d_cp2.12

The LaTex code that creates this quiz is released to the Public Domain Attribution for each question is documented in the Appendix

Wednesday $24^{\text {th }}$ October, 2018

Latex markup at https://en.wikiversity.org/wiki/special:permalink/1892310

Contents		2.2	8	2.8	34
		2.3	13	2.9	40
1 Quiz	2	2.4	18	2.10	46
		2.5	22	2.11	50
2 Renditions	5	2.6	26		
2.1	5	2.7		Attribution	55

1 Quiz

1. A wire carries a current of 200 A in a circular arc with radius 2 cm swept through 40 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc? ${ }^{1}$
A. $2.083 \mathrm{E}+00$ Tesla
B. $2.292 \mathrm{E}+00 \mathrm{Tesla}$
C. $2.521 \mathrm{E}+00$ Tesla
D. $2.773 \mathrm{E}+00$ Tesla
E. $3.050 \mathrm{E}+00$ Tesla

2
3

2. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 1 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are (1.9 A, 2.0 A, 2.1 A), respectively. What is the x -component of the magnetic field at point $\mathrm{P} ?^{2}$
A. $\mathrm{B}_{\mathrm{x}}=5.124 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=5.636 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=6.200 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=6.820 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=7.502 \mathrm{E}-05 \mathrm{~T}$

2
3

3. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 1 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents ($\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}$) are ($1.9 \mathrm{~A}, 2.0 \mathrm{~A}, 2.1$ A), respectively. What is the y-component of the magnetic field at point $\mathrm{P} ?^{3}$
A. $\mathrm{B}_{\mathrm{y}}=5.273 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=5.800 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=6.380 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=7.018 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=7.720 \mathrm{E}-05 \mathrm{~T}$
4. Two parallel wires each carry a 5.0 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(3.0 \mathrm{~cm}, 0.9 \mathrm{~cm})$, while the other is located at $(0.000 \mathrm{E}+00 \mathrm{~cm}, 4.0 \mathrm{~cm})$. What is the force per unit length between the wires? ${ }^{4}$
A. $7.916 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
B. $8.708 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
C. $9.579 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
D. $1.054 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $1.159 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
5. Two loops of wire carry the same current of 10 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.5 m while the other has a radius of 1.0 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.25 m from the first (smaller) loopif the disance between the loops is $1.0 \mathrm{~m} ?^{5}$
A. $1.110 \mathrm{E}-02 \mathrm{~T}$
B. $1.221 \mathrm{E}-02 \mathrm{~T}$
C. $1.343 \mathrm{E}-02 \mathrm{~T}$
D. $1.477 \mathrm{E}-02 \mathrm{~T}$
E. $1.625 \mathrm{E}-02 \mathrm{~T}$
6. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 0.8 mm from the center of a wire of radius 2 mm if the current is $1 \mathrm{~A} ?^{6}$
A. $2.732 \mathrm{E}-05 \mathrm{~T}$
B. $3.005 \mathrm{E}-05 \mathrm{~T}$
C. $3.306 \mathrm{E}-05 \mathrm{~T}$
D. $3.636 \mathrm{E}-05 \mathrm{~T}$
E. $4.000 \mathrm{E}-05 \mathrm{~T}$
7. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\text {max }}$ is the maximum magnetic field (at $r=a$). If $a=0.5 \mathrm{~m}$ and $B_{\max }=0.3 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.25 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis? ${ }^{7}$
A. $2.812 \mathrm{E}+05 \mathrm{~A}$
B. $3.094 \mathrm{E}+05 \mathrm{~A}$
C. $3.403 \mathrm{E}+05 \mathrm{~A}$
D. $3.743 \mathrm{E}+05 \mathrm{~A}$
E. $4.118 \mathrm{E}+05 \mathrm{~A}$
8.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.5 \mathrm{kA}, \mathrm{I}_{2}=0.75 \mathrm{kA}$, and $\mathrm{I}_{3}=1.5 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}:^{8}$
A. $6.437 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $7.081 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. $7.789 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. $8.568 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. $9.425 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
9.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.5 \mathrm{kA}, \mathrm{I}_{2}=0.75 \mathrm{kA}$, and $\mathrm{I}_{3}=1.5 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}:^{9}$
A. $3.713 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $4.084 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $4.492 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $4.942 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $5.436 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
10. A solenoid has $3.000 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.2 cm and length 14 m . The current through the coils is 0.41 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-2 \mathrm{~cm}$ to $\mathrm{z}=+8 \mathrm{~cm}{ }^{10}$
A. $7.541 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
B. $8.295 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
C. $9.124 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
D. $1.004 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. 1.104E-04 T-m
11. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=20$ turns per centimeter and the current applied to the solenoid is 200 mA , the net magnetic field is measured to be 1.4 T . What is the magnetic susceptibility for this case? ${ }^{11}$
A. $\chi($ chi $)=2.301 \mathrm{E}+03$
B. $\chi($ chi $)=2.531 \mathrm{E}+03$
C. $\chi(\mathrm{chi})=2.784 \mathrm{E}+03$
D. $\chi($ chi $)=3.063 \mathrm{E}+03$
E. $\chi($ chi $)=3.369 \mathrm{E}+03$

2 Renditions

2.1

1. A wire carries a current of 316 A in a circular arc with radius 1.55 cm swept through 76 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $8.070 \mathrm{E}+00$ Tesla
B. $8.878 \mathrm{E}+00 \mathrm{Te} \mathrm{la}$
C. $9.765 \mathrm{E}+00$ Tesla
D. $1.074 \mathrm{E}+01$ Tesla
E. $1.182 \mathrm{E}+01$ Tesla
2. A wire carries a current of 303 A in a circular arc with radius 2.2 cm swept through 72 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $3.881 \mathrm{E}+00$ Tesla
B. $4.269 \mathrm{E}+00$ Tesla
C. $4.696 \mathrm{E}+00$ Tesla
D. $5.165 \mathrm{E}+00$ Tesla

E. 5.682E +00 Tesla

3. A wire carries a current of 306 A in a circular arc with radius 2.04 cm swept through 55 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $3.551 \mathrm{E}+00$ Tesla
B. $3.907 \mathrm{E}+00$ Tesla
C. $4.297 \mathrm{E}+00$ Tesla
D. $4.727 \mathrm{E}+00$ Tesla
E. $5.200 \mathrm{E}+00$ Tesla
4. A wire carries a current of 109 A in a circular arc with radius 1.26 cm swept through 71 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $2.908 \mathrm{E}+00 \mathrm{Tesla}$
B. $3.199 \mathrm{E}+00$ Tesla
C. 3.519E +00 Tesla
D. $3.871 \mathrm{E}+00$ Tesla
E. $4.258 \mathrm{E}+00$ Tesla
5. A wire carries a current of 266 A in a circular arc with radius 2.21 cm swept through 73 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $\mathbf{5 . 0 3 4 E}+00$ Tesla
B. $5.538 \mathrm{E}+00$ Tesla
C. $6.091 \mathrm{E}+00$ Tesla
D. $6.701 \mathrm{E}+00$ Tesla
E. $7.371 \mathrm{E}+00$ Tesla
6. A wire carries a current of 202 A in a circular arc with radius 2.17 cm swept through 51 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $2.473 \mathrm{E}+00$ Tesla
B. 2.720E +00 Tesla
C. $2.992 \mathrm{E}+00$ Tesla
D. $3.291 \mathrm{E}+00$ Tesla
E. $3.620 \mathrm{E}+00$ Tesla
7. A wire carries a current of 106 A in a circular arc with radius 1.32 cm swept through 38 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $1.589 \mathrm{E}+00$ Tesla
B. $\mathbf{1 . 7 4 8 E}+00$ Tesla
C. $1.923 \mathrm{E}+00$ Tesla
D. $2.116 \mathrm{E}+00$ Tesla
E. $2.327 \mathrm{E}+00$ Tesla
8. A wire carries a current of 193 A in a circular arc with radius 3.13 cm swept through 40 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $1.285 \mathrm{E}+00 \mathrm{Tesla}$
B. $1.413 \mathrm{E}+00 \mathrm{Tesla}$
C. $1.554 \mathrm{E}+00$ Tesla
D. $1.710 \mathrm{E}+00$ Tesla
E. $1.881 \mathrm{E}+00$ Tesla
9. A wire carries a current of 385 A in a circular arc with radius 1.53 cm swept through 58 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $5.711 \mathrm{E}+00$ Tesla
B. $6.283 \mathrm{E}+00$ Tesla
C. $6.911 \mathrm{E}+00$ Tesla
D. $7.602 \mathrm{E}+00$ Tesla
E. 8.362E +00 Tesla
10. A wire carries a current of 353 A in a circular arc with radius 2.44 cm swept through 86 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $5.891 \mathrm{E}+00$ Tesla
B. $6.481 \mathrm{E}+00$ Tesla
C. $7.129 \mathrm{E}+00$ Tesla
D. $7.841 \mathrm{E}+00$ Tesla
E. $8.626 \mathrm{E}+00 \mathrm{Tesla}$
11. A wire carries a current of 280 A in a circular arc with radius 2.48 cm swept through 46 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $2.032 \mathrm{E}+00$ Tesla
B. $2.236 \mathrm{E}+00$ Tesla
C. $2.459 \mathrm{E}+00$ Tesla
D. $2.705 \mathrm{E}+00 \mathrm{Tesla}$
E. 2.976E +00 Tesla
12. A wire carries a current of 332 A in a circular arc with radius 2.47 cm swept through 44 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. 3.389E +00 Tesla
B. $3.727 \mathrm{E}+00$ Tesla
C. $4.100 \mathrm{E}+00$ Tesla
D. $4.510 \mathrm{E}+00$ Tesla
E. $4.961 \mathrm{E}+00$ Tesla
13. A wire carries a current of 297 A in a circular arc with radius 2.31 cm swept through 75 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $3.774 \mathrm{E}+00$ Tesla
B. $4.151 \mathrm{E}+00$ Tesla
C. $4.566 \mathrm{E}+00$ Tesla
D. $5.023 \mathrm{E}+00$ Tesla
E. 5.525E +00 Tesla
14. A wire carries a current of 343 A in a circular arc with radius 2.95 cm swept through 38 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $1.902 \mathrm{E}+00$ Tesla
B. $2.092 \mathrm{E}+00$ Tesla
C. $2.301 \mathrm{E}+00$ Tesla
D. 2.532E +00 Tesla
E. $2.785 \mathrm{E}+00 \mathrm{Tesla}$
15. A wire carries a current of 269 A in a circular arc with radius 2.35 cm swept through 36 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $1.613 \mathrm{E}+00$ Tesla
B. $1.774 \mathrm{E}+00$ Tesla
C. $1.951 \mathrm{E}+00$ Tesla
D. $2.146 \mathrm{E}+00$ Tesla
E. $2.361 \mathrm{E}+00$ Tesla
16. A wire carries a current of 293 A in a circular arc with radius 1.75 cm swept through 71 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $4.652 \mathrm{E}+00$ Tesla
B. $5 \cdot 117 \mathrm{E}+00$ Tesla
C. $5.629 \mathrm{E}+00$ Tesla
D. $6.192 \mathrm{E}+00$ Tesla
E. 6.811E +00 Tesla
17. A wire carries a current of 148 A in a circular arc with radius 1.44 cm swept through 73 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $4.299 \mathrm{E}+00 \mathrm{Tesla}$
B. $4.729 \mathrm{E}+00$ Tesla
C. $5.202 \mathrm{E}+00$ Tesla
D. $5.722 \mathrm{E}+00$ Tesla
E. $6.294 \mathrm{E}+00 \mathrm{Tesla}$
18. A wire carries a current of 250 A in a circular arc with radius 2.17 cm swept through 53 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. 3.498E +00 Tesla
B. $3.848 \mathrm{E}+00 \mathrm{Tesla}$
C. $4.233 \mathrm{E}+00$ Tesla
D. $4.656 \mathrm{E}+00$ Tesla
E. $5.122 \mathrm{E}+00$ Tesla
19. A wire carries a current of 338 A in a circular arc with radius 2.62 cm swept through 79 degrees. Assuming that the rest of the current is 100% shielded by mu-metal, what is the magnetic field at the center of the arc?
A. $4.387 \mathrm{E}+00$ Tesla
B. $4.826 \mathrm{E}+00$ Tesla
C. $5.309 \mathrm{E}+00$ Tesla
D. $5.839 \mathrm{E}+00$ Tesla
E. $6.423 \mathrm{E}+00$ Tesla

