
Young Won Lim
6/14/17

Tree (10A)

Young Won Lim
6/14/17

 Copyright (c) 2015 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

Tree (10A) 3 Young Won Lim
6/14/17

In-Order

https://en.wikipedia.org/wiki/Morphism

 Check if the current node is empty / null.
 Display the data part of the root (or current node).
 Traverse the left subtree by recursively calling the pre-order function.
 Traverse the right subtree by recursively calling the pre-order function.

Tree (10A) 4 Young Won Lim
6/14/17

In-Order

https://en.wikipedia.org/wiki/Morphism

 Check if the current node is empty / null.
 Traverse the left subtree by recursively calling the in-order function.
 Display the data part of the root (or current node).
 Traverse the right subtree by recursively calling the in-order function.

Tree (10A) 5 Young Won Lim
6/14/17

Post-Order

https://en.wikipedia.org/wiki/Morphism

 Check if the current node is empty / null.
 Traverse the left subtree by recursively calling the post-order function.
 Traverse the right subtree by recursively calling the post-order function.
 Display the data part of the root (or current node).

Tree (10A) 6 Young Won Lim
6/14/17

Recursive Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

inorder(node)
 if (node = null)
 return
 inorder(node.left)
 visit(node)
 inorder(node.right)

preorder(node)
 if (node = null)
 return
 visit(node)
 preorder(node.left)
 preorder(node.right)

postorder(node)
 if (node = null)
 return
 postorder(node.left)
 postorder(node.right)
 visit(node)

Tree (10A) 7 Young Won Lim
6/14/17

Iterative Algorithms

https://en.wikipedia.org/wiki/Tree_traversal

iterativeInorder(node)
 s ← empty stack
 while (not s.isEmpty() or

 node ≠ null)
 if (node ≠ null)
 s.push(node)
 node ← node.left
 else
 node ← s.pop()
 visit(node)
 node ← node.right

iterativePreorder(node)
 if (node = null)
 return
 s ← empty stack
 s.push(node)
 while (not s.isEmpty())
 node ← s.pop()
 visit(node)
 //right child is pushed first so that
left is processed first
 if (node.right ≠ null)
 s.push(node.right)
 if (node.left ≠ null)
 s.push(node.left)

iterativePostorder(node)
 s ← empty stack
 lastNodeVisited ← null
 while (not s.isEmpty() or node ≠ null)
 if (node ≠ null)
 s.push(node)
 node ← node.left
 else
 peekNode ← s.peek()
 // if right child exists and traversing
node
 // from left child, then move right
 if (peekNode.right ≠ null and

lastNodeVisited ≠ peekNode.right)
 node ← peekNode.right
 else
 visit(peekNode)
 lastNodeVisited ← s.pop()

Tree (10A) 8 Young Won Lim
6/14/17

Search Algorithms

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

DFS (Depth First Search) BFS (Breadth First Search)

Tree (10A) 9 Young Won Lim
6/14/17

DFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

DFS (Depth First Search)A recursive implementation of DFS:

1 procedure DFS(G,v):
2 label v as discovered
3 for all edges from v to w in G.adjacentEdges(v) do
4 if vertex w is not labeled as discovered then
5 recursively call DFS(G,w)

A non-recursive implementation of DFS:

1 procedure DFS-iterative(G,v):
2 let S be a stack
3 S.push(v)
4 while S is not empty
5 v = S.pop()
6 if v is not labeled as discovered:
7 label v as discovered
8 for all edges from v to w in G.adjacentEdges(v) do
9 S.push(w)

Tree (10A) 10 Young Won Lim
6/14/17

BFS Algorithm

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

BFS (Breadth First Search)

Breadth-First-Search(Graph, root):

 create empty set S
 create empty queue Q

 add root to S
 Q.enqueue(root)

 while Q is not empty:
 current = Q.dequeue()
 if current is the goal:
 return current
 for each node n that is adjacent to current:
 if n is not in S:
 add n to S
 n.parent = current
 Q.enqueue(n)

Tree (10A) 11 Young Won Lim
6/14/17

In-Order

https://en.wikipedia.org/wiki/Morphism

Tree (10A) 12 Young Won Lim
6/14/17

Post-Order

https://en.wikipedia.org/wiki/Morphism

Young Won Lim
6/14/17

References

[1] http://en.wikipedia.org/
[2]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

