
Young Won Lim
9/27/16

Haskell Overview III (3A)

Young Won Lim
9/27/16

 Copyright (c) 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Haskell Overview III 3 Young Won Lim
9/27/16

Based on

Haskell Tutorial, Medak & Navratil
ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

Yet Another Haskell Tutorial, Daume
https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

Haskell Overview III 4 Young Won Lim
9/27/16

Type Inference

 Prelude> 7 :: Int

 7

 Prelude> 7 :: Double

 7.0

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

usually don't have to declare types

(type inference)

to declare types, use :: to do it.

Haskell Overview III 5 Young Won Lim
9/27/16

Type Information

 Prelude> :t False

 False :: Bool

 Prelude> :t 'A'

 'A' :: Char

 Prelude> :t "Hello, world"

 "Hello, world" :: [Char]

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Print type information

Haskell Overview III 6 Young Won Lim
9/27/16

Type Classes

 Prelude> :t 42

 42 :: (Num t) => t

 Prelude> :t 42.0

 42.0 :: (Fractional t) => t

 Prelude> :t gcd 15 20

 gcd 15 20 :: (Integral t) => t

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

42 can be used as any numeric type

42.0 can be any fractional type

gcd 15 20can be any integral type

the type t is constrained by
the context (Num t),
(Fractional t), (Integral t)

the types of t must belong to
the Num / Factional / Integra
type class

class constraint

Haskell Overview III 7 Young Won Lim
9/27/16

Instances

 Int an integer with at least 30 bits of precision.

 Integer an integer with unlimited precision.

 Float a single precision floating point number.

 Double a double precision floating point number.

 Rational a fraction type, with no rounding error.

https://wiki.haskell.org/Learn_Haskell_in_10_minutes

Integral instances

Fractional instances

Num instances

Haskell Overview III 8 Young Won Lim
9/27/16

Type Class

a type class definition:

specifying
 a set of
 functions or
 constants,
 together with their respective types,

 that must be implemented
 for every type that is belonged to the type class

https://en.wikipedia.org/wiki/Type_class

Like the Interface in Java

Haskell Overview III 9 Young Won Lim
9/27/16

Type Class Definition

the type class Eq is intended to contain types
that have implementations of equality (==), (/=) functions

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

a type a belongs to the type class Eq
if (==) and (/=) functions are defined

https://en.wikipedia.org/wiki/Type_class

a type a has an instance of the
class Eq if there is an (overloaded)
operation == and /= defined.

Haskell Overview III 10 Young Won Lim
9/27/16

Instance of a Class

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

https://en.wikipedia.org/wiki/Type_class

type class Eq

 type a

a type a can be an instance of the
class Eq if there is an (overloaded)
operation == and /= defined.

The type Integer is an instance of the
class Eq, whose method == is defined

The type Float is an instance of the
class Eq, whose method == is defined

Haskell Overview III 11 Young Won Lim
9/27/16

Instance Declaration

instance Eq Integer where

 x == y = x `integerEq` y

instance Eq Float where

 x == y = x `floatEq` y

https://en.wikipedia.org/wiki/Type_class

class Eq a where
 (==) :: a -> a -> Bool Eq a

type class type

Eq Integer
Eq Float

type class instance

Haskell Overview III 12 Young Won Lim
9/27/16

Default Method

class Eq a where
 (==), (/=) :: a -> a -> Bool
 x /= y = not (x == y)

https://en.wikipedia.org/wiki/Type_class

If a method is not defined
in an instance declaration,
then the default implementation
defined in the class declaration,
if it exists, is used instead.

overloaded method definition

The default definition can be
overloaded in an instance
declaration

Haskell Overview III 13 Young Won Lim
9/27/16

Class Constraint

https://en.wikipedia.org/wiki/Type_class

elem :: a -> [a] -> Bool the function elem has
the type a -> [a] -> Bool

elem :: (Eq a) => a -> [a] -> Bool the type a is constrained
by the context (Eq a)

the types of a must belong
to the Eq type class

 => : called as a 'class constraint'

