Hybrid CORDIC 2.A Sine/Cosine Generator

20170701

Copyright (c) 2015 - 2017 Young W. Lim.

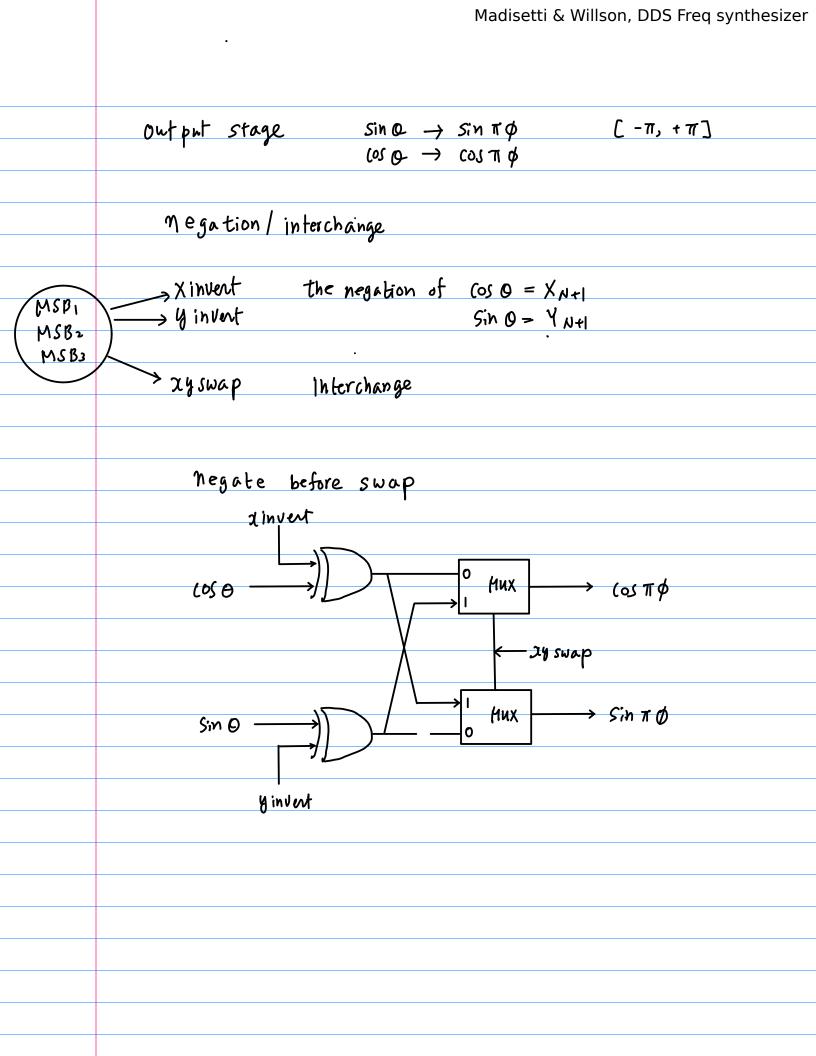
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

