Laurent Series and z-Transform - Geometric Series Combinations (A)

20200702 Thr

Copyright (c) 2016-2020 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Combinations of a and z -- common ratio in a geometric series

the same formula,

two equivalent representations of geometric series
the same formula with different ROCs

Representation I
geometric series
starting with
a unit term
non-shifted range
$u(n), u(-n)$

Representation II
geometric series
starting with
a non-unit term
shifted range
$u(n-1), u(-n-1)$
inversed common ratio

$$
\begin{gathered}
-\left(a^{-1} z^{-1}+a^{-2} z^{-2}+a^{-3} z^{-3}+\cdots\right) \\
\text { causal u(n-1) } \\
-\frac{a z}{1-a z} \quad|z|<a^{-1}
\end{gathered}
$$

$$
-\left(a^{1} z^{1}+a^{2} z^{2}+a^{3} z^{3}+\cdots\right)
$$

anti-causal u(-n-1)

$$
\frac{\left[-\frac{a z^{-1}}{1-a z^{-1}} \quad|z|>a\right.}{\left(a^{\prime} z^{-1}+a^{2} z^{-2}+a^{3} z^{-3}+\cdots\right)}
$$

causal u(n-1)

$$
-\frac{a^{-1} z}{1-a^{-1} z} \quad|z|<a
$$

$-\left(a^{-1} z^{1}+a^{-2} z^{2}+a^{-3} z^{3}+\cdots\right)$

\qquad
the different formula with the same ROC

Representation I
geometric series
starting with
a unit term
non-shifted range
$u(n), u(-n)$

Representation II
geometric series
starting with
a non-unit term
shifted range
$u(n-1), u(-n-1)$

Geometric Power Series Property (1)

Each representation has it own ROC (Region of Convergence)

common ratio$a z$	$\rightarrow\|z\|<a^{-1}$	ROC	
common	$a^{-1} z^{-1}$	$\longrightarrow\|z\|>a^{-1}$	ROC
ratio			
common $a^{-1} z$ $\|z\|<a$	ROC		
ratio			
common	$a z^{-1}$		$\|z\|>a$

Geometric Power Series Property (2)

Starting terms

Geometric Power Series Property (3)

Complementary Ranges

$u[n] \quad u[-n-1]$

$$
u[n-1] \quad u[-n]
$$

Shifted Ranges
left shfited range

right shfited range

Geometric Power Series Property (4)

$\mathrm{u}[\mathrm{n}]$ complementary $\mathrm{u}[-\mathrm{n}-1]$ symmetric $\mathrm{u}[\mathrm{n}-1]$ $u[-n]$ complementary $u[n-1]$ symmetric $u[-n-1]$

Geometric Power Series Property (5)

A Common Ratio and a Exponent

Exponent

$1 / 1 \longrightarrow a^{n}$
$-1 /-1 \longrightarrow a^{n}$
$-1 / 1 \longrightarrow a^{-n}$
$1 /-1 \longrightarrow a^{-n}$

A Common Ratio and a Default Range

Default Ranges
z
$u[n]$ causal
z^{-1} $u[-n]$ anti-causal

A Common Ratio and a Complementary Range

un] $u[-n-1]$
left shifted range
 un] $u[-n-1]$ left shifted range

$$
\begin{aligned}
& |z|<a \\
& |z|>a
\end{aligned}
$$

$|z|>a^{-1}$
$|z|<a^{-1}$
$u[-n]$
u[n-1]
right shifted range

$u[-n]$ $u[n-1]$
right shifted range

Complementary Ranges
$\underset{\mathrm{u}[\mathrm{n}]}{\text { default range }} \longleftrightarrow \mathrm{u}[-\mathrm{n}-1]$
default range

$$
\begin{aligned}
& \text { default range } \\
& \mathrm{u}[-\mathrm{n}]
\end{aligned} \longleftrightarrow \mathrm{u}[\mathrm{n}-1]
$$

A Common Ratio and a Symmetric Range

Symmetric Ranges

Common Ratio and ROC
default
complementary

$\star 1 /\left(1-a^{-1} z^{-1}\right)$
$a z /(1-a z)$
default
complementary
\square

* $1 /\left(1-a z^{-1}\right)$
$a^{-1} z /\left(1-a^{-1} z\right)$

Each common ratio has two representations Each representation has it own ROC

The two representations have complementary ROC's

Sequences
Ranges
complementary ROC's

Common Ratio and ROC
$\star \quad 1 /(1-a z) \quad|z|<a^{-1} \quad$ causal $(z) \quad a^{n} u[n] \quad \star$ default range $a^{-1} z^{-1} /\left(1-a^{-1} z^{-1}\right)$
anti-causal
$a^{n} u[-n-1]$

