consider a counter example to the statement that we only need a collection of subsets of Ω to form a sigma-field:

$$\Omega = \{1, 2, 3\}$$

 $\Omega = \{1, 2, 3\}$

$$\mathcal{F} := \{\emptyset, 1, 2, \Omega\}$$

 $\mathcal{F} := \{ \neq 1, 2, \emptyset \}$

$$\{1\} \cup \{2\} = \{1, 2\} \notin \mathcal{F}$$

 $\{1\} \subset \{2\} = \{1, 2\} \setminus F$

Clearly, \mathcal{F} cannot be a sigma-field.

The point here is that you cannot take any arbitrary collection of subsets of Ω to form a sigma-field, but you need to take a collection of subsets of Ω that satisfies 3 conditions for the set $\mathcal F$ to be a sigma-field: For these 3 conditions, see Xiu 2010 p.10, definition of sigma-field.

If you take ALL possible subsets of Ω , then you have a sigma-field, which is the largest sigma-field possible.

a-field is $\mathcal{F} \coloneqq \{\emptyset\}$		\mathcal F := \{ \emptyset , \Omega \	





