
Young Won Lim
3/8/18

Applicatives Methods (3B)

Young Won Lim
3/8/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Applicatives
Methods (3B) 3 Young Won Lim

3/8/18

The definition of Applicative

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

The class has a two methods :

pure brings arbitrary values into the functor

(<*>) takes a function wrapped in a functor f

and a value wrapped in a functor f

and returns the result of the application

which is also wrapped in a functor f

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Methods (3B) 4 Young Won Lim

3/8/18

The Maybe instance of Applicative

instance Applicative Maybe where

 pure = Just

 (Just f) <*> (Just x) = Just (f x)

 _ <*> _ = Nothing

pure wraps the value with Just;

(<*>) applies

 the function wrapped in Just

to the value wrapped in Just if both exist,

and results in Nothing otherwise.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Methods (3B) 5 Young Won Lim

3/8/18

An Instance of the Applicative Typeclass

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

f : Functor, Applicative

instance Applicative Maybe where

 pure = Just

 Nothing <*> _ = Nothing

 (Just f) <*> something = fmap f something

f : function in a context

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

f a

f a f b

a

ba

f aa

f g

pure

pure

(<*>)

g

pure

pure pure

(Functor f) => Applicative f

(Functor f) => Applicative f

Applicatives
Methods (3B) 6 Young Won Lim

3/8/18

fmap g x = (pure g) <*> x

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

ga b

fmapf a f b

(pure g) <*> x fmap g x

x (<*>)fmapx y

g pure g

y

f b

b

f g

pure

(<*>)

g

pure pure

f a

a

pure = f

Applicatives
Methods (3B) 7 Young Won Lim

3/8/18

Left Associative <*>

ghci> pure (+) <*> Just 3 <*> Just 5

Just 8

ghci> pure (+) <*> Just 3 <*> Nothing

Nothing

ghci> pure (+) <*> Nothing <*> Just 5

Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 pure (+) <*> Just 3 <*> Just 5

 pure (+3) <*> Just 5

 Just 8

Applicatives
Methods (3B) 8 Young Won Lim

3/8/18

Infix Operator <$>

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 pure f <*> x <*> y <*> z

 fmap f x <*> y <*> z

 f <$> x <*> y <*> z

fmap g x

fmapx y

g

g <$> x

<$>x y

g

Infix operator

Applicatives
Methods (3B) 9 Young Won Lim

3/8/18

Infix Operator <$> : not a class method

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(<$>) :: (Functor f) => (a -> b) -> f a -> f b

f <$> x = fmap f x

class (Functor f) => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

instance Applicative Maybe where

 pure = Just

 Nothing <*> _ = Nothing

 (Just f) <*> something = fmap f something

not a class method

fmap g x

fmapx y

g

g <$> x

<$>x y

g

Applicatives
Methods (3B) 10 Young Won Lim

3/8/18

The Applicative Typeclass

Applicative is a superclass of Monad.

every Monad is also a Functor and an Applicative

fmap, pure, (<*>) can all be used with monads.

a Monad instance also requires

Functor and Applicative instances.

the types and roles of return and (>>)

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Methods (3B) 11 Young Won Lim

3/8/18

(*> v.s. >>) and (pure v.s. return)

(*>) :: Applicative f => f a -> f b -> f b

(>>) :: Monad m => m a -> m b -> m b

pure :: Applicative f => a -> f a

return :: Monad m => a -> m a

the constraint changes from Applicative to Monad.

(*>) in Applicative (>>) in Monad

pure in Applicative return in Monad

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Methods (3B) 12 Young Won Lim

3/8/18

The Applicative Laws

The identity law: pure id <*> v = v

Homomorphism: pure f <*> pure x = pure (f x)

Interchange: u <*> pure y = pure ($ y) <*> u

Composition: u <*> (v <*> w) = pure (.) <*> u <*> v <*> w

Applicatives
Methods (3B) 13 Young Won Lim

3/8/18

The Identity Law

The identity law pure id <*> v = v

pure to inject values into the functor

in a default, featureless way,

so that the result is as close as possible to the plain value.

applying the pure id morphism does nothing,

exactly like with the plain id function.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Methods (3B) 14 Young Won Lim

3/8/18

The Homomorphism Law

The homomorphism law pure f <*> pure x = pure (f x)

applying a "pure" function to a "pure" value is the same as

applying the function to the value in the normal way

and then using pure on the result.

means pure preserves function application.

applying a non-effectful function f

to a non-effectful argument x in an effectful context pure

is the same as just applying the function f to the argument x

and then injecting the result (f x) into the context with pure.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Methods (3B) 15 Young Won Lim

3/8/18

The Interchange Law

The interchange law u <*> pure y = pure ($ y) <*> u

applying a morphism u to a "pure" value pure y

is the same as applying pure ($ y) to the morphism u

($ y) is the function that supplies y as argument to another function

– the higher order functions

when evaluating the application of

an effectful function u to a pure argument pure y,

the order in which we evaluate

the function u and its argument pure y doesn't matter.

