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Based on

Haskell Tutorial, Medak & Navratil
ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

Yet Another Haskell Tutorial, Daume
https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
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Type Inference 

 Prelude> 7 :: Int

 7

 Prelude> 7 :: Double

 7.0

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

usually don't have to declare types

(type inference)

to declare types, use :: to do it. 
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Type Information

 Prelude> :t False

 False :: Bool

 Prelude> :t 'A'

 'A' :: Char

 Prelude> :t "Hello, world"

 "Hello, world" :: [Char]

 

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Print type information
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Type Classes

 Prelude> :t 42

 42 :: (Num t) => t

 Prelude> :t 42.0

 42.0 :: (Fractional t) => t

 Prelude> :t gcd 15 20

 gcd 15 20 :: (Integral t) => t

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

42 can be used as any numeric type

42.0 can be any fractional type

gcd 15 20can be any integral type

the type t is constrained by 
the context (Num t),  
(Fractional t), (Integral t)

the types of t must belong to 
the Num / Factional / Integra 
type class

class constraint
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Instances

 

    Int   an integer with at least 30 bits of precision.

    Integer  an integer with unlimited precision.

    Float  a single precision floating point number.

    Double a double precision floating point number.

    Rational a fraction type, with no rounding error. 

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Integral instances

Fractional instances

Num instances
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Type Class

a type class definition:

specifying 
  a set of 
      functions or 
      constants, 
  together with their respective types, 

  that must be implemented 
  for every type that is belonged to the type class

https://en.wikipedia.org/wiki/Type_class

Like the Interface in Java
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Type Class Definition

the type class Eq is intended to contain types 
that have implementations of equality (==), (/=) functions

class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool

a type a belongs to the type class Eq 
if  (==) and (/=) functions are defined

https://en.wikipedia.org/wiki/Type_class

a type a has an instance of the 
class Eq if there is an (overloaded) 
operation == and /= defined.
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Instance of a Class

class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool

https://en.wikipedia.org/wiki/Type_class

type class Eq

 type a

a type a can be an instance of the 
class Eq if there is an (overloaded) 
operation == and /= defined.

The type Integer is an instance of the 
class Eq, whose method == is defined 

The type Float is an instance of the 
class Eq, whose method == is defined 
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Instance Declaration

instance Eq Integer where 

  x == y =  x `integerEq` y

instance Eq Float where

  x == y =  x `floatEq` y

https://en.wikipedia.org/wiki/Type_class

class Eq a where
  (==) :: a -> a -> Bool Eq a

type class  type 

Eq Integer
Eq Float

type class  instance 



Haskell Overview III 12 Young Won Lim
9/27/16

Default Method

class  Eq a  where
  (==), (/=) ::  a -> a -> Bool
  x /= y     =   not (x == y)

https://en.wikipedia.org/wiki/Type_class

If a method is not defined
in an instance declaration, 
then the default implementation 
defined in the class declaration, 
if it exists, is used instead.

overloaded method definition

The default definition can be 
overloaded in an instance 
declaration
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Class Constraint

https://en.wikipedia.org/wiki/Type_class

elem :: a -> [a] -> Bool the function elem has 
the type a -> [a] -> Bool 

elem :: (Eq a) => a -> [a] -> Bool the type a is constrained 
by the context (Eq a) 

the types of a must belong 
to the Eq type class

 => : called as a 'class constraint'



Haskell Overview III 14 Young Won Lim
9/27/16

Class Constraint Example 

elem function definition which determines if an element is in a list

elem :: (Eq a) => a -> [a] -> Bool
elem y [] = False
elem y (x:xs) = (x == y) || elem y xs

https://en.wikipedia.org/wiki/Type_class



Haskell Overview III 15 Young Won Lim
9/27/16

as

https://wiki.haskell.org/Keywords#as

Renaming module imports. 
Like qualified and hiding, as is not a reserved word but may 
be used as function or variable name. 

import qualified Data.Map as M

main = print (M.empty :: M.Map Int ())
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Enumerated Data Types

data Bool = True   |  False

data Color       = Red | Green | Blue

https://www.haskell.org/tutorial/goodies.html

Type Constructor Data Constructor
The type being defined here 
is Bool, and it has exactly 
two values: True and False. 

