
Young Won Lim
9/17/13

Introduction (1A)

Young Won Lim
9/17/13

 Copyright (c) 2013 Young W. Lim.
 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Introduction 3 Young Won Lim
9/17/13

Goal Execution

?- mortal(socrates).

mortal(X) :- man(X).

man(socrates).

X

a variablesocrates

an atom

a query

a rule

a fact

mortal(socrates) an initial goal

mortal(X) :- man(X).
man(socrates).

try to match a first rule
try to match a first fact

instantitation

extend the variable instantiationmortal(socrates) :-
man(socrates).

man(socrates) a new goal

mortal(X) :- man(X).
man(socrates).

try to match a first rule
try to match a first fact

Introduction 4 Young Won Lim
9/17/13

Select

permutation([], []).

permutation(List, [Element | Result]) :-

select(Element, List, Rest),

permutation(Rest, Result).

If Element is in List,
then remove Element from List
and return Rest

Select (Element, List, Rest), RestList Element ()

[Head | Tail]
bind Element

Introduction 5 Young Won Lim
9/17/13

Permutation – Recursive Call

permutation([], []).

permutation(List, [Element | Result]) :-

select(Element, List, Rest),

permutation(Rest, Result).

bind Rest

Recursive calls

Introduction 6 Young Won Lim
9/17/13

Permutation – Backtracking

Permutation([], []).

permutation(List, [Element | Result]) :-
select(Element, List, Rest),
permutation(Rest, Result).

P([1,2,3], X).

P([2,3], X). P([1,3], X). P([1,2], X).

E=1 E=2 E=3

P([3], X). P([2], X). P([3], X). P([1], X). P([2], X). P([1], X).

E=3 E=1 E=3E=2 E=1 E=2
[2,3]

[3]

[1,2,3]

[2]

[3,2]

[3] [1] [2] [1]

[1,3] [3,1] [1,2] [2,1]

[1,3,2]
[2,1,3]
[2,3,1]

[3,1.2]
[3,2,1]

1 2 3 4 5 6

X = [1, 2, 3] ;
X = [1, 3, 2] ;
X = [2, 1, 3] ;
X = [2, 3, 1] ;
X = [3, 1, 2] ;
X = [3, 2, 1] ;
No

Introduction 7 Young Won Lim
9/17/13

Remove Duplicates

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail),

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Recursive calls

Recursive calls

bind Head, Tail

bind Head, Tail

Introduction 8 Young Won Lim
9/17/13

remove_duplicates – Backtracking

List = [b, c, a] ; (alternative backtracking)
List = [b, b, c, a] ;
List = [a, b, c, a] ;
List = [a, b, b, c, a] ;
No

rd([H, T], List)

rd([T], List)

 List=[List]

rd([T], List)

 List=[H, List]

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail),

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Recursive calls

Recursive calls

bind Head, Tail

bind Head, Tail

Introduction 9 Young Won Lim
9/17/13

Backtracking (1)

rd([a, b, b, c, a], List)

rd([b, b, c, a], List)

rd([b, c, a], List)

rd([c, a], List)

rd([a], List)

rd([], List)

 List=[a]

 List=[c,a]

 List=[b,c,a]

 List=[b,c,a]

 List=[b,c,a]

 List=[b,c,a]

rd([H, T], List)

rd([T], List)

 List=[List]

rd([T], List)

 List=[H, List]

rd([a, b, b, c, a], List)

rd([b, b, c, a], List)

rd([b, c, a], List)

rd([c, a], List)

rd([a], List)

rd([], List)

 List=[a]

 List=[c,a]

 List=[b,c,a]

 List=[b,b,c,a]

 List=[b,b,c,a]

 List=[b,b,c,a]

Introduction 10 Young Won Lim
9/17/13

Backtracking (2)

rd([a, b, b, c, a], List)

rd([b, b, c, a], List)

rd([b, c, a], List)

rd([c, a], List)

rd([a], List)

rd([], List)

 List=[a]

 List=[c,a]

 List=[b,c,a]

 List=[b,c,a]

 List=[a,b,c,a]

 List=[a,b,c,a]

rd([H, T], List)

rd([T], List)

 List=[List]

rd([T], List)