2.2

1. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.811 cm . The currents all are in the positive- z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are (2.18 A, 1.44 A, 1.46 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=4.887 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=5.376 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=5.914 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=6.505 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=7.156 \mathrm{E}-05 \mathrm{~T}$

2 3

2. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.785 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.23 \mathrm{~A}, 1.52 \mathrm{~A}$, 1.86 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=4.559 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=5.015 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=5.517 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=6.068 \mathrm{E}-05 \mathrm{~T}$
E. $B_{x}=6.675 \mathrm{E}-05 \mathrm{~T}$

2

3. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.467 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.29 \mathrm{~A}, 1.77 \mathrm{~A}$, 1.48 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=8.371 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=9.208 \mathrm{E}-05 \mathrm{~T}$
C. $B_{x}=1.013 E-04 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=1.114 \mathrm{E}-04 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=1.226 \mathrm{E}-04 \mathrm{~T}$

4. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.64 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are (1.76 A, 1.02 A, 1.08 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=3.394 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=3.733 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=4.106 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=4.517 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=4.969 \mathrm{E}-05 \mathrm{~T}$

2

5. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.533 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.17 \mathrm{~A}, 2.25 \mathrm{~A}$, 2.22 A), respectively. What is the x-component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=1.037 \mathrm{E}-04 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=1.141 \mathrm{E}-04 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=1.255 \mathrm{E}-04 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=1.381 \mathrm{E}-04 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=1.519 \mathrm{E}-04 \mathrm{~T}$

2

6. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.51 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.16 \mathrm{~A}, 2.46 \mathrm{~A}$, 2.15 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=9.053 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=9.959 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=1.095 \mathrm{E}-04 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=1.205 \mathrm{E}-04 \mathrm{~T}$
E. $B_{x}=1.325 E-04 T$

2
3

7. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.78 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.13 \mathrm{~A}, 1.35 \mathrm{~A}$, 2.02 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=6.282 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=6.910 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=7.601 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=8.361 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=9.198 \mathrm{E}-05 \mathrm{~T}$

2
3

8. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.796 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.48 \mathrm{~A}, 1.4 \mathrm{~A}, 1.47$ A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=4.506 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=4.957 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=5.452 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=5.997 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=6.597 \mathrm{E}-05 \mathrm{~T}$

2
 3

9. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.75 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are (1.1 A, 1.11 A, 2.26 A), respectively. What is the x-component of the magnetic field at point P ?
A. $B_{x}=7.507 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=8.257 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=9.083 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=9.991 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=1.099 \mathrm{E}-04 \mathrm{~T}$

10. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.705 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.92 \mathrm{~A}, 1.14 \mathrm{~A}$, 1.11 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=4.333 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=4.766 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=5.243 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=5.767 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=6.343 \mathrm{E}-05 \mathrm{~T}$

2
3

11. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.518 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.31 \mathrm{~A}, 1.32 \mathrm{~A}$, 1.62 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=6.013 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=6.614 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=7.275 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=8.003 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=8.803 \mathrm{E}-05 \mathrm{~T}$

12. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.784 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.19 \mathrm{~A}, 1.51 \mathrm{~A}$, 2.18 A), respectively. What is the x -component of the magnetic field at point P ?
A. $B_{x}=7.487 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=8.236 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=9.060 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=9.966 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=1.096 \mathrm{E}-04 \mathrm{~T}$

2
3

13.

1
$1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.739 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.93 \mathrm{~A}, 2.48 \mathrm{~A}$, 1.36 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=6.397 \mathrm{E}-05 \mathrm{~T}$
B. $B_{x}=7.037 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=7.740 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=8.514 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=9.366 \mathrm{E}-05 \mathrm{~T}$

2

14. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.687 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.38 \mathrm{~A}, 1.87 \mathrm{~A}$, 2.03 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=7.134 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=7.847 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=8.632 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=9.495 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=1.044 \mathrm{E}-04 \mathrm{~T}$

2
3

15. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.466 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are (1.4 A, 2.42 A, 1.9 A), respectively. What is the x-component of the magnetic field at point P ?
A. $B_{x}=1.335 E-04 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=1.468 \mathrm{E}-04 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=1.615 \mathrm{E}-04 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=1.777 \mathrm{E}-04 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=1.954 \mathrm{E}-04 \mathrm{~T}$

2
3

16. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.774 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.57 \mathrm{~A}, 2.03 \mathrm{~A}$, 2.08 A), respectively. What is the x-component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=7.270 \mathrm{E}-05 \mathrm{~T}$
B. $B_{x}=7.997 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=8.797 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=9.677 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=1.064 \mathrm{E}-04 \mathrm{~T}$

2
 3

17. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.688 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.73 \mathrm{~A}, 1.37 \mathrm{~A}$, 1.65 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=6.171 \mathrm{E}-05 \mathrm{~T}$
B. $B_{x}=6.788 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=7.467 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=8.213 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=9.035 \mathrm{E}-05 \mathrm{~T}$

2
3

18. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.832 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.03 \mathrm{~A}, 1.95 \mathrm{~A}$, 2.02 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=6.545 \mathrm{E}-05 \mathrm{~T}$
B. $B_{x}=7.200 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=7.919 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=8.711 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=9.583 \mathrm{E}-05 \mathrm{~T}$

2
 3

19. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.686 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.28 \mathrm{~A}, 1.27 \mathrm{~A}$, 1.61 A), respectively. What is the x -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{x}}=5.409 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{x}}=5.950 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{x}}=6.545 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{x}}=7.200 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{x}}=7.920 \mathrm{E}-05 \mathrm{~T}$

2.3

1. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.762 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are (1.69 A, 1.7 A, 1.02 A), respectively. What is the y-component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=5.510 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=6.061 \mathrm{E}-05 \mathrm{~T}$
C. $B_{y}=6.667 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=7.333 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=8.067 \mathrm{E}-05 \mathrm{~T}$

2

2. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.787 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.68 \mathrm{~A}, 2.44 \mathrm{~A}$, 2.47 A), respectively. What is the y -component of the magnetic field at point P ?
A. $B_{y}=6.091 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=6.700 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=7.370 \mathrm{E}-05 \mathrm{~T}$
D. $B_{y}=8.107 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=8.917 \mathrm{E}-05 \mathrm{~T}$

3. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.819 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.01 \mathrm{~A}, 1.09 \mathrm{~A}$, 1.56 A), respectively. What is the y-component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=4.688 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=5.156 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=5.672 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=6.239 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=6.863 \mathrm{E}-05 \mathrm{~T}$

2

4. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.76 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.91 \mathrm{~A}, 1.34 \mathrm{~A}$, 1.05 A), respectively. What is the y -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=5.611 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=6.172 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=6.789 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=7.468 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=8.215 \mathrm{E}-05 \mathrm{~T}$

2
 3

5. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.859 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.07 \mathrm{~A}, 1.32 \mathrm{~A}$, 2.03 A), respectively. What is the y -component of the magnetic field at point P ?
A. $B_{y}=4.028 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=4.431 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=4.874 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=5.361 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=5.897 \mathrm{E}-05 \mathrm{~T}$

2
3

6. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.547 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.78 \mathrm{~A}, 1.34 \mathrm{~A}$, 1.64 A), respectively. What is the y -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=6.118 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=6.730 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=7.403 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=8.144 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=8.958 \mathrm{E}-05 \mathrm{~T}$

7. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.793 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are (1.32 A, 1.4 A, 2.27 A), respectively. What is the y-component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=3.480 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=3.828 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=4.210 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=4.631 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=5.095 \mathrm{E}-05 \mathrm{~T}$

2

8. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.591 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.47 \mathrm{~A}, 2.1 \mathrm{~A}, 2.24$ A), respectively. What is the y-component of the magnetic field at point P ?
A. $B_{y}=1.191 \mathrm{E}-04 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=1.310 \mathrm{E}-04 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=1.441 \mathrm{E}-04 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=1.585 \mathrm{E}-04 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=1.744 \mathrm{E}-04 \mathrm{~T}$

9. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.66 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.18 \mathrm{~A}, 1.82 \mathrm{~A}$, 1.35 A), respectively. What is the y -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=7.035 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=7.739 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=8.512 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=9.364 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=1.030 \mathrm{E}-04 \mathrm{~T}$

2 3

10. 1 Three wires sit at the corners of a square of length 0.532 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.11 \mathrm{~A}, 1.25 \mathrm{~A}$, 2.27 A), respectively. What is the y-component of the magnetic field at point P?
A. $\mathrm{B}_{\mathrm{y}}=5.930 \mathrm{E}-05 \mathrm{~T}$
B. $B_{y}=6.523 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=7.175 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=7.892 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=8.682 \mathrm{E}-05 \mathrm{~T}$

2
3

11. 1

P Three wires sit at the corners of a square of length 0.703 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.49 \mathrm{~A}, 1.32 \mathrm{~A}$, 1.75 A), respectively. What is the y -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=8.962 \mathrm{E}-05 \mathrm{~T}$
B. $B_{y}=9.858 \mathrm{E}-05 \mathrm{~T}$
C. $B_{y}=1.084 \mathrm{E}-04 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=1.193 \mathrm{E}-04 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=1.312 \mathrm{E}-04 \mathrm{~T}$