True :: Bool 
False:: Bool 

var1 :: Bool 
var1 = True

var2 :: Bool 
var2 = False

Red   :: Color
Green :: Color
Blue  :: Color

var3 :: Color
var3 = Red

var4 :: Color
var4 = Green

var5 :: Color
var5 = Blue
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Type Names and Constructor Functions

data Bool = True   |  False

https://www.haskell.org/tutorial/goodies.html

Type Constructor

Type name : Bool
The name of new data type

Usually it appears in the linea 
concerning type information 
( :: )  

Data Constructor

Constructor function
: True, False

Usually it appears in the lines 
concerning application ( = ) 

A nullary constructor:
takes no arguments

A multi-constructor
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Parameterized Data Type Definition

data Point  a = Pt  a   a

https://www.haskell.org/tutorial/goodies.html

A single constructorA unary constructor
(one argument a)

Pt :: a -> a -> Point a 

Pt  2.0  3.0 :: Point Float
Pt  'a'  'b'           :: Point Char
Pt True False   :: Point Bool

Type Constructor Data Constructor

v1 :: Point Float
v1 = Pt  2.0  3.0

v2 :: Point Char
v2 = Pt  ‘a’  ‘b’

v3  :: Point Bool
v3 = Pt True False 



Haskell Overview III 19 Young Won Lim
9/27/16

Solving a list of quadratic equations

roots :: (Float, Float, Float) -> (Float, Float)
roots (a,b,c)  = if d < 0 then error "sorry" else (x1, x2)

where x1 = e + sqrt d / (2 * a)
x2 = e - sqrt d / (2 * a)
d = b * b - 4 * a * c
e = - b / (2 * a)

real :: (Float, Float, Float) -> Bool
real (a,b,c) = (b*b - 4*a*c) >= 0

p1 = (1.0,2.0,1.0) :: (Float, Float, Float)
p2 = (1.0,1.0,1.0) :: (Float, Float, Float)
ps = [p1,p2]
newPs = filter real ps
rootsOfPs = map roots newPs
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User defined type example (1) 

data Polynom = Poly Float Float Float

data the keyword

Polynom the name of the data type 

Poly the constructor function (:t Poly)

Float the three arguments to the Poly constructor 

Poly :: Float -> Float ->  Float ->  Polynom
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User defined type example (2) 

data Polynom = Poly Float Float Float

roots’ :: Float Float Float -> (Float, Float)

roots’ a b c          =  … function definition … 

roots2  :: Polynom -> (Float, Float)

roots2  (Poly a b c) =  … function definition … 

p1, p2   :: Polynom 

p1 = Poly 1.0, 2.0, 3.0

p2 = Poly 1.0, 3.0, (-5.0)

(Poly a b c) pattern matching
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Recursive Data Type Example (1)

data Bus = Start | Next (Bus) deriving Show

myBus A = Start

myBusB = Next (Next (Next (Start)))

myBusC = Next myBusB

plus :: Bus -> Bus ->  Bus

plus a Start = a

plus a (Next b) = Next (plus a b)

testBus :: Bus

testBus = plus myBusC myBusB

(Next b) pattern matching
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Recursive Data Type Example (2)

howFar :: Bus -> Int

howFar Start = 0

howFar (Next r) = 1 + howFar r

testInt :: Int

testInt = (+) (howFar myBusC) (howFar myBusB)

(Next r) pattern matching
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Recursive Definition of Lists 

data [a] = [ ]  |   a : [a]  

List = [ ]  |  (a : List) 

https://www.haskell.org/tutorial/goodies.html

an empty 
list

a list with at least 
one element

[ ] (x:xs)

Any type is ok but 
The type of every element in 
the list must be the same 
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Parameterized Data Types

data List a  = L a (List a) |   Empty

L1, L2, L3 :: List Integer

L1 = Empty

L2 = L 1 L1

L3 = L 5 L2 

L4 = L 1.5 Empty :: List Double 

Parameter  

Constructor a (a)

Head :      Tail :
element    list  

Data Constructor with two parameters  
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Polymorphic Type 

types that are universally quantified in some way over all types

essentially describe families of types

(forall a) [a] is the family of types consisting of, 

for every type a, the type of lists of a. 

● lists of integers (e.g. [1,2,3])

● lists of characters (['a','b','c'])

● lists of lists of integers, etc.

● [2,'b'] is not a valid example

https://www.haskell.org/tutorial/goodies.html
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Show Class

Class Show

the instances of Show are those types 
that can be converted to character strings.
(information about the class) 

The function show 

show :: (Show a) => a -> String

https://www.haskell.org/tutorial/goodies.html

Similar to the toString() method in Java
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Recursive Definition of Tree 

data  Tree a            =  Leaf a | Branch (Tree a) (Tree a)  

Constructor Definitions 

Branch  :: Tree a -> Tree a -> Tree a

Leaf      :: a -> Tree a

https://www.haskell.org/tutorial/goodies.html
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Eq Instance of Tree Type 

Eq Instance

instance  (Eq a) => Eq (Tree a)  where
    (Leaf x)     == (Leaf y)        =  x == y
    (Branch l r) == (Branch l' r') =  l == l' && r == r'
    _            == _               =  False

https://www.haskell.org/tutorial/stdclasses.html

instance Eq Integer where 

  x == y =  x `integerEq` y

instance Eq Float where

  x == y =  x `floatEq` y

The type Integer is an instance of the 
class Eq, whose method == is defined 

The type Float is an instance of the 
class Eq, whose method == is defined 
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Derived Instances

instance  (Eq a) => Eq (Tree a)  where
    (Leaf x)     == (Leaf y)        =  x == y
    (Branch l r) == (Branch l' r') =  l == l' && r == r'
    _            == _               =  False

