
Young Won Lim
6/8/18

Tree Overview (1A)



Young Won Lim
6/8/18

 Copyright (c)  2015 - 2018  Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, 
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no 
Back-Cover Texts.  A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

mailto:youngwlim@hotmail.com


Tree Overview (1A) 3 Young Won Lim
6/8/18

Tree 

https://en.wikipedia.org/wiki/Tree_(graph_theory)

a tree is an undirected graph in which 
any two vertices are connected 
by exactly one path. 

any acyclic connected graph is a tree. 

A forest is a disjoint union of trees.
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 Tree Condition  (1)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A tree is an undirected graph G 

that satisfies any of the following equivalent conditions:

G is connected and has no cycles.

G is acyclic, and a simple cycle is formed if any edge is added to G.

G is connected, but is not connected if any single edge is removed from G.

G is connected and the 3-vertex complete graph K
3
 is not a minor of G.

Any two vertices in G can be connected by a unique simple path.
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 Tree Condition  (2)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

G is acyclic, and a simple cycle is 
formed if any edge is added to G.

G is connected, but is not connected 
if any single edge is removed from G.
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 Tree Condition  (3)

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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Any two vertices in G 
can be connected by a 
unique simple path.
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 Tree Condition  (4)

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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Any two vertices in G 
can be connected by a 
unique simple path.
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 Tree Condition  (5)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

If G has finitely many vertices, 
say n vertices, then the above statements 
are also equivalent to any of the following conditions:

G is connected and has n − 1 edges.

G has no simple cycles and has n − 1 edges.
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 Tree Condition  (6)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

G is connected and the 3-vertex 
complete graph K

3
 is not a minor of G.

deleting edges
deleting vertices

contracting edges
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Graph Minor

https://en.wikipedia.org/wiki/Graph_minor

In graph theory, an undirected graph H 
is called a minor of the graph G 
if H can be formed from G 
by deleting edges and vertices and 
by contracting edges.

contracting an edge

deleting an edge

deleting a vertex

deleting an edge
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Tree Examples

https://en.wikipedia.org/wiki/Tree_(data_structure)
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Terminology used in trees (1)

https://en.wikipedia.org/wiki/Tree_(data_structure)

Root

    The top node in a tree.

Child

    A node directly connected to another node when moving away from the Root.

Parent

    The converse notion of a child.

Siblings

    A group of nodes with the same parent.

Descendant

    A node reachable by repeated proceeding from parent to child.

Ancestor

    A node reachable by repeated proceeding from child to parent.
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Terminology used in trees (2)

https://en.wikipedia.org/wiki/Tree_(data_structure)

Leaf (less commonly called External node)

    A node with no children.

Branch (Internal node)

    A node with at least one child.

Degree

    The number of subtrees of a node.

Edge

    The connection between one node and another.

Path

    A sequence of nodes and edges connecting a node with a descendant.
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Terminology used in trees (3)

https://en.wikipedia.org/wiki/Tree_(data_structure)

Level

    The level of a node is defined 

     by 1 + (the number of connections between the node and the root).

Height of node

    The height of a node is the number of edges 

     on the longest path between that node and a leaf.

Height of tree

    The height of a tree is the height of its root node.

Depth

    The depth of a node is the number of edges 

     from the tree's root node to the node.

Forest

    A forest is a set of n ≥ 0 disjoint trees.

Some literatures have the 
reversed definitions of  
height and depth

Depth

Depth

Height
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Depth 

https://en.wikipedia.org/wiki/Tree_(data_structure)
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Height 

https://en.wikipedia.org/wiki/Tree_(data_structure)
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Binary Tree 

https://en.wikipedia.org/wiki/Binary_tree

a binary tree is a tree data structure in which 
each node has at most two children, 
(the left child, the right child)

A recursive definition using just set theory notions 
is that a (non-empty) binary tree is a tuple (L, S, R), 
where L and R are binary trees or the empty set and 
S is a singleton set. 

Some authors allow the binary tree 
to be the empty set as well. 
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Full Binary Tree

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A rooted binary tree has a root node and 
every node has at most two children.

A full binary tree is 
(proper, plane binary tree)  
a tree in which every node 
has either 0 or 2 children.
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Perfect Binary Trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A perfect binary tree is a binary tree in which 
all interior nodes have two children and 
all leaves have the same depth or same level.

also called a complete binary tree 

the same depth (level).

two children



Tree Overview (1A) 20 Young Won Lim
6/8/18

Complete Binary Trees 

https://en.wikipedia.org/wiki/Tree_(graph_theory)

In a complete binary tree 
every level, except possibly the last, 
is completely filled, 
and all nodes in the last level are 
as far left as possible. 

An alternative definition is a perfect tree 
whose rightmost leaves (perhaps all) 
have been removed. 
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Complete Binary Trees and Linear Arrays

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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A complete binary tree can 
be efficiently represented 
using an array.
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Different use of compute binary trees

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Some authors use the term complete
to refer instead to a perfect binary tree 
as defined above, 
in which case they call this type of tree 
an almost complete binary tree or 
nearly complete binary tree. 

complete

perfect

nearly complete

complete
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Properties of Binary Trees (1)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

A complete binary tree 
can have between 1 and 2m-1 nodes 
at the last level m.
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Properties of Binary Trees (2)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

The number of nodes n in a full binary tree, is
at least n = 2d + 1 and 
at most n = 2d+1 − 1, 
where d is the detph of the tree. 

A tree consisting of only a root node 
has a depth of 0.
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Properties of Binary Trees (3)

https://en.wikipedia.org/wiki/Tree_(graph_theory)
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Properties of Binary Trees (4)

https://en.wikipedia.org/wiki/Tree_(graph_theory)

The number of leaf nodes is  m 
in a perfect binary tree, 
is  m=(n+1)/2 

because the number of non-leaf 
(internal) nodes is m–1

This means that a perfect binary tree 
with m leaves has 
n = 2m–1 nodes.
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