2
3

12. $1 \quad \mathrm{P}$ direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are (1.62 A, 2.13 A, 2.2 A), respectively. What is the y-component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=5.131 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=5.644 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=6.208 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=6.829 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=7.512 \mathrm{E}-05 \mathrm{~T}$

2

13. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.534 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.45 \mathrm{~A}, 2.44 \mathrm{~A}$, 1.61 A), respectively. What is the y-component of the magnetic field at point P ?
A. $B_{y}=9.388 \mathrm{E}-05 \mathrm{~T}$
B. $B_{y}=1.033 \mathrm{E}-04 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=1.136 \mathrm{E}-04 \mathrm{~T}$
D. $B_{y}=1.250 \mathrm{E}-04 \mathrm{~T}$
E. $B_{y}=1.375 \mathrm{E}-04 \mathrm{~T}$

14. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.699 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.87 \mathrm{~A}, 2.18 \mathrm{~A}$, 1.34 A), respectively. What is the y-component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=6.999 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=7.699 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=8.469 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=9.316 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=1.025 \mathrm{E}-04 \mathrm{~T}$

2

15. 1
$1 \quad \mathrm{P}$ direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.26 \mathrm{~A}, 1.75 \mathrm{~A}$, 2.47 A), respectively. What is the y-component of the magnetic field at point P?
A. $B_{y}=7.518 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=8.270 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=9.097 \mathrm{E}-05 \mathrm{~T}$
D. $B_{y}=1.001 \mathrm{E}-04 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=1.101 \mathrm{E}-04 \mathrm{~T}$

2
 3

16. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.716 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($1.94 \mathrm{~A}, 2.04 \mathrm{~A}$, 2.41 A), respectively. What is the y -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=6.833 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=7.517 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=8.268 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=9.095 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=1.000 \mathrm{E}-04 \mathrm{~T}$

2 3

17. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.495 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.45 \mathrm{~A}, 1.66 \mathrm{~A}$, 1.63 A), respectively. What is the y -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=1.205 \mathrm{E}-04 \mathrm{~T}$
B. $B_{y}=1.325 \mathrm{E}-04 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=1.458 \mathrm{E}-04 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=1.604 \mathrm{E}-04 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=1.764 \mathrm{E}-04 \mathrm{~T}$

2

18. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.702 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.24 \mathrm{~A}, 1.37 \mathrm{~A}, 2.3$ A), respectively. What is the y-component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=7.576 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=8.333 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=9.167 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=1.008 \mathrm{E}-04 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=1.109 \mathrm{E}-04 \mathrm{~T}$

19. $1 \quad \mathrm{P}$ Three wires sit at the corners of a square of length 0.823 cm . The currents all are in the positive-z direction (i.e. all come out of the paper in the figure shown.) The currents $\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{2}\right)$ are ($2.41 \mathrm{~A}, 1.87 \mathrm{~A}$, 2.21 A), respectively. What is the y -component of the magnetic field at point P ?
A. $\mathrm{B}_{\mathrm{y}}=6.718 \mathrm{E}-05 \mathrm{~T}$
B. $\mathrm{B}_{\mathrm{y}}=7.390 \mathrm{E}-05 \mathrm{~T}$
C. $\mathrm{B}_{\mathrm{y}}=8.129 \mathrm{E}-05 \mathrm{~T}$
D. $\mathrm{B}_{\mathrm{y}}=8.942 \mathrm{E}-05 \mathrm{~T}$
E. $\mathrm{B}_{\mathrm{y}}=9.836 \mathrm{E}-05 \mathrm{~T}$

2.4

1. Two parallel wires each carry a 5.0 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(4.48 \mathrm{~cm}, 0.973 \mathrm{~cm})$, while the other is located at $(3.32 \mathrm{~cm}, 4.79 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $1.139 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
B. $1.253 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
C. $1.379 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
D. $1.517 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $1.668 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
2. Two parallel wires each carry a 9.68 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(4.55 \mathrm{~cm}, 1.79 \mathrm{~cm})$, while the other is located at $(3.16 \mathrm{~cm}, 4.78 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $3.882 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
B. $4.270 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
C. $4.697 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
D. $5.167 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $5.684 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
3. Two parallel wires each carry a 9.08 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(4.17 \mathrm{~cm}, 1.32 \mathrm{~cm})$, while the other is located at $(5.72 \mathrm{~cm}, 4.47 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $3.882 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
B. $4.270 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
C. $4.697 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
D. $5.167 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $5.683 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
4. Two parallel wires each carry a 8.75 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(3.66 \mathrm{~cm}, 1.4 \mathrm{~cm})$, while the other is located at $(5.64 \mathrm{~cm}, 5.66 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $2.449 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
B. $2.694 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
C. $2.963 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$

D. $3.260 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$

E. $3.586 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
5. Two parallel wires each carry a 7.75 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(4.62 \mathrm{~cm}, 1.31 \mathrm{~cm})$, while the other is located at $(4.63 \mathrm{~cm}, 5.53 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $2.588 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
B. $2.847 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
C. $3.131 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
D. $3.444 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $3.789 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
6. Two parallel wires each carry a 7.48 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(3.13 \mathrm{~cm}, 0.955 \mathrm{~cm})$, while the other is located at $(5.37 \mathrm{~cm}, 5.48 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $2.015 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$

B. $2.216 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$

C. $2.438 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
D. $2.682 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $2.950 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
7. Two parallel wires each carry a 2.58 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(4.79 \mathrm{~cm}, 1.03 \mathrm{~cm})$, while the other is located at $(5.64 \mathrm{~cm}, 5.12 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $2.634 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
B. $2.897 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
C. $3.187 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
D. $3.506 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
E. $3.856 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
8. Two parallel wires each carry a 2.83 mA current and are oriented in the z direction. The first wire is located in the x-y plane at ($3.15 \mathrm{~cm}, 1.13 \mathrm{~cm}$), while the other is located at $(5.14 \mathrm{~cm}, 4.22 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $2.977 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
B. $3.274 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
C. $3.602 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
D. $3.962 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
E. $4.358 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
9. Two parallel wires each carry a 6.53 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(3.82 \mathrm{~cm}, 1.17 \mathrm{~cm})$, while the other is located at $(4.07 \mathrm{~cm}, 5.5 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $1.788 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
B. $1.966 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
C. $2.163 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
D. $2.379 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $2.617 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
10. Two parallel wires each carry a 3.8 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(4.74 \mathrm{~cm}, 1.47 \mathrm{~cm})$, while the other is located at $(5.26 \mathrm{~cm}, 5.87 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $5.926 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
B. $6.518 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
C. $7.170 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
D. $7.887 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
E. $8.676 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
11. Two parallel wires each carry a 1.65 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(4.59 \mathrm{~cm}, 1.81 \mathrm{~cm})$, while the other is located at $(5.78 \mathrm{~cm}, 4.43 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $1.422 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
B. $1.564 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
C. $1.720 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
D. $1.892 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
E. $2.081 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
12. Two parallel wires each carry a 3.51 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(4.14 \mathrm{~cm}, 1.43 \mathrm{~cm})$, while the other is located at $(4.14 \mathrm{~cm}, 5.23 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $6.484 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
B. $7.133 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
C. $7.846 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
D. $8.631 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
E. $9.494 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
13. Two parallel wires each carry a 9.59 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(3.97 \mathrm{~cm}, 1.4 \mathrm{~cm})$, while the other is located at $(4.02 \mathrm{~cm}, 5.19 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $4.412 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
B. $4.853 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
C. $5.338 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
D. $5.872 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $6.459 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
14. Two parallel wires each carry a 2.12 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(3.67 \mathrm{~cm}, 1.25 \mathrm{~cm})$, while the other is located at $(4.69 \mathrm{~cm}, 4.27 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $2.119 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
B. $2.331 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
C. $2.564 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
D. $2.820 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
E. $3.102 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
15. Two parallel wires each carry a 7.59 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(3.98 \mathrm{~cm}, 0.969 \mathrm{~cm})$, while the other is located at $(5.13 \mathrm{~cm}, 5.53 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $1.840 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
B. $2.024 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
C. $2.227 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
D. $2.449 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $2.694 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
16. Two parallel wires each carry a 7.68 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(3.36 \mathrm{~cm}, 1.58 \mathrm{~cm})$, while the other is located at $(5.29 \mathrm{~cm}, 5.18 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $1.973 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
B. $2.170 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
C. $2.387 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
D. $2.625 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $2.888 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
17. Two parallel wires each carry a 4.15 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(3.19 \mathrm{~cm}, 1.78 \mathrm{~cm})$, while the other is located at $(3.73 \mathrm{~cm}, 4.12 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $1.434 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
B. $1.578 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
C. $1.736 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
D. $1.909 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $2.100 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
18. Two parallel wires each carry a 6.26 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(3.4 \mathrm{~cm}, 1.42 \mathrm{~cm})$, while the other is located at $(5.56 \mathrm{~cm}, 4.99 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $1.283 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
B. $1.411 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
C. $1.552 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
D. $1.708 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
E. $1.878 \mathrm{E}-10 \mathrm{~N} / \mathrm{m}$
19. Two parallel wires each carry a 3.38 mA current and are oriented in the z direction. The first wire is located in the x-y plane at $(3.46 \mathrm{~cm}, 1.76 \mathrm{~cm})$, while the other is located at $(5.13 \mathrm{~cm}, 5.5 \mathrm{~cm})$. What is the force per unit length between the wires?
A. $3.810 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
B. $4.191 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
C. $4.610 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
D. $5.071 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$
E. $5.578 \mathrm{E}-11 \mathrm{~N} / \mathrm{m}$