Haskell Overview III 14 Young Won Lim
9/27/16

Class Constraint Example

elem function definition which determines if an element is in a list

elem :: (Eq a) => a -> [a] -> Bool
elem y [] = False
elem y (x:xs) = (x == y) || elem y xs

https://en.wikipedia.org/wiki/Type_class

Haskell Overview III 15 Young Won Lim
9/27/16

as

https://wiki.haskell.org/Keywords#as

Renaming module imports.
Like qualified and hiding, as is not a reserved word but may
be used as function or variable name.

import qualified Data.Map as M

main = print (M.empty :: M.Map Int ())

Haskell Overview III 16 Young Won Lim
9/27/16

Enumerated Data Types

data Bool = True | False

data Color = Red | Green | Blue

https://www.haskell.org/tutorial/goodies.html

Type Constructor Data Constructor
The type being defined here
is Bool, and it has exactly
two values: True and False.

True :: Bool
False:: Bool

var1 :: Bool
var1 = True

var2 :: Bool
var2 = False

Red :: Color
Green :: Color
Blue :: Color

var3 :: Color
var3 = Red

var4 :: Color
var4 = Green

var5 :: Color
var5 = Blue

Haskell Overview III 17 Young Won Lim
9/27/16

Type Names and Constructor Functions

data Bool = True | False

https://www.haskell.org/tutorial/goodies.html

Type Constructor

Type name : Bool
The name of new data type

Usually it appears in the linea
concerning type information
(::)

Data Constructor

Constructor function
: True, False

Usually it appears in the lines
concerning application (=)

A nullary constructor:
takes no arguments

A multi-constructor

Haskell Overview III 18 Young Won Lim
9/27/16

Parameterized Data Type Definition

data Point a = Pt a a

https://www.haskell.org/tutorial/goodies.html

A single constructorA unary constructor
(one argument a)

Pt :: a -> a -> Point a

Pt 2.0 3.0 :: Point Float
Pt 'a' 'b' :: Point Char
Pt True False :: Point Bool

Type Constructor Data Constructor

v1 :: Point Float
v1 = Pt 2.0 3.0

v2 :: Point Char
v2 = Pt ‘a’ ‘b’

v3 :: Point Bool
v3 = Pt True False

Haskell Overview III 19 Young Won Lim
9/27/16

Solving a list of quadratic equations

roots :: (Float, Float, Float) -> (Float, Float)
roots (a,b,c) = if d < 0 then error "sorry" else (x1, x2)

where x1 = e + sqrt d / (2 * a)
x2 = e - sqrt d / (2 * a)
d = b * b - 4 * a * c
e = - b / (2 * a)

real :: (Float, Float, Float) -> Bool
real (a,b,c) = (b*b - 4*a*c) >= 0

p1 = (1.0,2.0,1.0) :: (Float, Float, Float)
p2 = (1.0,1.0,1.0) :: (Float, Float, Float)
ps = [p1,p2]
newPs = filter real ps
rootsOfPs = map roots newPs

Haskell Overview III 20 Young Won Lim
9/27/16

User defined type example (1)

data Polynom = Poly Float Float Float

data the keyword

Polynom the name of the data type

Poly the constructor function (:t Poly)

Float the three arguments to the Poly constructor

Poly :: Float -> Float -> Float -> Polynom

Haskell Overview III 21 Young Won Lim
9/27/16

User defined type example (2)

data Polynom = Poly Float Float Float

roots’ :: Float Float Float -> (Float, Float)

roots’ a b c = … function definition …

roots2 :: Polynom -> (Float, Float)

roots2 (Poly a b c) = … function definition …

p1, p2 :: Polynom

p1 = Poly 1.0, 2.0, 3.0

p2 = Poly 1.0, 3.0, (-5.0)