 List=[H, List]

rd([a, b, b, c, a], List)

rd([b, b, c, a], List)

rd([b, c, a], List)

rd([c, a], List)

rd([a], List)

rd([], List)

 List=[a]

 List=[c,a]

 List=[b,c,a]

 List=[b.b,c,a]

 List=[a,b,b,c,a]

 List=[a,b,b,c,a]

Introduction 11 Young Won Lim
9/17/13

Backtracking (3)

rd([b, c, a], List)

rd([c, a], List)

rd([a], List)

rd([], List)

 List=[]

 List=[]

rd([H, T], List)

rd([T], List)

 List=[List]

rd([T], List)

 List=[H, List]

rd([b, c, a], List)

rd([c, a], List)

rd([a], List)

rd([], List)

 List=[]

 List=[c]

 List=[b,c]

rd([b, c, a], List)

rd([c, a], List)

rd([a], List)

rd([], List)

 List=[]

 List=[b]

 List=[]
 List=[]

[b,c] [b] []

rd([H, T], List)

rd([T], List)

 List=[List]

rd([T], List)

 List=[H, List]

During backtracking,
however, also all other
branches of the search
tree will be visited.
Even if the first rule
would match, sometimes
the second one will be
picked instead and the
duplicate head will remain
in the list.

In the first solution, the first branch were
rejected and the second were selected.
No more branches are left to try for the
alternative solutions.

In the first solution, the first branch were
selected and the second are left to try for the
alternative solutions.

Introduction 12 Young Won Lim
9/17/13

Cut

! : cut, the predefined predicate

can be anywhere in a rule’s body
can be a part of a sequence of subgoals in a query

The subgoal ! is always succeed

backtracking into subgoals
placed before the cut
inside the same rule body

is not possible anymore

Whenever a cut is encountered in a rule’s body,
all choices made between

the time that rule’s head has been matched
with the parent goal

and the time the cut is passed
are final, i.e. any choicepoints are being discarded.

Introduction 13 Young Won Lim
9/17/13

A Cut Example

bride(Girl) :-

beautiful(Girl), !,

intelligent(Girl).

?- bride(X).
No

Bound variable before the cut are final
Cannot change the first choice

Considered as True
regardless of the possible failure
of the subgoals after the cut

bride(X)

beautiful(a)
intelligent(a)

beautiful(b)
intelligent(b)

beautiful(z)
intelligent(z)

X=a

The first choice X=a is final
cannot try other alternatives

No match
after the cut
Result: No

Without the cut
Result: X=b

Introduction 14 Young Won Lim
9/17/13

remove_duplicates with a cut

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail),

!,

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Recursive calls

Recursive calls

bind Head, Tail

bind Head, Tail

When this part is matched,
that match is final
Therefore, during backtracking
the second rule will not be tried

List = [b, c, a] ;
No

Introduction 15 Young Won Lim
9/17/13

Member

member(X, [X | T]).

member(X, [H | T]) :-

member(X, T) Recursive calls

•Returns Yes if X is equal to Head

•Else try the recursive calls

bind Head & Tail

bind Head & Tail

Introduction 16 Young Won Lim
9/17/13

Recursive calls

Recursing Down Lists

a2b([], []).

a2b([a | Ta], [b | Tb]) :-

a2b(Ta, Tb)

?- a2b([a, a, a], [b, b, b]) .
Yes
?- a2b([a, 8, 9], [b, b, b]) .
No

Introduction 17 Young Won Lim
9/17/13

Recursive calls

Append

Append([], L, L).

Append([H|T], L2, [H|L3]) :-

Append(T, L2, L3).

Introduction 18 Young Won Lim
9/17/13

Recursive calls

Naïve Reversing with Append

Naiverev ([], []).

Naiverev ([H|T], R):-

Naiverev (T, RevT) ,

Append(RevT, [H], R).

Introduction 19 Young Won Lim
9/17/13

Recursive calls

Reversing with an Accumulator

accRev([H | T], A, R):-

accRev(T, [H | A], R).

accRev([], A, A).

Young Won Lim
9/17/13

References

[1] U. Endriss, “Lecture Notes : Introduction to Prolog Programming”
[2] http://www.learnprolognow.org/ Learn Prolog Now!

http://www.learnprolognow.org/