2.5

1. Two loops of wire carry the same current of 62 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.584 m while the other has a radius of 1.38 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.341 m from the first (smaller) loopif the disance between the loops is 1.21 m ?
A. $4.102 \mathrm{E}-02 \mathrm{~T}$
B. $4.513 \mathrm{E}-02 \mathrm{~T}$
C. $4.964 \mathrm{E}-02 \mathrm{~T}$
D. $5.460 \mathrm{E}-02 \mathrm{~T}$
E. 6.006E-02 T
2. Two loops of wire carry the same current of 18 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.848 m while the other has a radius of 1.42 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.625 m from the first (smaller) loopif the disance between the loops is 1.55 m ?
A. $7.952 \mathrm{E}-03 \mathrm{~T}$
B. $8.747 \mathrm{E}-03 \mathrm{~T}$
C. $9.622 \mathrm{E}-03 \mathrm{~T}$
D. $1.058 \mathrm{E}-02 \mathrm{~T}$
E. 1.164E-02 T
3. Two loops of wire carry the same current of 85 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.854 m while the other has a radius of 1.18 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.5 m from the first (smaller) loopif the disance between the loops is 1.66 m ?
A. $4.253 \mathrm{E}-02 \mathrm{~T}$
B. $4.678 \mathrm{E}-02 \mathrm{~T}$
C. $5.146 \mathrm{E}-02 \mathrm{~T}$
D. 5.661E-02 T
E. $6.227 \mathrm{E}-02 \mathrm{~T}$
4. Two loops of wire carry the same current of 67 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.847 m while the other has a radius of 1.15 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.408 m from the first (smaller) loopif the disance between the loops is 1.15 m ?
A. $4.799 \mathrm{E}-02 \mathrm{~T}$
B. $5.278 \mathrm{E}-02 \mathrm{~T}$
C. $5.806 \mathrm{E}-02 \mathrm{~T}$
D. $6.387 \mathrm{E}-02 \mathrm{~T}$
E. $7.026 \mathrm{E}-02 \mathrm{~T}$
5. Two loops of wire carry the same current of 12 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.751 m while the other has a radius of 1.42 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.493 m from the first (smaller) loopif the disance between the loops is 1.26 m ?
A. $7.836 \mathrm{E}-03 \mathrm{~T}$
B. $8.620 \mathrm{E}-03 \mathrm{~T}$
C. 9.482E-03 T
D. $1.043 \mathrm{E}-02 \mathrm{~T}$
E. $1.147 \mathrm{E}-02 \mathrm{~T}$
6. Two loops of wire carry the same current of 88 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.655 m while the other has a radius of 1.11 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.531 m from the first (smaller) loopif the disance between the loops is 1.72 m ?
A. $4.162 \mathrm{E}-02 \mathrm{~T}$
B. $4.578 \mathrm{E}-02 \mathrm{~T}$
C. $5.036 \mathrm{E}-02 \mathrm{~T}$
D. $5.540 \mathrm{E}-02 \mathrm{~T}$
E. $6.094 \mathrm{E}-02 \mathrm{~T}$
7. Two loops of wire carry the same current of 29 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.76 m while the other has a radius of 1.12 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.544 m from the first (smaller) loopif the disance between the loops is 1.56 m ?
A. $1.950 \mathrm{E}-02 \mathrm{~T}$
B. $2.145 \mathrm{E}-02 \mathrm{~T}$
C. $2.360 \mathrm{E}-02 \mathrm{~T}$
D. $2.596 \mathrm{E}-02 \mathrm{~T}$
E. $2.855 \mathrm{E}-02 \mathrm{~T}$
8. Two loops of wire carry the same current of 64 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.838 m while the other has a radius of 1.17 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.528 m from the first (smaller) loopif the disance between the loops is 1.62 m ?
A. $3.863 \mathrm{E}-02 \mathrm{~T}$
B. $4.249 \mathrm{E}-02 \mathrm{~T}$
C. $4.674 \mathrm{E}-02 \mathrm{~T}$
D. $5.141 \mathrm{E}-02 \mathrm{~T}$
E. $5.655 \mathrm{E}-02 \mathrm{~T}$
9. Two loops of wire carry the same current of 24 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.53 m while the other has a radius of 1.38 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.485 m from the first (smaller) loopif the disance between the loops is 1.78 m ?
A. $1.294 \mathrm{E}-02 \mathrm{~T}$
B. $1.424 \mathrm{E}-02 \mathrm{~T}$
C. $1.566 \mathrm{E}-02 \mathrm{~T}$
D. $1.723 \mathrm{E}-02 \mathrm{~T}$
E. $1.895 \mathrm{E}-02 \mathrm{~T}$
10. Two loops of wire carry the same current of 20 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.776 m while the other has a radius of 1.2 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.517 m from the first (smaller) loopif the disance between the loops is 1.37 m ?
A. $1.127 \mathrm{E}-02 \mathrm{~T}$
B. $1.240 \mathrm{E}-02 \mathrm{~T}$
C. $1.364 \mathrm{E}-02 \mathrm{~T}$
D. $1.500 \mathrm{E}-02 \mathrm{~T}$
E. $1.650 \mathrm{E}-02 \mathrm{~T}$
11. Two loops of wire carry the same current of 99 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.798 m while the other has a radius of 1.29 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.394 m from the first (smaller) loopif the disance between the loops is 1.29 m ?
A. 8.291E-02 T
B. $9.120 \mathrm{E}-02 \mathrm{~T}$
C. $1.003 \mathrm{E}-01 \mathrm{~T}$
D. $1.104 \mathrm{E}-01 \mathrm{~T}$
E. $1.214 \mathrm{E}-01 \mathrm{~T}$
12. Two loops of wire carry the same current of 21 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.753 m while the other has a radius of 1.47 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.406 m from the first (smaller) loopif the disance between the loops is 1.38 m ?
A. $1.559 \mathrm{E}-02 \mathrm{~T}$
B. $1.715 \mathrm{E}-02 \mathrm{~T}$
C. $1.886 \mathrm{E}-02 \mathrm{~T}$
D. $2.075 \mathrm{E}-02 \mathrm{~T}$
E. $2.283 \mathrm{E}-02 \mathrm{~T}$
13. Two loops of wire carry the same current of 97 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.595 m while the other has a radius of 1.1 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.63 m from the first (smaller) loopif the disance between the loops is 1.72 m ?
A. $5.302 \mathrm{E}-02 \mathrm{~T}$
B. $5.832 \mathrm{E}-02 \mathrm{~T}$
C. $6.415 \mathrm{E}-02 \mathrm{~T}$
D. $7.056 \mathrm{E}-02 \mathrm{~T}$
E. $7.762 \mathrm{E}-02 \mathrm{~T}$
14. Two loops of wire carry the same current of 11 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.424 m while the other has a radius of 1.32 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.52 m from the first (smaller) loopif the disance between the loops is 1.25 m ?
A. $7.623 \mathrm{E}-03 \mathrm{~T}$
B. $8.385 \mathrm{E}-03 \mathrm{~T}$
C. $9.223 \mathrm{E}-03 \mathrm{~T}$
D. $1.015 \mathrm{E}-02 \mathrm{~T}$
E. $1.116 \mathrm{E}-02 \mathrm{~T}$
15. Two loops of wire carry the same current of 66 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.485 m while the other has a radius of 1.27 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.507 m from the first (smaller) loopif the disance between the loops is 1.76 m ?
A. $2.733 \mathrm{E}-02 \mathrm{~T}$
B. $3.007 \mathrm{E}-02 \mathrm{~T}$
C. $3.307 \mathrm{E}-02 \mathrm{~T}$
D. $3.638 \mathrm{E}-02 \mathrm{~T}$
E. 4.002E-02 T
16. Two loops of wire carry the same current of 44 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.678 m while the other has a radius of 1.14 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.508 m from the first (smaller) loopif the disance between the loops is 1.16 m ?
A. $3.342 \mathrm{E}-02 \mathrm{~T}$
B. 3.676E-02 T
C. $4.044 \mathrm{E}-02 \mathrm{~T}$
D. $4.448 \mathrm{E}-02 \mathrm{~T}$
E. $4.893 \mathrm{E}-02 \mathrm{~T}$
17. Two loops of wire carry the same current of 43 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.516 m while the other has a radius of 1.22 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.565 m from the first (smaller) loopif the disance between the loops is 1.78 m ?
A. $1.798 \mathrm{E}-02 \mathrm{~T}$
B. $1.978 \mathrm{E}-02 \mathrm{~T}$
C. $2.176 \mathrm{E}-02 \mathrm{~T}$
D. 2.394E-02 T
E. $2.633 \mathrm{E}-02 \mathrm{~T}$
18. Two loops of wire carry the same current of 39 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.49 m while the other has a radius of 1.11 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.552 m from the first (smaller) loopif the disance between the loops is 1.62 m ?
A. $1.564 \mathrm{E}-02 \mathrm{~T}$
B. $1.720 \mathrm{E}-02 \mathrm{~T}$
C. $1.892 \mathrm{E}-02 \mathrm{~T}$
D. $2.081 \mathrm{E}-02 \mathrm{~T}$
E. 2.289E-02 T
19. Two loops of wire carry the same current of 14 kA , and flow in the same direction. They share a common axis and orientation. One loop has a radius of 0.835 m while the other has a radius of 1.29 m . What is the magnitude of the magnetic field at a point on the axis of both loops, situated between the loops at a distance 0.607 m from the first (smaller) loopif the disance between the loops is 1.61 m ?
A. $6.099 \mathrm{E}-03 \mathrm{~T}$
B. $6.709 \mathrm{E}-03 \mathrm{~T}$
C. $7.380 \mathrm{E}-03 \mathrm{~T}$
D. $8.118 \mathrm{E}-03 \mathrm{~T}$
E. 8.930E-03 T

2.6

1. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.34 mm from the center of a wire of radius 3 mm if the current is 1 A ?
A. $2.237 \mathrm{E}-05 \mathrm{~T}$
B. $2.461 \mathrm{E}-05 \mathrm{~T}$
C. $2.707 \mathrm{E}-05 \mathrm{~T}$
D. 2.978E-05 T
E. $3.276 \mathrm{E}-05 \mathrm{~T}$
2. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.86 mm from the center of a wire of radius 3 mm if the current is 1 A ?
A. $3.416 \mathrm{E}-05 \mathrm{~T}$
B. $3.758 \mathrm{E}-05 \mathrm{~T}$
C. 4.133E-05 T
D. $4.547 \mathrm{E}-05 \mathrm{~T}$
E. $5.001 \mathrm{E}-05 \mathrm{~T}$
3. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 2.64 mm from the center of a wire of radius 5 mm if the current is 1 A ?
A. $1.920 \mathrm{E}-05 \mathrm{~T}$
B. 2.112E-05 T
C. $2.323 \mathrm{E}-05 \mathrm{~T}$
D. $2.556 \mathrm{E}-05 \mathrm{~T}$
E. $2.811 \mathrm{E}-05 \mathrm{~T}$
4. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 2.66 mm from the center of a wire of radius 4 mm if the current is 1 A ?
A. $3.325 \mathrm{E}-05 \mathrm{~T}$
B. $3.658 \mathrm{E}-05 \mathrm{~T}$
C. $4.023 \mathrm{E}-05 \mathrm{~T}$
D. $4.426 \mathrm{E}-05 \mathrm{~T}$
E. $4.868 \mathrm{E}-05 \mathrm{~T}$
5. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 2.59 mm from the center of a wire of radius 5 mm if the current is 1 A ?
A. $2.072 \mathrm{E}-05 \mathrm{~T}$
B. $2.279 \mathrm{E}-05 \mathrm{~T}$
C. $2.507 \mathrm{E}-05 \mathrm{~T}$
D. $2.758 \mathrm{E}-05 \mathrm{~T}$
E. $3.034 \mathrm{E}-05 \mathrm{~T}$
6. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.51 mm from the center of a wire of radius 5 mm if the current is 1 A ?
A. $1.208 \mathrm{E}-05 \mathrm{~T}$
B. $1.329 \mathrm{E}-05 \mathrm{~T}$
C. $1.462 \mathrm{E}-05 \mathrm{~T}$
D. $1.608 \mathrm{E}-05 \mathrm{~T}$
E. $1.769 \mathrm{E}-05 \mathrm{~T}$
7. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.03 mm from the center of a wire of radius 3 mm if the current is 1 A ?
A. $1.720 \mathrm{E}-05 \mathrm{~T}$
B. $1.892 \mathrm{E}-05 \mathrm{~T}$
C. $2.081 \mathrm{E}-05 \mathrm{~T}$

