([b, b, c, a], List) 

rd([b, c, a], List) 

rd([c, a], List) 

rd([a], List)

rd([ ], List)

 List=[a]

 List=[c,a]

 List=[b,c,a]

 List=[b,c,a]

 List=[b,c,a]

 List=[b,c,a]

rd([H, T], List) 

rd([T], List) 

 List=[List]

rd([T], List) 

 List=[H, List]

rd([a, b, b, c, a], List) 

rd([b, b, c, a], List) 

rd([b, c, a], List) 

rd([c, a], List) 

rd([a], List)

rd([ ], List)

 List=[a]

 List=[c,a]

 List=[b,c,a]

 List=[b,b,c,a]

 List=[b,b,c,a]

 List=[b,b,c,a]
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Backtracking (2)

rd([a, b, b, c, a], List) 

rd([b, b, c, a], List) 

rd([b, c, a], List) 

rd([c, a], List) 

rd([a], List)

rd([ ], List)

 List=[a]

 List=[c,a]

 List=[b,c,a]

 List=[b,c,a]

 List=[a,b,c,a]

 List=[a,b,c,a]

rd([H, T], List) 

rd([T], List) 

 List=[List]

rd([T], List) 

 List=[H, List]

rd([a, b, b, c, a], List) 

rd([b, b, c, a], List) 

rd([b, c, a], List) 

rd([c, a], List) 

rd([a], List)

rd([ ], List)

 List=[a]

 List=[c,a]

 List=[b,c,a]

 List=[b.b,c,a]

 List=[a,b,b,c,a]

 List=[a,b,b,c,a]
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Backtracking (3)

rd([b, c, a], List) 

rd([c, a], List) 

rd([a], List)

rd([ ], List)

 List=[ ]

 List=[ ]

rd([H, T], List) 

rd([T], List) 

 List=[List]

rd([T], List) 

 List=[H, List]

rd([b, c, a], List) 

rd([c, a], List) 

rd([a], List)

rd([ ], List)

 List=[ ]

 List=[c]

 List=[b,c]

rd([b, c, a], List) 

rd([c, a], List) 

rd([a], List)

rd([ ], List)

 List=[ ]

 List=[b]

 List=[ ]
 List=[ ]

[b,c] [b] [  ]

rd([H, T], List) 

rd([T], List) 

 List=[List]

rd([T], List) 

 List=[H, List]

During backtracking, 
however, also all other 
branches of the search 
tree will be visited. 
Even if the first rule 
would match, sometimes 
the second one will be 
picked instead and the 
duplicate head will remain 
in the list. 

In the first solution, the first branch  were 
rejected and the second  were selected.
No more branches are left to try for the 
alternative solutions. 

In the first solution, the first branch  were 
selected and the second are left to try for the 
alternative solutions. 
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Cut

!  : cut, the predefined predicate

can be anywhere in a rule’s body
can be a  part of a sequence of subgoals in a query

The subgoal ! is always succeed

backtracking into subgoals 
placed before the cut 
inside the same rule body 

is not possible anymore

Whenever a cut is encountered in a rule’s body, 
all choices made between 

the time that rule’s head has been matched 
with the parent goal 

and the time the cut is passed 
are final, i.e. any choicepoints are being discarded.
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A Cut Example

bride(Girl) :-

beautiful(Girl), !,

intelligent(Girl).

?- bride(X).
No

Bound variable before the cut are final 
Cannot change the first choice

Considered as True
regardless of the possible failure 
of the subgoals after the cut

bride(X) 

beautiful(a)
intelligent(a)

beautiful(b)
intelligent(b)  

beautiful(z)
intelligent(z)  

X=a

The first choice X=a is final 
cannot try other alternatives

No match 
after the cut
Result:   No

Without the cut
Result: X=b
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remove_duplicates with a cut 

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail), 

!, 

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Recursive calls

Recursive calls

bind Head, Tail

bind Head, Tail

When this part is matched, 
that match is final 
Therefore, during backtracking 
the second rule will not be tried

List = [b, c, a] ;  
No
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Member

member(X, [X | T]).

member(X, [H | T]) :- 

member(X, T) Recursive calls

•Returns Yes if X is equal to Head

•Else try the recursive calls

bind Head & Tail

bind Head & Tail
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Recursive calls

Recursing Down Lists

a2b([], []).

a2b([a | Ta], [b | Tb]) :- 

a2b(Ta, Tb)

?- a2b([a, a, a], [b, b, b]) . 
Yes
?- a2b([a, 8, 9], [b, b, b]) . 
No
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Recursive calls

Append

Append([], L, L). 

Append( [H|T], L2, [H|L3])  :-

Append(T, L2, L3).
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Recursive calls

Naïve Reversing with Append

Naiverev ([], []). 

Naiverev ([H|T], R):-

Naiverev (T, RevT)    ,  

Append(RevT, [H], R).
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Recursive calls

Reversing with an Accumulator

accRev( [H | T], A, R ):-  

accRev( T, [H | A], R). 

accRev( [], A, A ). 
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