Angle Recoding CORDIC 2. Wu

20180823 Wed

Copyright (c) 2015 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Vector Rotational CORDIC

Conventional cordic Algorithm

MUR - CORDIC Algorithm

AR Technique

EEAS Scheme

Generalized EEAS Scheme

4						
	Vector	Selection of	Elementary	Micro	Angle Quantii	eation
	Rotation Alg	Rotation Segmence	Angle Set	Rotation	Oi	NA
	Convertional CORDIC	M= {-1, +1}	EAS S	complete	μ(i) a(i)	W Fixed
	Angle Recoding	M= {-1,0,+1}	EAS S _I	selective	tan [†] («(i)·2 ^{-s(i)})	N1 Variable
	MVR-cordic	a = {-1,0,+1}	EAS SI	selective	tan ¹ («(i)·2 ^{-s(i)})	2m Fixed
	EEAS	0, de = { +,0, +1}	EEAS \$,	selective	tan ¹ (<pre></pre>	2m Fixed
	Generalized	مريمير ١٠٠٠ ويلام	EEAS SJ	selective	tan (x, (i) · 2 soli)	Zm
	EEAS	= {-1,0,+1}	EEAS SJ d73	1 10 10 10 10	+ \(\lambda_1 (i) \cdot 2^{-5d-1(i)} \)	Fixed

Family of Vector Rotational CORDIC

AQ process — (CORDIC
(Angle Quantization) AR (Angle Recoding)
MUR - CORPIC (Modified Vector Rotation)
EEAS (Extended Elementary Angle Set)
Generalized EEAS
AR process with vanious EAS and
and suitable combinations of subangles
, , , , , , , , , , , , , , , , , , ,
to decompose the tanget rotational angle
into several easy-to-implement subangles
minimizing the angle quantitation error ξ_m
to obtain the best precision performance

Conventional cordic Algorithm

MVR - CORDIC Algorithm

AR Technique

EEAS Scheme

Generalized EEAS Scheme

EEAS covers (MUR-CORDIC
AR

U subset of EAS SI EEAS S2

MUR-CORDIC a subset of AR

one constraint on the iteration number

Angle Quantization

Quantization process on the rotational angle O

de compose the original votational angle of into severales of's

Sum up those subangles to approximate the original angle as cluse as possible

Minimize the angle quantization error $\xi_{m} \triangleq 0 - \sum_{i=0}^{N_{A}-1} o_{i}$

design issues in the AQ process

- need to defermine the sub-angles

 each Oi needs to be easy-to-implement
 - D how to select and combine these sub-angles 5 m such that the angle quantization error 5 m can be minimized

Angle Quantization

the angle quantization error

$$\xi_{\mathsf{m}} \triangleq \varrho - \sum_{i=0}^{N_{\mathsf{A}}-1} \varrho_{i}$$

$$N_A$$
 the number of subangles θ_0 , θ_1 , ..., θ_{N_A-1}

$$0 = 0_0 + 0_1 + \cdots + 0_{N_A-1} + \xi_m$$

data: W-bit word length

the iteration number: N $N \leq W$ the <u>restricted</u> iteration number: $Rm \ll W$

Vector	Rotation	CORDIC	Famil y	
(b) Conve	entional	CORDIC		
(1) AR				
2 MUR	•			
3 EEA	S			

Angle Quantization

decompose O into several subangles Oi's

the angle quantization error

$$\xi_{\mathsf{m}} \triangleq 0 - \sum_{i=0}^{N_{\mathsf{A}}-1} \theta_i$$

$$\theta_0$$
, θ_1 , ..., θ_{u_4-1}

$$0 = 0_0 + 0_1 + \cdots + 0_{N_A-1} + \xi_m$$

data: W-bit word length

the iteration number: N

 $N \leqslant W$

the restricted iteration number: Rm Rm « W

CSD (Canonical Signed Digit) Quantization

digital filter de signs

coefficients are recoded

in terms of SPT (Signed Power of Two) terms

multiplication can be easily realized with Shift-and-add operations

 $f_{12} = (-0.156249)_{10} \Rightarrow (0.07011)_{2}$ W=8, 3 non-zero digits

- O CSD quantization decomposes

 (oefficients into several SPT terms

 (sub-coefficients)
- 2) the multiplication of a coefficient

 can be reformed

 through the combination of

 the non-zero SPT Sub-coefficients

guantite the rotation angle 0

decompose the votation angle 0 into several sub-angles dis

the rotational operation of each Oi Should be easily realized

If each Oi can be realized

Using only shift-and-add operations

the rotation of 0 can be performed through successive applications of Sub-angle rotations

in a cost-effective way

opproximation	(oefficient	Rotation angle
target	hi	9
Basic	Non-zero digit	Sub-angle
Element	2-i	$a(i) = tan^{-1}(2^{-i})$
Basic	shift-and-add	2 shift-and-add
Operation	operation	Operations
Approximation	'	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
Equation	$hi \approx \sum_{j=0}^{N_b-1} g_j \cdot 2^{-d_j}$	$0 \approx \sum_{j=0}^{k_{m-1}} \alpha(j) \cdot \alpha(s(j))$
, and the second	J=0	j=0 0,
	g; ∈ {-1,0,+1}	
	d; 6 { 0, 1,, w-1}	
	7 (- /)	
	No= the number of	Ng= the number of
	Non-zero digits	Sub-angles

try to approach the target rotation angle O Step by Step

decisions are made in each step by choosing the best combination of a(i) a(s(i))

So as to minimize $|\xi_m|$

 $\alpha(i)$, $\alpha(i)$ are determined such that the error function is minimized $J(i) = |\theta(i) - \alpha(i)\alpha(s(i))|$

$$0(i) = 0 - \sum_{m=0}^{i-1} \alpha(m) \alpha(s(m))$$

terminated if no further improvement can be found $J(i) \geqslant J(i-1)$

or $\alpha(Rm-1)$ and $\beta(Rm-1)$ are determined at the end

Rotation Angle 0 = 1311

Conventional CORDIC

Angle Recoding - Greedy

[100-100-1-10001]

$$MVR - COPPIC - Greedy$$

$$\widehat{x} = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}$$

$$\overline{s} = \begin{bmatrix} 0 & 3 & 6 & 7 \end{bmatrix}$$

$$MVR - CORDIC - Semi Greedy (D = 2)$$

$$\widehat{\alpha} = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}$$

$$\overline{S} = \begin{bmatrix} 0 & 3 & 5 & 4 \end{bmatrix}$$

$$MVR-CORDIC-TBS$$

$$\vec{x}=[1 1 -1 -1]$$

$$\vec{s}=[1 2 4 1]$$

Efgs - Greedy
$$\overline{\alpha}_{0} = [1 + 1] \qquad \overline{\alpha}_{1} = [-1 + 1]$$

$$\overline{5}_{0} = [0 \ 2] \qquad \overline{5}_{1} = [8 \ 10]$$

$$EEAS-TBS$$
 $Rm=2$ $\overline{\alpha}_{0}=[1]$ $\overline{\alpha}_{1}=[1]$ $\overline{\alpha}_{1}=[1]$ $\overline{\beta}_{1}=[3]$

$$EEAS-TBS$$
 $Rm=3$
 $\bar{\alpha}_{0}=[1-|1]$ $\bar{\alpha}_{1}=[+|1-|]$
 $\bar{S}_{0}=[0.3.1]$ $\bar{S}_{1}=[15.6.2]$