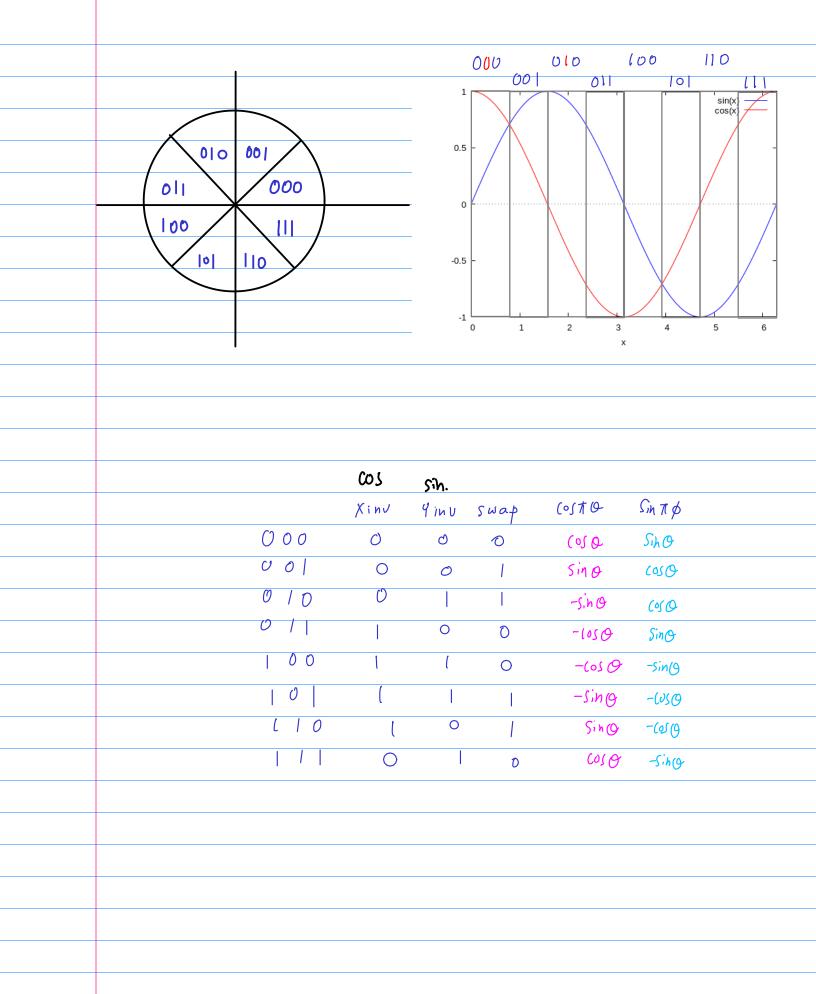
Wilson ROM based Sinel Cosine Generation
[24] Fu & Willson Sine / Cosine Generation
Rd M-based
for high resolution, ROM size grows exponentially
Guater -wave symmetry
Sin
$$\theta = \cos(\frac{\pi}{2} - \theta)$$

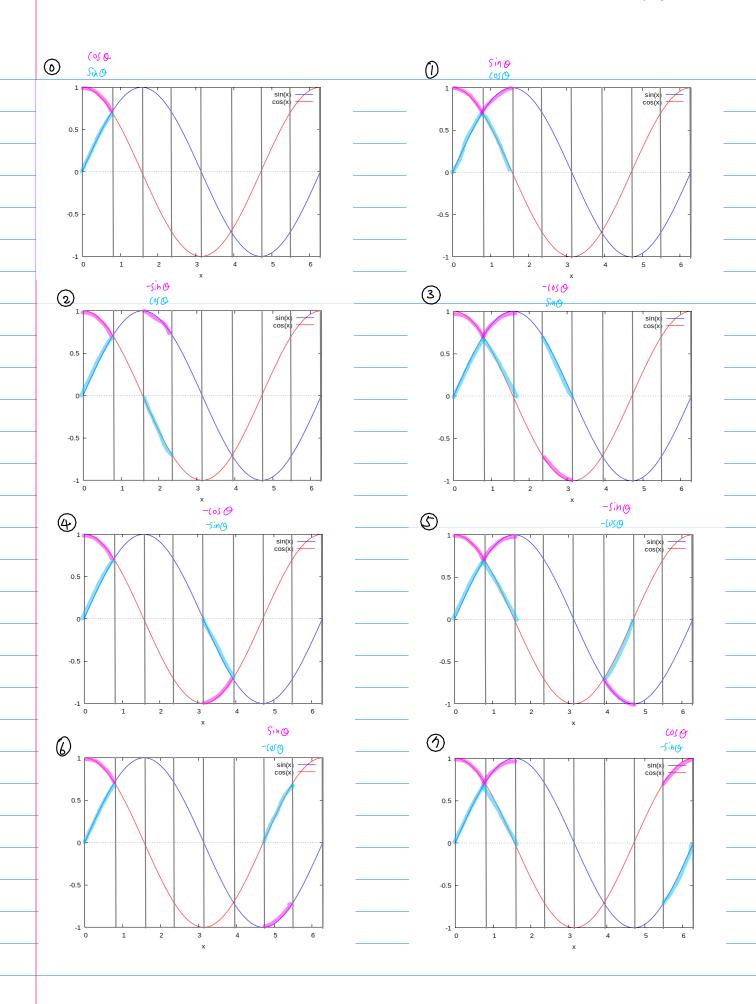
 $\oint EO, 2\pi 3 \longrightarrow EO, \frac{\pi}{2}]$
conditionally interchanging inputs Xo & Yo
conditionally interchanging and megating outputs X & Y
 $X = X_0 \cos \phi - Y_0 \sin \phi$
 $Y = Y_0 \cos \phi + X_0 \sin \phi$
Madisetti VLSL arch