\star	$1 /\left(1-a^{-1} \boldsymbol{Z}^{-1}\right)$	$\|z\|>a^{-1}$	anti-causal	$a^{n} u[-n]$	\star default range
$a \boldsymbol{Z} /(1-a \boldsymbol{Z})$	$\|z\|<a^{-1}$	causal (z)	$a^{n} u[n-1]$	complementary	

$\star \quad \begin{array}{lllll}1 /\left(1-a^{-1} \boldsymbol{z}\right) & |z|<a & \text { causal }(z) & a^{-n} & u[n] \\ a^{-1} /\left(1-a \boldsymbol{Z}^{-1}\right) & |z|>a & \text { anti-causal } & a^{-n} u[-n-1] & \text { complement t range } \\ & & 1 /-1=-1 & \end{array}$

$\star |$| $1 /\left(1-a \boldsymbol{z}^{-1}\right)$ | $\|z\|>a$ | anti-causal | $a^{-n} u[-n]$ | \star default range |
| :---: | :---: | :---: | :---: | :---: |
| $a^{-1} \boldsymbol{z} /\left(1-a^{-1} \boldsymbol{z}\right)$ | $\|z\|<a$ | causal (z) | $a^{-n} u[n-1]$ | complementary |

Common Ratio and ROC - Summary
ordered by complementary relation

$\star 1$	$1\left(1-a z^{-1}\right)$	$\|z\|>a$	$a^{-n} u[-n]$
$a^{-1} z /\left(1-a^{-1} z\right)$	$\|z\|<a$	$a^{-n} u[n-1]$	default range

Common Ratio and ROC - Summary
ordered by symmetric relation
$\star 1 /(1-a z) \quad|z|<a^{-1}$
$\boldsymbol{a}^{\boldsymbol{n}} u[n]$
$\boldsymbol{a}^{\boldsymbol{n}} u[-n]$
\star default range
$\star 1 /\left(1-a^{-1} z^{-1}\right)$
$|z|>a^{-1}$
$\boldsymbol{a}^{\boldsymbol{n}} u[-n-1]$
complementary
$a^{-1} z^{-1} /\left(1-a^{-1} z^{-1}\right) \quad|z|>a^{-1}$
a^{n}
$u[n-1]$
complementary
$\star 1 /\left(1-a^{-1} z\right) \quad|z|<a$
$a^{-n} u[n]$
\star default range
$\star 1 /\left(1-a z^{-1}\right)$
$|z|>a$
$a^{-n} u[-n]$
default range

$a z^{-1} /\left(1-a z^{-1}\right)$	$\|z\|>a$	$a^{-n} u[-n-1]$
$a^{-1} z /\left(1-a^{-1} z\right)$	$\|z\|<a$	$a^{-n} u[n-1]$

complementary complementary

Common Ratio and ROC - Summary
ordered by shift relation

$\star 1 /(1-a z)$	$\|z\|<a^{-1}$	$\mathbf{a}^{\boldsymbol{n}} u[n]$	\star default range
$a^{*} /(1-\boldsymbol{a} z)$	$\|z\|<a^{-1}$	$\mathbf{a}^{\mathbf{n}} u[n-1]$	complementary

$\begin{array}{lll}\star 1 /\left(1-a^{-1} z^{-1}\right) & |z|>a^{-1} & \boldsymbol{a}^{n} u[-n] \\ a^{-1} z^{-1} /\left(1-a^{-1} z^{-1}\right) & |z|>a^{-1} & \boldsymbol{a}^{n} u[-n-1]\end{array}$

$\star 1 /\left(1-a^{-1} z\right)$	$\|z\|<a$	$a^{-n} u[n]$
$a^{-1} z /\left(1-a^{-1} z\right)$	$\|z\|<a$	$a^{-n} u[n-1]$

Common Ratios and Representations

$a z \quad|z|<a^{-1} \quad$| $\frac{1}{1-a z}$ | $\frac{a z}{1-a z}$ |
| :---: | :---: |
| $-\frac{a^{2} z^{-1}}{1-a^{\prime} z^{-1}}$ | $-\frac{1}{1-a^{-1} z^{-1}}$ |

$$
\left.a^{-1} z^{-1} \quad|z|>a^{-1} \quad \begin{array}{cc}
\frac{1}{1-a^{-1} z^{-1}} & \frac{a^{\prime} z^{-1}}{1-a^{-} z^{-1}} \\
-\frac{a z}{1-a z} & -\frac{1}{1-a z} \\
\hline
\end{array} \right\rvert\,
$$

Left Shifted

$$
a^{-1} z \quad|z|<a \quad \begin{array}{cc}
\frac{1}{1-a^{-1} z} & \frac{a^{-1} z}{1-a^{-1} z} \\
-\frac{a z^{-1}}{1-a z^{-1}} & -\frac{1}{1-a z^{-1}} \\
\hline
\end{array}
$$