D. 2.289E-05 T

E. $2.518 \mathrm{E}-05 \mathrm{~T}$
8. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 2.43 mm from the center of a wire of radius 5 mm if the current is 1 A ?
A. $1.944 \mathrm{E}-05 \mathrm{~T}$
B. $2.138 \mathrm{E}-05 \mathrm{~T}$
C. $2.352 \mathrm{E}-05 \mathrm{~T}$
D. $2.587 \mathrm{E}-05 \mathrm{~T}$
E. $2.846 \mathrm{E}-05 \mathrm{~T}$
9. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.9 mm from the center of a wire of radius 4 mm if the current is 1A?
A. $1.784 \mathrm{E}-05 \mathrm{~T}$
B. $1.963 \mathrm{E}-05 \mathrm{~T}$
C. $2.159 \mathrm{E}-05 \mathrm{~T}$
D. 2.375E-05 T
E. $2.613 \mathrm{E}-05 \mathrm{~T}$
10. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 3.33 mm from the center of a wire of radius 5 mm if the current is 1 A ?
A. $2.202 \mathrm{E}-05 \mathrm{~T}$
B. $2.422 \mathrm{E}-05 \mathrm{~T}$
C. $2.664 \mathrm{E}-05 \mathrm{~T}$
D. $2.930 \mathrm{E}-05 \mathrm{~T}$
E. $3.223 \mathrm{E}-05 \mathrm{~T}$
11. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.81 mm from the center of a wire of radius 3 mm if the current is 1 A ?
A. $3.324 \mathrm{E}-05 \mathrm{~T}$
B. $3.657 \mathrm{E}-05 \mathrm{~T}$
C. $4.022 \mathrm{E}-05 \mathrm{~T}$
D. $4.424 \mathrm{E}-05 \mathrm{~T}$
E. $4.867 \mathrm{E}-05 \mathrm{~T}$
12. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 3.07 mm from the center of a wire of radius 5 mm if the current is 1A?
A. $1.677 \mathrm{E}-05 \mathrm{~T}$
B. $1.845 \mathrm{E}-05 \mathrm{~T}$
C. $2.030 \mathrm{E}-05 \mathrm{~T}$
D. $2.233 \mathrm{E}-05 \mathrm{~T}$
E. 2.456E-05 T
13. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 2.04 mm from the center of a wire of radius 5 mm if the current is 1 A ?
A. $1.115 \mathrm{E}-05 \mathrm{~T}$
B. $1.226 \mathrm{E}-05 \mathrm{~T}$
C. $1.349 \mathrm{E}-05 \mathrm{~T}$
D. $1.484 \mathrm{E}-05 \mathrm{~T}$
E. 1.632E-05 T
14. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.86 mm from the center of a wire of radius 5 mm if the current is 1 A ?
A. $1.488 \mathrm{E}-05 \mathrm{~T}$
B. $1.637 \mathrm{E}-05 \mathrm{~T}$
C. $1.800 \mathrm{E}-05 \mathrm{~T}$
D. $1.981 \mathrm{E}-05 \mathrm{~T}$
E. $2.179 \mathrm{E}-05 \mathrm{~T}$
15. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 2.26 mm from the center of a wire of radius 5 mm if the current is 1 A ?
A. $1.494 \mathrm{E}-05 \mathrm{~T}$
B. $1.644 \mathrm{E}-05 \mathrm{~T}$
C. $1.808 \mathrm{E}-05 \mathrm{~T}$
D. $1.989 \mathrm{E}-05 \mathrm{~T}$
E. $2.188 \mathrm{E}-05 \mathrm{~T}$
16. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 2.66 mm from the center of a wire of radius 5 mm if the current is 1 A ?
A. $1.935 \mathrm{E}-05 \mathrm{~T}$
B. $2.128 \mathrm{E}-05 \mathrm{~T}$
C. $2.341 \mathrm{E}-05 \mathrm{~T}$
D. $2.575 \mathrm{E}-05 \mathrm{~T}$
E. $2.832 \mathrm{E}-05 \mathrm{~T}$
17. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.14 mm from the center of a wire of radius 3 mm if the current is 1 A ?
A. $2.533 \mathrm{E}-05 \mathrm{~T}$
B. $2.787 \mathrm{E}-05 \mathrm{~T}$
C. $3.065 \mathrm{E}-05 \mathrm{~T}$
D. $3.372 \mathrm{E}-05 \mathrm{~T}$
E. $3.709 \mathrm{E}-05 \mathrm{~T}$
18. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.18 mm from the center of a wire of radius 3 mm if the current is 1 A ?
A. $1.791 \mathrm{E}-05 \mathrm{~T}$
B. $1.970 \mathrm{E}-05 \mathrm{~T}$
C. $2.167 \mathrm{E}-05 \mathrm{~T}$
D. $2.384 \mathrm{E}-05 \mathrm{~T}$
E. 2.622E-05 T
19. Under most conditions the current is distributed uniformly over the cross section of the wire. What is the magnetic field 1.51 mm from the center of a wire of radius 5 mm if the current is 1 A ?
A. $1.098 \mathrm{E}-05 \mathrm{~T}$
B. $1.208 \mathrm{E}-05 \mathrm{~T}$
C. $1.329 \mathrm{E}-05 \mathrm{~T}$
D. $1.462 \mathrm{E}-05 \mathrm{~T}$
E. $1.608 \mathrm{E}-05 \mathrm{~T}$

2.7

1. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.703 \mathrm{~m}$ and $B_{\max }=0.521 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.165 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $1.338 \mathrm{E}+05 \mathrm{~A}$
B. $1.472 \mathrm{E}+05 \mathrm{~A}$
C. $1.619 \mathrm{E}+05 \mathrm{~A}$
D. $1.781 \mathrm{E}+05 \mathrm{~A}$
E. $1.959 \mathrm{E}+05 \mathrm{~A}$
2. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.259 \mathrm{~m}$ and $B_{\max }=0.575 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.191 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $3.492 \mathrm{E}+05 \mathrm{~A}$
B. $3.841 \mathrm{E}+05 \mathrm{~A}$
C. $4.225 \mathrm{E}+05 \mathrm{~A}$
D. $4.648 \mathrm{E}+05 \mathrm{~A}$
E. $5.113 \mathrm{E}+05 \mathrm{~A}$
3. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\max }$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.353 \mathrm{~m}$ and $B_{\max }=0.697 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.196 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $5.479 \mathrm{E}+05 \mathrm{~A}$
B. $6.027 \mathrm{E}+05 \mathrm{~A}$
C. $6.630 \mathrm{E}+05 \mathrm{~A}$
D. $7.293 \mathrm{E}+05 \mathrm{~A}$
E. $8.022 \mathrm{E}+05 \mathrm{~A}$
4. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.52 \mathrm{~m}$ and $B_{\max }=0.657 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.295 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $7.876 \mathrm{E}+05 \mathrm{~A}$
B. $8.664 \mathrm{E}+05 \mathrm{~A}$
C. $9.530 \mathrm{E}+05 \mathrm{~A}$
D. $1.048 \mathrm{E}+06 \mathrm{~A}$
E. $1.153 \mathrm{E}+06 \mathrm{~A}$
5. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.248 \mathrm{~m}$ and $B_{\max }=0.459 \mathrm{~T}$, then how much current (in the z -direction) flows through a circle of radius $r=0.152 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $2.228 \mathrm{E}+05 \mathrm{~A}$
B. $2.451 \mathrm{E}+05 \mathrm{~A}$
C. $2.696 \mathrm{E}+05 \mathrm{~A}$
D. $2.966 \mathrm{E}+05 \mathrm{~A}$
E. $3.262 \mathrm{E}+05 \mathrm{~A}$
6. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.51 \mathrm{~m}$ and $B_{\max }=0.649 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.376 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $9.388 \mathrm{E}+05 \mathrm{~A}$
B. $1.033 \mathrm{E}+06 \mathrm{~A}$
C. $1.136 \mathrm{E}+06 \mathrm{~A}$
D. $1.249 \mathrm{E}+06 \mathrm{~A}$
E. $1.374 \mathrm{E}+06 \mathrm{~A}$
7. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.549 \mathrm{~m}$ and $B_{\max }=0.599 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.29 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $5.581 \mathrm{E}+05 \mathrm{~A}$
B. $6.139 \mathrm{E}+05 \mathrm{~A}$
C. $6.752 \mathrm{E}+05 \mathrm{~A}$
D. $7.428 \mathrm{E}+05 \mathrm{~A}$
E. $8.170 \mathrm{E}+05 \mathrm{~A}$
8. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.37 \mathrm{~m}$ and $B_{\max }=0.556 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.14 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $2.171 \mathrm{E}+05 \mathrm{~A}$
B. $2.388 \mathrm{E}+05 \mathrm{~A}$
C. $2.627 \mathrm{E}+05 \mathrm{~A}$
D. $2.890 \mathrm{E}+05 \mathrm{~A}$
E. $3.179 \mathrm{E}+05 \mathrm{~A}$
9. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\max }$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.547 \mathrm{~m}$ and $B_{\max }=0.597 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.158 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $1.751 \mathrm{E}+05 \mathrm{~A}$
B. $1.927 \mathrm{E}+05 \mathrm{~A}$
C. $2.119 \mathrm{E}+05 \mathrm{~A}$
D. $2.331 \mathrm{E}+05 \mathrm{~A}$
E. $2.564 \mathrm{E}+05 \mathrm{~A}$
10. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.568 \mathrm{~m}$ and $B_{\max }=0.214 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.387 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $3.382 \mathrm{E}+05 \mathrm{~A}$
B. $3.720 \mathrm{E}+05 \mathrm{~A}$
C. $4.092 \mathrm{E}+05 \mathrm{~A}$
D. $4.502 \mathrm{E}+05 \mathrm{~A}$
E. $4.952 \mathrm{E}+05 \mathrm{~A}$
11. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.619 \mathrm{~m}$ and $B_{\max }=0.215 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.351 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $2.534 \mathrm{E}+05 \mathrm{~A}$
B. $2.787 \mathrm{E}+05 \mathrm{~A}$
C. $3.066 \mathrm{E}+05 \mathrm{~A}$
D. $3.373 \mathrm{E}+05 \mathrm{~A}$
E. $3.710 \mathrm{E}+05 \mathrm{~A}$
12. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.736 \mathrm{~m}$ and $B_{\max }=0.204 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.532 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $3.764 \mathrm{E}+05 \mathrm{~A}$
B. $4.140 \mathrm{E}+05 \mathrm{~A}$
C. $4.554 \mathrm{E}+05 \mathrm{~A}$
D. $5.010 \mathrm{E}+05 \mathrm{~A}$