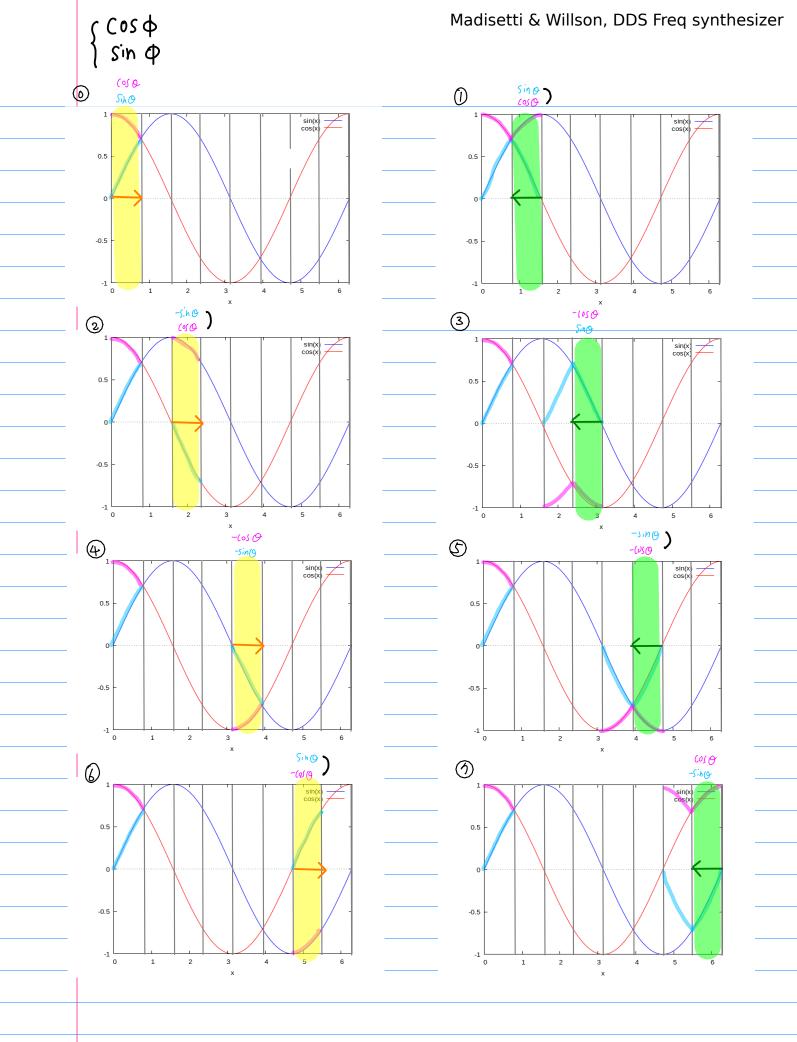
 $\pi/2 + r$ π/4 r (= π φ') $\pi/_2 - \gamma$ T+r T+T/2+F for frequency synthesis argument: signed normalized by TT angle [-1, 1] binary representation of a radian angle required $\begin{array}{cccc} [-1, 1] & \longrightarrow [0, \pi/4] & \longrightarrow & \text{Sine/cosine generator} \\ \phi & 0 & 1 \end{array}$ $\pi\phi \leftarrow$ (i) a phase accumulator ϕ [4, 1] (2) a radian converter $\phi \rightarrow \phi$ 3 a sine/cosine generator Sin O, cos O

2 msb of the normalized angle \$: MSB_1 , MSB_2 determine the guadrant of $\pi\phi$ MSB3 determines the upper/lower half of the quadrant Control / interchange $MSB_1 \leftarrow 0$, $MSB_2 \leftarrow 0$ $TI\phi'$ MSB3=1 : the upper half finadrant $sinr = cos(\pi(2-r))$ $(os r = sin(\pi/2-r)$ the normalized angle below T/4 Ø" $\phi'' = OS - \phi' \quad (MSB_3 = 1)$ $\phi'' = \phi' \qquad (MSB_3 = 0)$ $0 = \pi \phi''$ hardwired multiplier [0, T/4] [CORDIC-based architectures the elementary angles are divided by T $\theta_k = \tan 2^{-k} / 2\pi$ since the directions of the subrotations are controlled only by the sign of the difference between two angles and not the magnitude, the multiplication by TT is not required