(Poly a b c) pattern matching

Haskell Overview III 22 Young Won Lim
9/27/16

Recursive Data Type Example (1)

data Bus = Start | Next (Bus) deriving Show

myBus A = Start

myBusB = Next (Next (Next (Start)))

myBusC = Next myBusB

plus :: Bus -> Bus -> Bus

plus a Start = a

plus a (Next b) = Next (plus a b)

testBus :: Bus

testBus = plus myBusC myBusB

(Next b) pattern matching

Haskell Overview III 23 Young Won Lim
9/27/16

Recursive Data Type Example (2)

howFar :: Bus -> Int

howFar Start = 0

howFar (Next r) = 1 + howFar r

testInt :: Int

testInt = (+) (howFar myBusC) (howFar myBusB)

(Next r) pattern matching

Haskell Overview III 24 Young Won Lim
9/27/16

Recursive Definition of Lists

data [a] = [] | a : [a]

List = [] | (a : List)

https://www.haskell.org/tutorial/goodies.html

an empty
list

a list with at least
one element

[] (x:xs)

Any type is ok but
The type of every element in
the list must be the same

Haskell Overview III 25 Young Won Lim
9/27/16

Parameterized Data Types

data List a = L a (List a) | Empty

L1, L2, L3 :: List Integer

L1 = Empty

L2 = L 1 L1

L3 = L 5 L2

L4 = L 1.5 Empty :: List Double

Parameter

Constructor a (a)

Head : Tail :
element list

Data Constructor with two parameters

Haskell Overview III 26 Young Won Lim
9/27/16

Polymorphic Type

types that are universally quantified in some way over all types

essentially describe families of types

(forall a) [a] is the family of types consisting of,

for every type a, the type of lists of a.

● lists of integers (e.g. [1,2,3])

● lists of characters (['a','b','c'])

● lists of lists of integers, etc.

● [2,'b'] is not a valid example

https://www.haskell.org/tutorial/goodies.html

Haskell Overview III 27 Young Won Lim
9/27/16

Show Class

Class Show

the instances of Show are those types
that can be converted to character strings.
(information about the class)

The function show

show :: (Show a) => a -> String

https://www.haskell.org/tutorial/goodies.html

Similar to the toString() method in Java

Haskell Overview III 28 Young Won Lim
9/27/16

Recursive Definition of Tree

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Constructor Definitions

Branch :: Tree a -> Tree a -> Tree a

Leaf :: a -> Tree a

https://www.haskell.org/tutorial/goodies.html

Haskell Overview III 29 Young Won Lim
9/27/16

Eq Instance of Tree Type

Eq Instance

instance (Eq a) => Eq (Tree a) where
 (Leaf x) == (Leaf y) = x == y
 (Branch l r) == (Branch l' r') = l == l' && r == r'
 _ == _ = False

https://www.haskell.org/tutorial/stdclasses.html

instance Eq Integer where

 x == y = x `integerEq` y

instance Eq Float where

 x == y = x `floatEq` y

The type Integer is an instance of the
class Eq, whose method == is defined

The type Float is an instance of the
class Eq, whose method == is defined

Haskell Overview III 30 Young Won Lim
9/27/16

Derived Instances

instance (Eq a) => Eq (Tree a) where
 (Leaf x) == (Leaf y) = x == y
 (Branch l r) == (Branch l' r') = l == l' && r == r'
 _ == _ = False

Automatically Derived Eq Instance

data Tree a = Leaf a | Branch (Tree a) (Tree a) deriving Eq

https://www.haskell.org/tutorial/stdclasses.html

Eq a Eq (Tree a)

Haskell Overview III 31 Young Won Lim
9/27/16

Derived Instances

instance (Eq a) => Eq (Tree a) where
 (Leaf x) == (Leaf y) = x == y
 (Branch l r) == (Branch l' r') = l == l' && r == r'
 _ == _ = False

instance (Ord a) => Ord (Tree a) where
 (Leaf _) <= (Branch _) = True
 (Leaf x) <= (Leaf y) = x <= y
 (Branch _) <= (Leaf _) = False
 (Branch l r) <= (Branch l' r') = l == l' && r <= r' || l <= l'

data Tree a = Leaf a | Branch (Tree a) (Tree a) deriving (Eq, Ord)

data [a] = [] | a : [a] deriving (Eq, Ord)
https://www.haskell.org/tutorial/stdclasses.html