E. $5.510 \mathrm{E}+05 \mathrm{~A}$

13. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.253 \mathrm{~m}$ and $B_{\max }=0.489 \mathrm{~T}$, then how much current (in the z -direction) flows through a circle of radius $r=0.112 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $1.289 \mathrm{E}+05 \mathrm{~A}$
B. $1.418 \mathrm{E}+05 \mathrm{~A}$
C. $1.560 \mathrm{E}+05 \mathrm{~A}$
D. $1.716 \mathrm{E}+05 \mathrm{~A}$
E. $1.888 \mathrm{E}+05 \mathrm{~A}$
14. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.852 \mathrm{~m}$ and $B_{\max }=0.476 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.212 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $1.502 \mathrm{E}+05 \mathrm{~A}$
B. $1.652 \mathrm{E}+05 \mathrm{~A}$
C. $1.817 \mathrm{E}+05 \mathrm{~A}$
D. $1.999 \mathrm{E}+05 \mathrm{~A}$
E. $2.199 \mathrm{E}+05 \mathrm{~A}$
15. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.571 \mathrm{~m}$ and $B_{\max }=0.331 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.321 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $3.226 \mathrm{E}+05 \mathrm{~A}$
B. $3.549 \mathrm{E}+05 \mathrm{~A}$
C. $3.904 \mathrm{E}+05 \mathrm{~A}$
D. $4.294 \mathrm{E}+05 \mathrm{~A}$
E. $4.724 \mathrm{E}+05 \mathrm{~A}$
16. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.645 \mathrm{~m}$ and $B_{\max }=0.469 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.26 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $2.949 \mathrm{E}+05 \mathrm{~A}$
B. $3.244 \mathrm{E}+05 \mathrm{~A}$
C. $3.568 \mathrm{E}+05 \mathrm{~A}$
D. $3.925 \mathrm{E}+05 \mathrm{~A}$
E. $4.317 \mathrm{E}+05 \mathrm{~A}$
17. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.871 \mathrm{~m}$ and $B_{\max }=0.427 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.688 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $1.404 \mathrm{E}+06 \mathrm{~A}$
B. $1.544 \mathrm{E}+06 \mathrm{~A}$
C. $1.699 \mathrm{E}+06 \mathrm{~A}$
D. $1.869 \mathrm{E}+06 \mathrm{~A}$
E. $2.056 \mathrm{E}+06 \mathrm{~A}$
18. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.432 \mathrm{~m}$ and $B_{\max }=0.402 \mathrm{~T}$, then how much current (in the z-direction) flows through a circle of radius $r=0.275 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $3.277 \mathrm{E}+05 \mathrm{~A}$
B. $3.604 \mathrm{E}+05 \mathrm{~A}$
C. $3.965 \mathrm{E}+05 \mathrm{~A}$
D. $4.361 \mathrm{E}+05 \mathrm{~A}$
E. $4.797 \mathrm{E}+05 \mathrm{~A}$
19. The Z-pinch is an (often unstable) cylindrical plasma in which a aximuthal magnetic field is produced by a current in the z direction. A simple model for the magnetic field, valid for $r<a$ is, $B_{\theta}(r)=\left(\frac{2 r}{a}-\frac{r^{2}}{a^{2}}\right) B_{\text {max }}$, where $B_{\max }$ is the maximum magnetic field (at $r=a$). If $a=0.407 \mathrm{~m}$ and $B_{\max }=0.605 \mathrm{~T}$, then how much current (in the z -direction) flows through a circle of radius $r=0.196 \mathrm{~m}$ that is centered on the axis with its plane perpendicular to the axis?
A. $3.583 \mathrm{E}+05 \mathrm{~A}$
B. $3.941 \mathrm{E}+05 \mathrm{~A}$
C. $4.335 \mathrm{E}+05 \mathrm{~A}$
D. $4.769 \mathrm{E}+05 \mathrm{~A}$
E. $5.246 \mathrm{E}+05 \mathrm{~A}$

2.8

1.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.39 \mathrm{kA}, \mathrm{I}_{2}=2.19 \mathrm{kA}$, and $\mathrm{I}_{3}=3.68 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $1.547 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $1.702 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. 1.872E-03 T-m
D. $2.060 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $2.266 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
2.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.32 \mathrm{kA}, \mathrm{I}_{2}=2.0 \mathrm{kA}$, and $\mathrm{I}_{3}=3.66 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $1.724 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $1.896 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. 2.086E-03 T-m
D. $2.295 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $2.524 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
3.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.55 \mathrm{kA}, \mathrm{I}_{2}=1.02 \mathrm{kA}$, and $\mathrm{I}_{3}=1.81 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $8.204 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $9.025 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. 9.927E-04 T-m
D. $1.092 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $1.201 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
4.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.44 \mathrm{kA}, \mathrm{I}_{2}=1.1 \mathrm{kA}$, and $\mathrm{I}_{3}=1.99 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $1.017 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $1.118 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $1.230 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $1.353 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $1.489 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
5.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.82 \mathrm{kA}, \mathrm{I}_{2}=0.964 \mathrm{kA}$, and $\mathrm{I}_{3}=2.21 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}:$
A. $1.069 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $1.176 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $1.294 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $1.423 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. 1.566E-03 T-m
6.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.4 \mathrm{kA}, \mathrm{I}_{2}=2.64 \mathrm{kA}$, and $\mathrm{I}_{3}=3.96 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $1.133 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $1.246 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $1.371 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $1.508 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $1.659 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
7.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.51 \mathrm{kA}, \mathrm{I}_{2}=1.32 \mathrm{kA}$, and $\mathrm{I}_{3}=2.73 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $1.331 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $1.464 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $1.611 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $1.772 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $1.949 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
8.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.49 \mathrm{kA}, \mathrm{I}_{2}=0.996 \mathrm{kA}$, and $\mathrm{I}_{3}=2.61 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $1.385 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $1.524 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $1.676 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $1.844 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $2.028 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
9.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.5 \mathrm{kA}, \mathrm{I}_{2}=1.53 \mathrm{kA}$, and $\mathrm{I}_{3}=2.34 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $1.018 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $1.120 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $1.232 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $1.355 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $1.490 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
10.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.66 \mathrm{kA}, \mathrm{I}_{2}=1.25 \mathrm{kA}$, and $\mathrm{I}_{3}=2.74 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $1.547 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $1.702 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. 1.872E-03 T-m
D. $2.060 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $2.266 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
11.
 page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.61 \mathrm{kA}, \mathrm{I}_{2}=2.2 \mathrm{kA}$, and $\mathrm{I}_{3}=5.1 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. 3.644E-03 T-m
B. $4.009 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $4.410 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $4.850 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. 5.336E-03 T-m
12.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.48 \mathrm{kA}, \mathrm{I}_{2}=1.47 \mathrm{kA}$, and $\mathrm{I}_{3}=2.6 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}:$
A. 1.420E-03 T-m
B. $1.562 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $1.718 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $1.890 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $2.079 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
13.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.51 \mathrm{kA}, \mathrm{I}_{2}=2.33 \mathrm{kA}$, and $\mathrm{I}_{3}=5.35 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. 3.795E-03 T-m
B. $4.175 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $4.592 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $5.051 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $5.556 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
14.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the
page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.85 \mathrm{kA}, \mathrm{I}_{2}=1.8 \mathrm{kA}$, and $\mathrm{I}_{3}=4.89 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $3.530 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. 3.883E-03 T-m
C. $4.271 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $4.698 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $5.168 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
15.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.31 \mathrm{kA}, \mathrm{I}_{2}=1.08 \mathrm{kA}$, and $\mathrm{I}_{3}=1.77 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $7.166 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $7.883 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. 8.671E-04 T-m
D. $9.538 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. $1.049 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
16.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.43 \mathrm{kA}, \mathrm{I}_{2}=1.64 \mathrm{kA}$, and $\mathrm{I}_{3}=4.81 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $2.721 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $2.993 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $3.292 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $3.621 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. 3.984E-03 T-m
17.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.45 \mathrm{kA}, \mathrm{I}_{2}=2.68 \mathrm{kA}$, and $\mathrm{I}_{3}=5.5 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:

A. $3.544 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
 B. $3.898 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$

C. 4.288E-03 T-m
D. $4.717 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $5.188 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
18.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.43 \mathrm{kA}, \mathrm{I}_{2}=1.81 \mathrm{kA}$, and $\mathrm{I}_{3}=3.23 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $1.622 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $1.784 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $1.963 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $2.159 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $2.375 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
19.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.84 \mathrm{kA}, \mathrm{I}_{2}=0.476 \mathrm{kA}$, and $\mathrm{I}_{3}=1.57 \mathrm{kA}$, take the β path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}:$
A. $1.250 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $1.375 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $1.512 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $1.663 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $1.830 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$

2.9

1.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.37 \mathrm{kA}, \mathrm{I}_{2}=1.05 \mathrm{kA}$, and $\mathrm{I}_{3}=2.99 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $4.069 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $4.476 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $4.924 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$