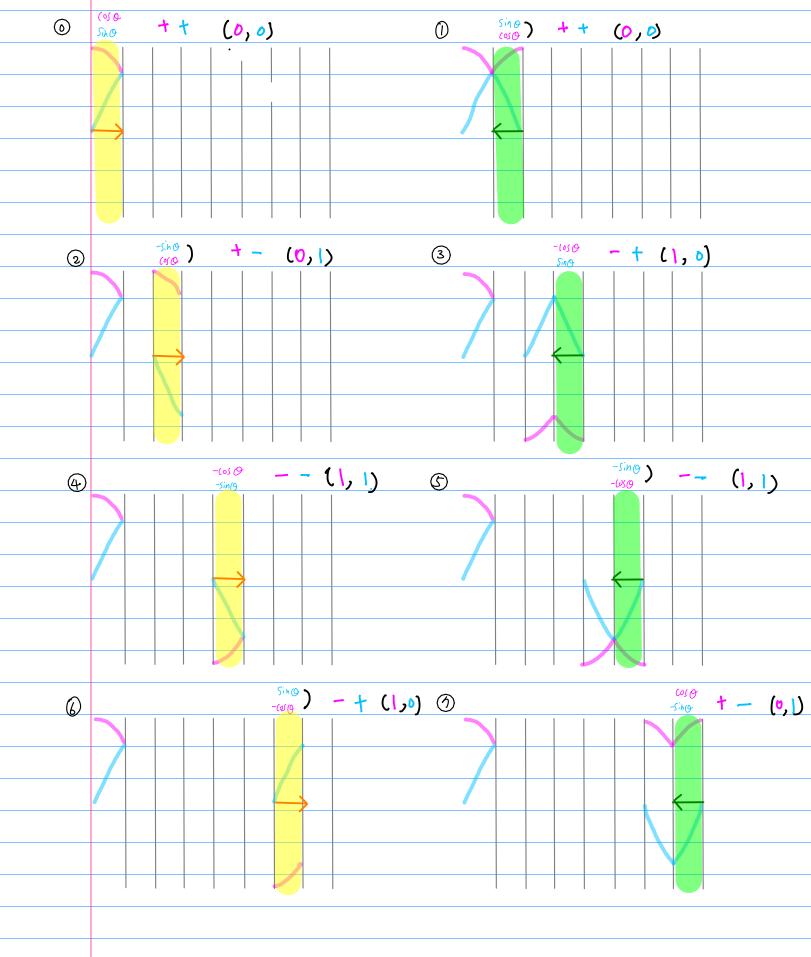




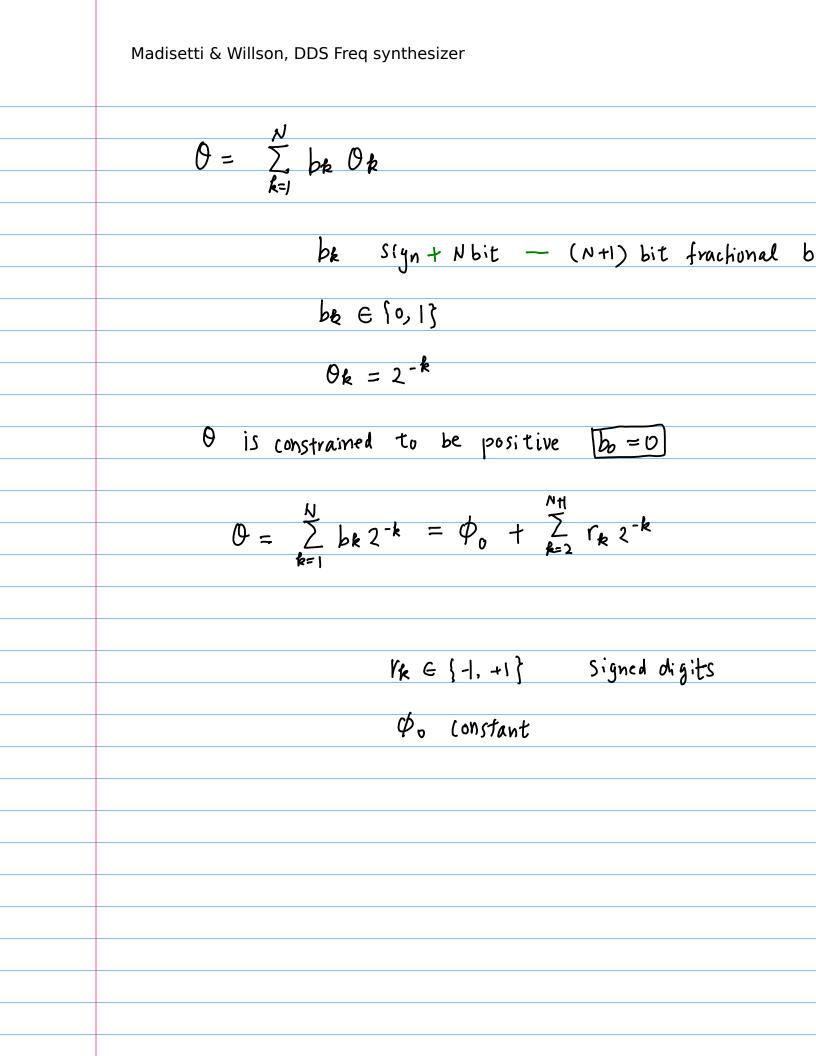




Madisetti & Willson, DDS Freq synthesizer



Madisetti & Willson, DDS Freq synthesizer Sin TI Ø Xinu 9 in U (05# Ø swap 000 ് \mathcal{O} Siho О (050 001 0 0 Sino cosO I O I 010 -sin Q (050 011 0 0 -loso Sino (001 I 0 -sin(9 -(050 0 l -6050 I -sing 0 L | O 1 -(05(9) 1 Sino | | | 0 D 6050 -Sing Ø ტ Ο \mathcal{O} ()0 I (I 0 1 \cap ОЮ 00 \bigcirc 10 ·| | ١ 0 0 1



 ① Subrotation by 2-k
 ② equal ① half rotations by 2^{-k+}
 ③ Subrotation
 2 equal opposite half rotations by ±2^{-k+} Binary Representation be = 1 : rotation by 2-k be = 0; Zero rotation b-th rotation Fixed rotation by 2^{-k-1} $\int Pos rotation \leftarrow b_k = 1$ $Neg rotation \leftarrow b_k = 0$ Combining all the fixed rotations -> initial fixed votation

β2 2⁻² **b**1 þ3 ÞN 2-1 2-3 2-N $f_{ixed} \Rightarrow +2^2$ + 2-3 + 2-4 + 2-1-1 $(b_1 = 1)$ (b2=1) (b;=1) (b_n=1) +22 +2-3 +2-4 +2-1-1 (b₂ = 0) $(b_1=0)$ (b3=0) $(b_N = 0)$ -22 -2^{-3} -2-4 -2-2initial fixed rotation $\phi_0 = \frac{1}{2^2} + \frac{1}{2^3} + \cdots + \frac{1}{2^{n+1}}$ $= \frac{\frac{1}{2}\left(1-\frac{1}{2}\right)}{\left(1-\frac{1}{2}\right)} = \frac{1}{2}\left(1-\frac{1}{2}\right) = \frac{1}{2}-\frac{1}{2}$