Haskell Overview III 32 Young Won Lim
9/27/16

Deriving

data T0 f a = MkT0 a deriving (Eq)
data T1 f a = MkT1 (f a) deriving (Eq)
data T2 f a = MkT2 (f (f a))deriving (Eq)

instance Eq a => Eq (T0 f a) where ...
instance Eq (f a) => Eq (T1 f a) where ...
instance Eq (f (f a)) => Eq (T2 f a) where ...

https://www.haskell.org/tutorial/goodies.html

Similar to the toString() method in Java

Haskell Overview III 33 Young Won Lim
9/27/16

Subset Polymorphism

roots :: (Floating a) => (a, a, a) -> (a, a)

https://www.haskell.org/tutorial/goodies.html

Haskell Overview III 34 Young Won Lim
9/27/16

Parameterized Polymorphism

plus :: a -> a -> a,

plus :: Int -> Int -> Int,

plus :: Rat -> Rat -> Rat,

data List a = L a (List a) | Empty

listlen :: List a -> Int

listlen Empty = 0

listlen (L _ list) = 1 + listlen list

https://www.haskell.org/tutorial/goodies.html

(L _ list) pattern matching

Haskell Overview III 35 Young Won Lim
9/27/16

type class Eq

 type a

Multi-parameter Type Class Definition

https://wiki.haskell.org/Multi-parameter_type_class

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

class Monad m => VarMonad m v where
 new :: a -> m (v a)
 get :: v a -> m a
 put :: v a -> a -> m ()

SPTC: a type class is a
set of types

MPTC: a type class is a
relation between types

Haskell Overview III 36 Young Won Lim
9/27/16

Multi-parameter Type Class Definition

https://wiki.haskell.org/Multi-parameter_type_class

class Monad m => VarMonad m v where
 new :: a -> m (v a)
 get :: v a -> m a
 put :: v a -> a -> m ()

instance VarMonad IO IORef where ...
instance VarMonad (ST s) (STRef s) where …

 {-# LANGUAGE MultiParamTypeClasses #-} pragma

Haskell Overview III 37 Young Won Lim
9/27/16

A Simple Database

type ID = Int
type Attrib = (String, String)

class Objects o where
object :: ID -> [Attrib] -> o
getID :: o -> ID
getAttr :: o -> [Attrib]
getName :: o -> String
getName = snd . head . filter ((“name”==) . fst) . getAttr

Haskell Overview III 38 Young Won Lim
9/27/16

A Simple Database

class (Object o) => Databases d o where
empty :: d o
getLastID :: d o -> ID
getObjects :: d o -> [o]
setLastID :: ID -> d o -> d o
setObjects :: [o] -> d o -> d o

insert :: [Attrib] -> d o -> d o
insert as db = setLastID i’ db’ where

db’ = setObjects os’ db
os’ = o : os
os = getObjects db
o = object i’ as
i’ = 1 + getLastID db

select :: ID -> d o -> o
select i = head . filter ((i==).getID) . GetObjects

selectBy :: (o -> Bool) -> d o -> [o]
selectBy f = filter f . getObjects

Haskell Overview III 39 Young Won Lim
9/27/16

A Simple Database

data Object = Obj ID [Attrib] deriving Show

instance Objects Object
object i as = Obj i as
getID (Obj i as) = i
getAtts (Obj i as) = as

data DBS o = DB ID [o] deriving Show

instance Databases DBS Object where
Empty = DB 0 []
getLastID (DB i os) = i
setLastID I (DB j os) = DB i os
getObjects (DB i os) = os
setObjects os (DB i ps) = DB i os

Haskell Overview III 40 Young Won Lim
9/27/16

A Simple Database

d0, d1, d2 :: DBS Object
d0 = empty
d1 = insert [(“name”, “john”), (“age”, “30”)] d0
d2 = insert [(“name”, “mary”), (“age”, “20”)] d1

test1 :: Object
test1 = select 1 d1
test2 :: Object
test2 = selectBy ((“john” ==).getName) d2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