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Applicatives
Methods (3B) 16 Young Won Lim

3/8/18

The Composition Law

The composition law pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

pure (.) composes morphisms similarly

to how (.) composes functions:

pure (.) <*> pure f <*> pure g <*> pure x

= pure f <*> (pure g <*> pure x)

applying the composed morphism pure (.) <*> u <*> v to w

gives the same result as applying u u

to the result of applying v to w (v <*> w)

it is expressing a sort of associativity property of (<*>).

https://en.wikibooks.org/wiki/Haskell/Applicative_functors

(f . g) x = f (g x)

u = pure f
v = pure g
w = pure x

Applicatives
Methods (3B) 17 Young Won Lim

3/8/18

<$> related operators

Functor map <$>

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<$) :: Functor f => a -> f b -> f a

($>) :: Functor f => f a -> b -> f b

The <$> operator is just a synonym

for the fmap function from the Functor typeclass.

This function generalizes the map function for lists

to many other data types, such as Maybe, IO, and Map.

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 18 Young Won Lim

3/8/18

<$> exammples

#!/usr/bin/env stack

-- stack --resolver ghc-7.10.3 runghc

import Data.Monoid ((<>))

main :: IO ()

main = do

 putStrLn "Enter your year of birth"

 year <- read <$> getLine

 let age :: Int

 age = 2020 - year

 putStrLn $ "Age in 2020: " <> show age

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 19 Young Won Lim

3/8/18

<$, $> operators

In addition, there are two additional operators provided

which replace a value inside a Functor

instead of applying a function.

This can be both more convenient in some cases,

as well as for some Functors be more efficient.

value <$ functor = const value <$> functor

functor $> value = const value <$> functor

x <$ y = y $> x

x $> y = y <$ x

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 20 Young Won Lim

3/8/18

<*> related operators

Applicative function application <*>

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(*>) :: Applicative f => f a -> f b -> f b

(<*) :: Applicative f => f a -> f b -> f a

Commonly seen with <$>, <*> is an operator

that applies a wrapped function to a wrapped value.

It is part of the Applicative typeclass,

and is very often seen in code like the following:

foo <$> bar <*> baz

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 21 Young Won Lim

3/8/18

<*> examples

For cases when you're dealing with a Monad, this is equivalent to:

do x <- bar

 y <- baz

 return (foo x y)

Other common examples including parsers and serialization libraries.

Here's an example you might see using the aeson package:

data Person = Person { name :: Text, age :: Int } deriving Show

-- We expect a JSON object, so we fail at any non-Object value.

instance FromJSON Person where

 parseJSON (Object v) = Person <$> v .: "name" <*> v .: "age"

 parseJSON _ = empty

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 22 Young Won Lim

3/8/18

*> operator

To go along with this, we have two helper operators that are less frequently used:

 *> ignores the value from the first argument. It can be defined as:

 a1 *> a2 = (id <$ a1) <*> a2

 Or in do-notation:

 a1 *> a2 = do

 _ <- a1

 a2

 For Monads, this is completely equivalent to >>.

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 23 Young Won Lim

3/8/18

<* operator

<* is the same thing in reverse: perform the first action then the second,

but only take the value from the first action.

Again, definitions in terms of <*> and do-notation:

(<*) = liftA2 const

a1 <* a2 = do

 res <- a1

 _ <- a2

 return res

https://haskell-lang.org/tutorial/operators

Applicatives
Methods (3B) 24 Young Won Lim

3/8/18

liftA2

liftA2 :: (a -> b -> c) -> f a -> f b -> f c

Lift a binary function to actions.

Some functors support an implementation of liftA2

that is more efficient than the default one.

In particular, if fmap is an expensive operation,

it is likely better to use liftA2

than to fmap over the structure and then use <*>.

http://hackage.haskell.org/package/base-4.10.1.0/docs/Control-Applicative.html#v:liftA2

Applicatives
Methods (3B) 25 Young Won Lim

3/8/18

liftA2

If you have the variables

f :: a -> b -> c

a :: f a

b :: f b

you can combine them in the following ways with the same result of type f c

:

 pure f <*> a <*> b

 liftA2 f a b

But how to cope with let

and sharing in the presence of effects?

https://wiki.haskell.org/Applicative_functor

Applicatives
Methods (3B) 26 Young Won Lim

3/8/18

liftA2

Consider the non-functorial expression:

x :: x

g :: x -> y

h :: y -> y -> z

let y = g x

in h y y

Very simple. Now we like to generalize this to

fx :: f x

fg :: f (x -> y)

fh :: f (y -> y -> z)

https://wiki.haskell.org/Applicative_functor

Applicatives
Methods (3B) 27 Young Won Lim

3/8/18

liftA2

However, we note that

let fy = fg <*> fx

in fh <*> fy <*> fy

runs the effect of fy

twice. E.g. if fy

writes something to the terminal then fh <*> fy <*> fy

writes twice. This could be intended, but how can we achieve, that the effect is run only once and
the result is used twice? Actually, using the liftA

commands we can pull results of applicative functors into a scope where we can talk exclusively
about functor results and not about effects. Note that functor results can also be functions. This
scope is simply a function, which contains the code that we used in the non-functorial setting.

liftA3

 (\x g h -> let y = g x in h y y)

 fx fg fh

The order of effects is entirely determined by the order of arguments to liftA3

.

https://wiki.haskell.org/Applicative_functor

Young Won Lim
3/8/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