Automatically Derived Eq Instance

data  Tree a            =  Leaf a | Branch (Tree a) (Tree a)  deriving Eq

https://www.haskell.org/tutorial/stdclasses.html

Eq a Eq (Tree a)
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Derived Instances

instance  (Eq a) => Eq (Tree a)  where
    (Leaf x)     == (Leaf y)        =  x == y
    (Branch l r) == (Branch l' r') =  l == l' && r == r'
    _            == _               =  False

instance  (Ord a) => Ord (Tree a)  where
    (Leaf _)     <= (Branch _)   =  True
    (Leaf x)     <= (Leaf y)        =  x <= y
    (Branch _) <= (Leaf _)        =  False
    (Branch l r) <= (Branch l' r')  =  l == l' && r <= r' || l <= l'

data  Tree a            =  Leaf a | Branch (Tree a) (Tree a)  deriving (Eq, Ord)

data [a]        = [] | a : [a] deriving (Eq, Ord)    
https://www.haskell.org/tutorial/stdclasses.html
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Deriving 

data T0 f a = MkT0 a        deriving ( Eq )
data T1 f a = MkT1 (f a)   deriving ( Eq )
data T2 f a = MkT2 (f (f a))deriving ( Eq )

instance Eq a         => Eq (T0 f a) where ...
instance Eq (f a)     => Eq (T1 f a) where ...
instance Eq (f (f a)) => Eq (T2 f a) where ...

https://www.haskell.org/tutorial/goodies.html

Similar to the toString() method in Java
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Subset Polymorphism

roots :: (Floating a) => (a, a, a) -> (a, a)

https://www.haskell.org/tutorial/goodies.html
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Parameterized Polymorphism

plus :: a -> a -> a, 

plus :: Int -> Int -> Int,

plus :: Rat -> Rat -> Rat, 

data List a = L a (List a) | Empty

listlen :: List a -> Int  

listlen Empty = 0  

listlen (L _ list) = 1 + listlen list 

https://www.haskell.org/tutorial/goodies.html

(L _ list) pattern matching
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type class Eq

 type a

Multi-parameter Type Class Definition

https://wiki.haskell.org/Multi-parameter_type_class

class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool

class Monad m => VarMonad m v where
  new ::   a -> m (v a)
  get :: v a -> m a
  put :: v a -> a -> m ( )

SPTC: a type class is a 
set of types

MPTC: a type class is a 
relation between types
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Multi-parameter Type Class Definition

https://wiki.haskell.org/Multi-parameter_type_class

class Monad m => VarMonad m v where
  new ::   a -> m (v a)
  get :: v a -> m a
  put :: v a -> a -> m ( )

instance VarMonad IO    IORef      where ...
instance VarMonad (ST s) (STRef s)  where …

 {-# LANGUAGE MultiParamTypeClasses #-} pragma
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A Simple Database

type ID = Int
type Attrib = (String, String)

class Objects o where
object :: ID -> [Attrib] -> o
getID :: o -> ID
getAttr :: o -> [Attrib]
getName :: o -> String
getName = snd . head . filter ((“name”==) . fst) . getAttr
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A Simple Database

class (Object o) => Databases d o where
empty :: d o
getLastID :: d o -> ID
getObjects :: d o -> [o]
setLastID :: ID -> d o -> d o
setObjects :: [o] -> d o -> d o

insert :: [Attrib] -> d o -> d o
insert as db = setLastID i’ db’ where

db’ = setObjects os’ db
os’ = o : os
os = getObjects db
o = object i’ as
i’ = 1 + getLastID db

select :: ID ->  d o -> o
select i = head . filter ((i==).getID) . GetObjects

selectBy :: (o -> Bool) -> d o ->  [o]
selectBy f = filter f . getObjects
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A Simple Database

data Object = Obj ID [Attrib] deriving Show

instance Objects Object
object i as = Obj i as
getID (Obj i as) = i
getAtts (Obj i as) = as

data DBS o = DB ID [o] deriving Show

instance Databases DBS Object where
Empty = DB 0 []
getLastID (DB i os) = i
setLastID I (DB j os) = DB i os
getObjects (DB i os) = os
setObjects os (DB i ps) = DB i os
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A Simple Database

d0, d1, d2 :: DBS Object
d0 = empty
d1 = insert [(“name”, “john”), (“age”, “30”)] d0
d2 = insert [(“name”, “mary”), (“age”, “20”)] d1

test1 :: Object
test1 = select 1 d1
test2 :: Object
test2 = selectBy ((“john” ==).getName) d2
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