D. 5.416E-03 T-m

E. $5.958 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
2.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.39 \mathrm{kA}, \mathrm{I}_{2}=0.414 \mathrm{kA}$, and $\mathrm{I}_{3}=1.3 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $2.812 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $3.093 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $3.402 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $3.742 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. 4.117E-03 T-m
3.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.84 \mathrm{kA}, \mathrm{I}_{2}=3.3 \mathrm{kA}$, and $\mathrm{I}_{3}=5.85 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $5.598 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $6.158 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. 6.773E-03 T-m
D. $7.451 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $8.196 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
4.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.38 \mathrm{kA}, \mathrm{I}_{2}=0.839 \mathrm{kA}$, and $\mathrm{I}_{3}=2.27 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $4.354 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $4.789 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $5.268 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $5.795 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $6.374 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
5.
 page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.81 \mathrm{kA}, \mathrm{I}_{2}=1.2 \mathrm{kA}$, and $\mathrm{I}_{3}=1.84 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $3.583 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $3.941 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $4.335 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $4.769 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $5.246 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
6.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.35 \mathrm{kA}, \mathrm{I}_{2}=0.809 \mathrm{kA}$, and $\mathrm{I}_{3}=2.34 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $4.031 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $4.434 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $4.877 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $5.365 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $5.901 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
7.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.58 \mathrm{kA}, \mathrm{I}_{2}=1.27 \mathrm{kA}$, and $\mathrm{I}_{3}=1.99 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $3.770 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $4.147 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $4.562 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $5.018 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $5.520 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
8.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.89 \mathrm{kA}, \mathrm{I}_{2}=1.19 \mathrm{kA}$, and $\mathrm{I}_{3}=3.5 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. 6.535E-03 T-m
B. $7.188 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $7.907 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $8.697 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $9.567 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
9.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.46 \mathrm{kA}, \mathrm{I}_{2}=2.14 \mathrm{kA}$, and $\mathrm{I}_{3}=4.44 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $4.943 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $5.438 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. 5.982E-03 T-m
D. $6.580 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $7.238 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
10.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.33 \mathrm{kA}, \mathrm{I}_{2}=0.741 \mathrm{kA}$, and $\mathrm{I}_{3}=2.21 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}:$
A. $3.261 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $3.587 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $3.945 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $4.340 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $4.774 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
11.
 page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.58 \mathrm{kA}, \mathrm{I}_{2}=1.11 \mathrm{kA}$, and $\mathrm{I}_{3}=2.47 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $4.092 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $4.501 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. 4.951E-03 T-m
D. $5.446 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $5.991 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
12.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.42 \mathrm{kA}, \mathrm{I}_{2}=0.904 \mathrm{kA}$, and $\mathrm{I}_{3}=1.34 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $2.696 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $2.966 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $3.263 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. 3.589E-03 T-m
E. $3.948 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
13.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.84 \mathrm{kA}, \mathrm{I}_{2}=2.02 \mathrm{kA}$, and $\mathrm{I}_{3}=4.24 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $5.255 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $5.781 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. 6.359E-03 T-m
D. $6.994 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $7.694 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
14.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.38 \mathrm{kA}, \mathrm{I}_{2}=1.58 \mathrm{kA}$, and $\mathrm{I}_{3}=4.31 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $4.386 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $4.825 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $5.307 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $5.838 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $6.421 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
15.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.5 \mathrm{kA}, \mathrm{I}_{2}=1.28 \mathrm{kA}$, and $\mathrm{I}_{3}=3.4 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $4.362 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $4.798 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $5.278 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $5.806 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $6.386 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
16.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.78 \mathrm{kA}, \mathrm{I}_{2}=2.61 \mathrm{kA}$, and $\mathrm{I}_{3}=3.76 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $4.939 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $5.432 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $5.976 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $6.573 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $7.231 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the
page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.72 \mathrm{kA}, \mathrm{I}_{2}=2.17 \mathrm{kA}$, and $\mathrm{I}_{3}=3.21 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $3.905 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $4.295 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. 4.725E-03 T-m
D. $5.197 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. $5.717 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
18.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.57 \mathrm{kA}, \mathrm{I}_{2}=0.708 \mathrm{kA}$, and $\mathrm{I}_{3}=1.48 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. 4.200E-03 T-m
B. $4.620 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $5.082 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $5.590 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. 6.149E-03 T-m
19.

The numbers $(1,2,3)$ in the figure shown represent three currents flowing in or out of the page: I_{1} and I_{3} flow out of the page, and I_{2} flows into the page, as shown. Two closed paths are shown, labeled β and ω. If $\mathrm{I}_{1}=2.31 \mathrm{kA}, \mathrm{I}_{2}=1.16 \mathrm{kA}$, and $\mathrm{I}_{3}=2.13 \mathrm{kA}$, take the ω path and evalulate the line integral, $\oint \vec{B} \cdot d \vec{\ell}$:
A. $2.815 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
B. $3.097 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
C. $3.406 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
D. $3.747 \mathrm{E}-03 \mathrm{~T}-\mathrm{m}$
E. 4.122E-03 T-m

2.10

1. A solenoid has $8.230 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.5 cm and length 18 m . The current through the coils is 0.633 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-3.74 \mathrm{~cm}$ to $\mathrm{z}=+3.23 \mathrm{~cm}$
A. $1.731 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $1.905 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. 2.095E-04 T-m
D. $2.305 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$

E. 2.535E-04 T-m

2. A solenoid has $9.350 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.85 cm and length 18 m . The current through the coils is 0.872 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-4.55 \mathrm{~cm}$ to $\mathrm{z}=+1.58 \mathrm{~cm}$
A. $2.383 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $2.621 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. $2.884 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. $3.172 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. 3.489E-04 T-m
3. A solenoid has $7.690 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.63 cm and length 11 m . The current through the coils is 0.728 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-2.76 \mathrm{~cm}$ to $\mathrm{z}=+1.99 \mathrm{~cm}$
A. $2.762 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $\mathbf{3 . 0 3 8 E}-04 \mathrm{~T}-\mathrm{m}$
C. $3.342 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. $3.676 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. $4.043 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
4. A solenoid has $7.920 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.45 cm and length 11 m . The current through the coils is 0.702 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-4.27 \mathrm{~cm}$ to $\mathrm{z}=+1.36 \mathrm{~cm}$
A. $2.687 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $2.955 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. $3.251 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. 3.576E-04 T-m
E. $3.934 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
5. A solenoid has $4.900 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.74 cm and length 19 m . The current through the coils is 0.432 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-4.18 \mathrm{~cm}$ to $\mathrm{z}=+1.77 \mathrm{~cm}$
A. $6.884 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
B. $7.573 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
C. 8.330E-05 T-m
D. $9.163 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
E. $1.008 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
6. A solenoid has $9.160 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.64 cm and length 16 m . The current through the coils is 0.873 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-1.74 \mathrm{~cm}$ to $\mathrm{z}=+4.75 \mathrm{~cm}$
A. $3.369 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $3.706 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. $4.076 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. $4.484 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. $4.932 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
7. A solenoid has $9.560 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.18 cm and length 12 m . The current through the coils is 0.664 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-4.49 \mathrm{~cm}$ to $\mathrm{z}=+3.61 \mathrm{~cm}$
A. $4.895 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $\mathbf{5 . 3 8 4 E - 0 4}$ T-m
C. $5.923 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. $6.515 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. $7.167 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
8. A solenoid has $7.540 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.36 cm and length 14 m . The current through the coils is 0.807 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-2.75 \mathrm{~cm}$ to $\mathrm{z}=+3.28 \mathrm{~cm}$
A. $2.722 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $2.994 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. 3.293E-04 T-m
D. $3.623 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. $3.985 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
9. A solenoid has $5.640 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.35 cm and length 16 m . The current through the coils is 0.912 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-1.11 \mathrm{~cm}$ to $\mathrm{z}=+2.76 \mathrm{~cm}$
A. $1.068 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $1.175 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. $1.292 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. $1.421 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. 1.563E-04 T-m
10. A solenoid has $4.380 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.77 cm and length 16 m . The current through the coils is 0.916 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-4.39 \mathrm{~cm}$ to $\mathrm{z}=+4.26 \mathrm{~cm}$
A. $2.478 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $2.726 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. $2.998 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. $3.298 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. $3.628 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
11. A solenoid has $7.170 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.56 cm and length 9 m . The current through the coils is 0.391 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-2.73 \mathrm{~cm}$ to $\mathrm{z}=+2.56 \mathrm{~cm}$
A. $1.414 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $1.556 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. $1.711 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. $1.882 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. $2.071 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
12. A solenoid has $5.500 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.45 cm and length 15 m . The current through the coils is 0.395 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-4.19 \mathrm{~cm}$ to $\mathrm{z}=+2.16 \mathrm{~cm}$
A. $7.894 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
B. $8.683 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
C. $9.551 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
D. $1.051 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. 1.156E-04 T-m
13. A solenoid has $8.890 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.32 cm and length 15 m . The current through the coils is 0.297 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-1.41 \mathrm{~cm}$ to $\mathrm{z}=+2.56 \mathrm{~cm}$
A. $7.257 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
B. $7.983 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
C. 8.781E-05 T-m
D. $9.660 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
E. $1.063 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
14. A solenoid has $9.880 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.5 cm and length 15 m . The current through the coils is 0.981 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-1.56 \mathrm{~cm}$ to $\mathrm{z}=+3.22 \mathrm{~cm}$
A. $2.916 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $3.208 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. $3.528 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. 3.881E-04 T-m
E. $4.269 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
15. A solenoid has $3.950 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.64 cm and length 16 m . The current through the coils is 0.441 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-2.05 \mathrm{~cm}$ to $\mathrm{z}=+3.97 \mathrm{~cm}$
A. $6.807 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
B. $7.487 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
C. $8.236 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
D. $9.060 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
E. $9.966 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
16. A solenoid has $5.160 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.55 cm and length 18 m . The current through the coils is 0.57 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-2.88 \mathrm{~cm}$ to $\mathrm{z}=+1.52 \mathrm{~cm}$
A. $6.788 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
B. $7.467 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
C. $8.213 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
D. $9.035 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
E. $9.938 \mathrm{E}-05 \mathrm{~T}-\mathrm{m}$
17. A solenoid has $5.980 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.8 cm and length 17 m . The current through the coils is 0.933 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-3.68 \mathrm{~cm}$ to $\mathrm{z}=+1.29 \mathrm{~cm}$
A. $1.863 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $2.050 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. $2.255 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. $2.480 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. $2.728 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
18. A solenoid has $7.610 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.21 cm and length 9 m . The current through the coils is 0.696 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-1.52 \mathrm{~cm}$ to $\mathrm{z}=+2.04 \mathrm{~cm}$
A. $2.176 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $2.393 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. 2.633E-04 T-m
D. $2.896 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. $3.186 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
19. A solenoid has $4.730 \mathrm{E}+04$ turns wound around a cylinder of diameter 1.46 cm and length 15 m . The current through the coils is 0.754 A . Define the origin to be the center of the solenoid and neglect end effects as you calculate the line integral $\int \vec{B} \cdot \vec{\ell}$ alongthe axis from $\mathrm{z}=-3.4 \mathrm{~cm}$ to $\mathrm{z}=+1.14 \mathrm{~cm}$
A. $1.121 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
B. $1.233 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
C. $1.356 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
D. $1.492 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$
E. $1.641 \mathrm{E}-04 \mathrm{~T}-\mathrm{m}$