the rotation after recoding
a fixed initial rotation
$$\oint_{0}$$

a sequence of \bigoplus/\bigoplus rotations
 $ba = 1 + 2^{-h-1}$ rotation
 $ba = 0 - 2^{-h-1}$ rotation
 $Ya = (2ba - -1)$
 $2 \cdot 1 - 1 = -1$ $ba - 1$
 $2 \cdot 0 - 1 = -1$ $ba - 1$
The recoding need not be exploitly parformed
Simply replacing $ba = 0$ with \bigoplus
This recoding maintains
a constant scaling factor K

The scaling K.
The initial rotation
$$\Phi_{\circ}$$

rotation Stating point
 $(X_{\circ}, Y_{\circ}) = (K \cos \phi_{\circ}, K \sin \phi)$
 $-fixed$
 $- no error buildup$
 $- rotation direction
immediately obtained from the binary representation
 \rightarrow no need for Comparison
the Sabangles $\Theta_{\bullet} = 2^{-\bullet}$ used in Yecoding
the Sabangles $\Theta_{\bullet} = 2^{-\bullet}$ used in CORDIC
 $tan \Theta_{\bullet}$ multipliers used
in the first few Subrotation Stages
Cannot be implemented
 $\Delta S = simple Shift-and-add Operations$
 $- \Rightarrow ROM$ implementation
 $Peduced Chip area
higher Operating Speed.$$

positive subrotation by 2-k radians = sum of 2 equal positive half rotations by 2-k-1 zero subrotations