Right Shifted

$$
\left.a z^{-1} \quad|z|>a \quad \begin{array}{|cc|}
\frac{1}{1-a z^{-1}} & \frac{a z^{-1}}{1-a z^{-1}} \\
-\frac{a^{-1} z}{1-a^{-1} z} & -\frac{1}{1-a^{-1} z} \\
\hline
\end{array} \right\rvert\,
$$

$\frac{1}{1-a z^{-1}}$	$\frac{a z^{-1}}{1-a z^{-1}}$			
$-\frac{a^{-1} z}{1-a^{-1} z}$	$-\frac{1}{1-a^{-1} z}$		$u(-n)$	$u(-n-1)$
:---	:---			
$u(n-1)$	$u(n)$			

Common Ratio

a z
right shifted

$a^{n} u[-n]$
left shifted

$a^{n} u[n]$
$\frac{(1)}{1-(a z)}|z|<a^{-1}$

$a^{-n} u[n]$
$a^{-n} u[n]$
$\frac{1}{1-\left(a^{-1} z\right)}|z|<a$
$\frac{1}{1-\left(a^{-1} z\right)}|z|<a$

Geometric Series Combinations (2)

* inverted relation is ignored

Common Ratio
$a^{-a} z$
$\frac{1}{1-a^{-1} z}|z|<a$
$\boldsymbol{a}^{-n} u[n]$

2 Sequences

right shifted

$a^{-n} u[-n]$
left shifted

$$
\begin{array}{|c|}
\hline \frac{a z^{-1}}{1-a z^{-1}}|z|>a \\
a^{-n} u[-n-1]
\end{array}
$$

Shift Relations of Ranges

Right Shifted Range Relation

Left Shifted Range Relation

$\mathrm{u}[-\mathrm{n}]$
u[-n-1]

Complementary Relations of Ranges

Complementary Range Relation

[Complementary Range \& Inverted Relation]

* inverted relation is ignored

$$
a^{0} z^{0}+a^{-1} z^{-1}+a^{-2} z^{-2}+\cdots
$$

$\boldsymbol{a}^{\boldsymbol{n}} u[-n]$

$$
\begin{aligned}
& a^{1} z^{1}+a^{2} z^{2}+a^{3} z^{3}+\cdots \\
& a^{n} u[n-1]
\end{aligned}
$$

$$
\begin{aligned}
& a^{0} z^{0}+a^{1} z^{-1}+a^{2} z^{-2}+\cdots \\
& a^{-n} u[n-1]
\end{aligned}
$$

$$
\begin{aligned}
& a^{-1} z^{1}+a^{-2} z^{2}+a^{-3} z^{3}+\cdots \\
& a^{-n} u[-n]
\end{aligned}
$$

[Shifted Range Relation]

* inverted relation is ignored

$\frac{1}{1-a^{\prime} z^{\prime}}|z|>a^{\prime}$
$\left.\frac{a^{\prime}}{1-z^{\prime} z^{\mid c}} \right\rvert\,$

$$
a^{0} z^{0}+a^{-1} z^{-1}+a^{-2} z^{-2}+\cdots
$$

$$
a^{n} u[-n]
$$

$a^{\boxed{a}} z$
$\frac{1}{1-a^{\prime \prime} z}|z|<a$

$$
a^{-1} z^{-1}+a^{-2} z^{-2}+a^{-3} z^{-3}+\cdots
$$

$a^{n} u[-n-1]$

\square	

$a^{\boxed{a}} z$

$$
\begin{aligned}
& a^{0} z^{0}+a^{-1} z^{1}+a^{-2} z^{2}+\cdots \\
& a^{-n} u[n]
\end{aligned}
$$

$a^{-a} z$

$$
\frac{a^{-1} z}{1-a^{-1} z} \quad|z|<a
$$

$$
\begin{aligned}
& a^{-1} z^{1}+a^{-2} z^{2}+a^{-3} z^{3}+\cdots \\
& a^{-n} u[n-1]
\end{aligned}
$$

$a z^{\text {-1 }}$

$$
\frac{1}{1-a z^{-1}} \quad|z|>a
$$

$$
\begin{aligned}
& a^{0} z^{0}+a^{1} z^{-1}+a^{2} z^{-2}+\cdots \\
& a^{-n} u[-n]
\end{aligned}
$$

$a z^{-1}$
$\left.\frac{a z^{\prime}}{1-a z^{\prime}}|z|\right\rangle a$

$$
\frac{a z^{-1}}{1-a z^{-1}} \quad|z|>a
$$

$$
\begin{aligned}
& a^{1} z^{-1}+a^{2} z^{-2}+a^{3} z^{-3}+\cdots \\
& a^{-n} u[-n-1]
\end{aligned}
$$

each formula has two geometric series - two common ratios with inverse relation

each common ratio is associated with 2 different sequences (representations)