2.11

1. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=20$ turns per centimeter and the current applied to the solenoid is 598 mA , the net magnetic field is measured to be 1.38 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=8.338 \mathrm{E}+02$
B. $\chi(\mathrm{chi})=9.172 \mathrm{E}+02$
C. $\chi($ chi $)=1.009 \mathrm{E}+03$
D. $\chi($ chi $)=1.110 \mathrm{E}+03$
E. $\chi($ chi $)=1.221 \mathrm{E}+03$
2. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=20$ turns per centimeter and the current applied to the solenoid is 344 mA , the net magnetic field is measured to be 1.24 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=1.185 \mathrm{E}+03$
B. $\chi($ chi $)=1.303 \mathrm{E}+03$
C. $\chi($ chi $)=1.433 \mathrm{E}+03$
D. $\chi($ chi $)=1.577 \mathrm{E}+03$
E. $\chi($ chi $)=1.734 \mathrm{E}+03$
3. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=18$ turns per centimeter and the current applied to the solenoid is 582 mA , the net magnetic field is measured to be 1.15 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=7.211 \mathrm{E}+02$
B. $\chi($ chi $)=7.932 \mathrm{E}+02$
C. $\chi($ chi $)=8.726 \mathrm{E}+02$
D. $\chi($ chi $)=9.598 \mathrm{E}+02$
E. $\chi($ chi $)=1.056 \mathrm{E}+03$
4. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=22$ turns per centimeter and the current applied to the solenoid is 568 mA , the net magnetic field is measured to be 1.29 T . What is the magnetic susceptibility for this case?
A. $\chi(\mathrm{chi})=8.205 \mathrm{E}+02$
B. $\chi($ chi $)=9.026 \mathrm{E}+02$
C. $\chi($ chi $)=9.928 \mathrm{E}+02$
D. $\chi($ chi $)=1.092 \mathrm{E}+03$
E. $\chi($ chi $)=1.201 \mathrm{E}+03$
5. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $n=20$ turns per centimeter and the current applied to the solenoid is 525 mA , the net magnetic field is measured to be 1.45 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=8.249 \mathrm{E}+02$
B. $\chi($ chi $)=9.074 \mathrm{E}+02$
C. $\chi($ chi $)=9.981 \mathrm{E}+02$
D. $\chi(\mathrm{chi})=1.098 \mathrm{E}+03$
E. $\chi($ chi $)=1.208 \mathrm{E}+03$
6. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $n=22$ turns per centimeter and the current applied to the solenoid is 265 mA , the net magnetic field is measured to be 1.11 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=1.376 \mathrm{E}+03$
B. $\chi($ chi $)=1.514 \mathrm{E}+03$
C. $\chi($ chi $)=1.666 \mathrm{E}+03$
D. $\chi($ chi $)=1.832 \mathrm{E}+03$
E. $\chi($ chi $)=2.015 \mathrm{E}+03$
7. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $n=27$ turns per centimeter and the current applied to the solenoid is 344 mA , the net magnetic field is measured to be 1.12 T . What is the magnetic susceptibility for this case?
A. $\chi(\mathrm{chi})=7.922 \mathrm{E}+02$
B. $\chi($ chi $)=8.714 \mathrm{E}+02$
C. $\chi(\mathrm{chi})=9.586 \mathrm{E}+02$
D. $\chi($ chi $)=1.054 \mathrm{E}+03$
E. $\chi($ chi $)=1.160 \mathrm{E}+03$
8. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=19$ turns per centimeter and the current applied to the solenoid is 421 mA , the net magnetic field is measured to be 1.31 T . What is the magnetic susceptibility for this case?
A. $\chi(\mathrm{chi})=1.302 \mathrm{E}+03$
B. $\chi($ chi $)=1.432 \mathrm{E}+03$
C. $\chi($ chi $)=1.576 \mathrm{E}+03$
D. $\chi($ chi $)=1.733 \mathrm{E}+03$
E. $\chi($ chi $)=1.907 \mathrm{E}+03$
9. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=24$ turns per centimeter and the current applied to the solenoid is 595 mA , the net magnetic field is measured to be 1.46 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=6.716 \mathrm{E}+02$
B. $\chi($ chi $)=7.387 \mathrm{E}+02$
C. $\chi($ chi $)=8.126 \mathrm{E}+02$
D. $\chi($ chi $)=8.939 \mathrm{E}+02$
E. $\chi($ chi $)=9.833 \mathrm{E}+02$
10. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=23$ turns per centimeter and the current applied to the solenoid is 534 mA , the net magnetic field is measured to be 1.48 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=7.917 \mathrm{E}+02$
B. $\chi($ chi $)=8.708 \mathrm{E}+02$
C. $\chi($ chi $)=9.579 \mathrm{E}+02$
D. $\chi($ chi $)=1.054 \mathrm{E}+03$
E. $\chi($ chi $)=1.159 \mathrm{E}+03$
11. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=24$ turns per centimeter and the current applied to the solenoid is 242 mA , the net magnetic field is measured to be 1.38 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=1.718 \mathrm{E}+03$
B. $\chi(\mathrm{chi})=1.890 \mathrm{E}+03$
C. $\chi($ chi $)=2.079 \mathrm{E}+03$
D. $\chi($ chi $)=2.287 \mathrm{E}+03$
E. $\chi($ chi $)=2.515 \mathrm{E}+03$
12. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=17$ turns per centimeter and the current applied to the solenoid is 455 mA , the net magnetic field is measured to be 1.14 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=8.804 \mathrm{E}+02$
B. $\chi($ chi $)=9.685 \mathrm{E}+02$
C. $\chi($ chi $)=1.065 \mathrm{E}+03$
D. $\chi(\mathrm{chi})=1.172 \mathrm{E}+03$
E. $\chi($ chi $)=1.289 \mathrm{E}+03$
13. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=16$ turns per centimeter and the current applied to the solenoid is 536 mA , the net magnetic field is measured to be 1.47 T . What is the magnetic susceptibility for this case?
A. $\chi(\mathrm{chi})=9.310 \mathrm{E}+02$
B. $\chi($ chi $)=1.024 \mathrm{E}+03$
C. $\chi($ chi $)=1.126 \mathrm{E}+03$
D. $\chi($ chi $)=1.239 \mathrm{E}+03$
E. $\chi(\mathrm{chi})=1.363 \mathrm{E}+03$
14. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=17$ turns per centimeter and the current applied to the solenoid is 331 mA , the net magnetic field is measured to be 1.24 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=1.593 \mathrm{E}+03$
B. $\chi($ chi $)=1.753 \mathrm{E}+03$
C. $\chi($ chi $)=1.928 \mathrm{E}+03$
D. $\chi($ chi $)=2.121 \mathrm{E}+03$
E. $\chi($ chi $)=2.333 \mathrm{E}+03$
15. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=27$ turns per centimeter and the current applied to the solenoid is 280 mA , the net magnetic field is measured to be 1.13 T . What is the magnetic susceptibility for this case?
A. $\chi(\mathrm{chi})=1.188 \mathrm{E}+03$
B. $\chi($ chi $)=1.307 \mathrm{E}+03$
C. $\chi($ chi $)=1.438 \mathrm{E}+03$
D. $\chi($ chi $)=1.582 \mathrm{E}+03$
E. $\chi($ chi $)=1.740 \mathrm{E}+03$
16. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=27$ turns per centimeter and the current applied to the solenoid is 525 mA , the net magnetic field is measured to be 1.44 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=5.515 \mathrm{E}+02$
B. $\chi(\mathrm{chi})=6.066 \mathrm{E}+02$
C. $\chi($ chi $)=6.673 \mathrm{E}+02$
D. $\chi($ chi $)=7.340 \mathrm{E}+02$
E. $\chi(\mathrm{chi})=8.074 \mathrm{E}+02$
17. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=16$ turns per centimeter and the current applied to the solenoid is 424 mA , the net magnetic field is measured to be 1.24 T . What is the magnetic susceptibility for this case?
A. $\chi(\mathrm{chi})=1.092 \mathrm{E}+03$
B. $\chi($ chi $)=1.201 \mathrm{E}+03$
C. $\chi($ chi $)=1.321 \mathrm{E}+03$
D. $\chi(\mathrm{chi})=1.454 \mathrm{E}+03$
E. $\chi($ chi $)=1.599 \mathrm{E}+03$
18. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=26$ turns per centimeter and the current applied to the solenoid is 533 mA , the net magnetic field is measured to be 1.31 T . What is the magnetic susceptibility for this case?
A. $\chi($ chi $)=7.512 E+02$
B. $\chi($ chi $)=8.264 \mathrm{E}+02$
C. $\chi($ chi $)=9.090 \mathrm{E}+02$
D. $\chi($ chi $)=9.999 \mathrm{E}+02$
E. $\chi($ chi $)=1.100 \mathrm{E}+03$
19. A long coil is tightly wound around a (hypothetical) ferromagnetic cylinder. If $\mathrm{n}=26$ turns per centimeter and the current applied to the solenoid is 359 mA , the net magnetic field is measured to be 1.32 T . What is the magnetic susceptibility for this case?
A. $\chi(\mathrm{chi})=1.124 \mathrm{E}+03$
B. $\chi($ chi $)=1.237 \mathrm{E}+03$
C. $\chi($ chi $)=1.360 \mathrm{E}+03$
D. $\chi($ chi $)=1.497 \mathrm{E}+03$
E. $\chi($ chi $)=1.646 \mathrm{E}+03$

3 Attribution

Notes

${ }^{1}$ Example 12.s from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.7:dh0GjBEd@2/121-The-Biot-SavartLaw_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1892310
${ }^{2}$ Example 12.3 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.7:ltGE2kXG@3/122-Magnetic-Field-Due-to-a-Th_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1892310
${ }^{3}$ Example 12.3 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.7:ltGE2kXG@3/122-Magnetic-Field-Due-to-a-Th_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1892310
${ }^{4}$ Example 12.4 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.7:VY8a9ouJ@2/123-Magnetic-Force-between-Two_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1892310
${ }^{5}$ Example 12.5 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.7:A6AqGAGN@2/124-Magnetic-Field-of-a-Curren_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1892310
${ }^{6}$ Example 12.7 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.7:zDDQ_D36@2/125-Ampres-Law_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1892310
${ }^{7}$ Example 12.6 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.7:zDDQ_D36@2/125-Ampres-Law_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1892310
${ }^{8}$ Example 12.8 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.7:zDDQ_D36@2/125-Ampres-Law_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1892310
${ }^{9}$ Example 12.8 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.7:zDDQ_D36@2/125-Ampres-Law_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1892310
${ }^{10}$ Example 12.9 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.7:Xx_lDtUL@2/126-Solenoids-and-Toroids_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1892310
${ }^{11}$ Example 12.10 from OpenStax University Physics2: https://cnx.org/contents/eg-XcBxE@9.7:_FueUvPK@4/127-Magnetism-inMatter_1 placed in Public Domain by Guy Vandegrift: https://en.wikiversity.org/wiki/special:permalink/1892310

