Tree Overview (1A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Tree

a tree is an undirected graph in which any two vertices are connected by exactly one path.
any acyclic connected graph is a tree.
A forest is a disjoint union of trees.

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Tree Condition (1)

A tree is an undirected graph G
that satisfies any of the following equivalent conditions:
G is connected and has no cycles.
G is acyclic, and a simple cycle is formed if any edge is added to G.
G is connected, but is not connected if any single edge is removed from G.
G is connected and the 3-vertex complete graph K_{3} is not a minor of G.
Any two vertices in G can be connected by a unique simple path.

Tree Condition

G is acyclic, and a simple cycle is formed if any edge is added to G.

G is connected, but is not connected if any single edge is removed from G.

Tree Condition (3)

$p_{1,2}$
$p_{1,3}$
$p_{1,4}$

$p_{2,3}$
$p_{2,4}$
$p_{2,5}$
$p_{2,6}$

Any two vertices in G can be connected by a unique simple path.

Tree Condition

$p_{3,6}$

$p_{4,5}$
$p_{4,6}$
$p_{5,6}$

Any two vertices in G can be connected by a unique simple path.

Tree Condition

If G has finitely many vertices, say \mathbf{n} vertices, then the above statements are also equivalent to any of the following conditions:

G is connected and has $\mathbf{n - 1}$ edges.

G has no simple cycles and has $\mathbf{n - 1}$ edges.

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Tree Condition

G is connected and the 3-vertex

 complete graph \mathbf{K}_{3} is not a minor of G.

deleting edges deleting vertices

contracting edges

Graph Minor

In graph theory, an undirected graph H is called a minor of the graph G
if H can be formed from G
by deleting edges and vertices and
by contracting edges.

Tree Examples

Not a tree: cycle A \rightarrow A. A is the root but it also has a parent.

Not a tree: undirected cycle 1-2-4-3. 4 has more than one parent (inbound edge).

Not a tree: two nonconnected parts, $A \rightarrow B$ and $\mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$. There is more than one root.

Terminology used in trees (1)

Root

The top node in a tree.

Child

A node directly connected to another node when moving away from the Root.

Parent

The converse notion of a child.

Siblings

A group of nodes with the same parent.

Descendant

A node reachable by repeated proceeding from parent to child.

Ancestor

A node reachable by repeated proceeding from child to parent.

Terminology used in trees (2)

Leaf (less commonly called External node)
A node with no children.

Branch (Internal node)

A node with at least one child.

Degree

The number of subtrees of a node.

Edge

The connection between one node and another.
Path
A sequence of nodes and edges connecting a node with a descendant.

Terminology used in trees (3)

Level

The level of a node is defined
by $1+$ (the number of connections between the node and the root).

Height of node

Depth
The height of a node is the number of edges on the longest path between that node and a leaf.

Height of tree

Depth
The height of a tree is the height of its root node.

Depth

Height

The depth of a node is the number of edges from the tree's root node to the node.

Forest

A forest is a set of $\mathrm{n} \geq 0$ disjoint trees.

Some literatures have the reversed definitions of height and depth

Depth

https://en.wikipedia.org/wiki/Tree_(data_structure)

Height

https://en.wikipedia.org/wiki/Tree_(data_structure)

Binary Tree

a binary tree is a tree data structure in which each node has at most two children, (the left child, the right child)

A recursive definition using just set theory notions is that a (non-empty) binary tree is a tuple ($\mathbf{L}, \mathbf{S}, \mathbf{R}$), where \mathbf{L} and \mathbf{R} are binary trees or the empty set and \mathbf{S} is a singleton set.

Some authors allow the binary tree to be the empty set as well.

Full Binary Tree

A rooted binary tree has a root node and every node has at most two children.

A full binary tree is (proper, plane binary tree) a tree in which every node has either $\mathbf{0}$ or $\mathbf{2}$ children.

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Perfect Binary Trees

A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level.
also called a complete binary tree
the same depth (level).

Complete Binary Trees

In a complete binary tree
every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible.

An alternative definition is a perfect tree whose rightmost leaves (perhaps all)
 have been removed.

Complete Binary Trees and Linear Arrays

1	2•i Left child
$\begin{array}{r} 2 \\ -\quad 3 \end{array}$	$2 \cdot \mathbf{i}+1$ Right child
$4 \quad 4$	
5 -	A complete binary tree can
- 6	be efficiently represented
- 7	
8	
9	
10	
11	
contiguous	
no blanks	
\rightarrow complete	

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Different use of compute binary trees

Some authors use the term complete to refer instead to a perfect binary tree as defined above, in which case they call this type of tree an almost complete binary tree or nearly complete binary tree.

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Properties of Binary Trees (1)

A complete binary tree

can have between $\mathbf{1}$ and $\mathbf{2}^{\mathrm{m-1}}$ nodes at the last level \mathbf{m}.

https://en.wikipedia.org/wiki/Tree_(graph_theory)

Properties of Binary Trees (2)

The number of nodes \mathbf{n} in a full binary tree, is

A tree consisting of only a root node has a depth of 0 .

Properties of Binary Trees (3)

Properties of Binary Trees (4)

The number of leaf nodes is \mathbf{m} in a perfect binary tree,
is $m=(n+1) / 2$
because the number of non-leaf (internal) nodes is $\mathbf{m - 1}$

This means that a perfect binary tree with m leaves has $\mathbf{n}=\mathbf{2 m} \mathbf{- 1}$ nodes.

$\mathrm{m}-1$	$\mathbf{2}^{2}-1$
m	$\mathbf{2}^{\mathbf{2}}$

m-1
m
2^{3-1}
2^{3}

References

[1] http://en.wikipedia.org/
[2]

