
Young Won Lim
2/16/18

State Monad Example (3H)

Young Won Lim
2/16/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

State Monad Example
(3H)

3 Young Won Lim
2/16/18

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

State Monad Example
(3H)

4 Young Won Lim
2/16/18

module StateGame where

import Control.Monad.State

-- Example use of State monad

-- Passes a string of dictionary {a,b,c}

-- Game is to produce a number from the string.

-- By default the game is off, a C toggles the

-- game on and off. A 'a' gives +1 and a b gives -1.

-- E.g

-- 'ab' = 0

-- 'ca' = 1

-- 'cabca' = 0

-- State = game is on or off & current score

-- = (Bool, Int)

https://wiki.haskell.org/State_Monad

Some Examples (1)

State Monad Example
(3H)

5 Young Won Lim
2/16/18

type GameValue = Int

type GameState = (Bool, Int)

playGame :: String -> State GameState GameValue

playGame [] = do

 (_, score) <- get

 return score

https://wiki.haskell.org/State_Monad

Some Examples (2)

State Monad Example
(3H)

6 Young Won Lim
2/16/18

playGame (x:xs) = do

 (on, score) <- get

 case x of

 'a' | on -> put (on, score + 1)

 'b' | on -> put (on, score - 1)

 'c' -> put (not on, score)

 _ -> put (on, score)

 playGame xs

startState = (False, 0)

main = print $ evalState (playGame "abcaaacbbcabbab") startState

https://wiki.haskell.org/State_Monad

Some Examples (3)

State Monad Example
(3H)

7 Young Won Lim
2/16/18

to generate Int dice - result : a number between 1 and 6

throw results from a pseudo-random generator of type StdGen.

the type of the state processors will be

State StdGen Int

StdGen -> (Int, StdGen)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Dice Examples

State Monad Example
(3H)

8 Young Won Lim
2/16/18

the StdGen type : an instance of RandomGen

randomR :: (Random a, RandomGen g) => (a, a) -> g -> (a, g)

assume a is Int (a, a) : range

and g is StdGen a seed

the type of randomR

randomR (1, 6) :: StdGen -> (Int, StdGen)

already have a state processing function

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

A seed of the type StdGen

A new seed is generated

by newStdGen

(Int, StdGen)

(a random value, a new seed)

State Monad Example
(3H)

9 Young Won Lim
2/16/18

If you choose to take a seed,

it should be of type StdGen, and you can use randomR

to generate a number from it.

Use newStdGen to create a new seed

(this will have to be done in IO).

> import System.Random

> g <- newStdGen

> randomR (1, 10) g

(1,1012529354 2147442707)

The result of randomR is a tuple

(a random value, a new seed)

https://stackoverflow.com/questions/8416365/generate-a-random-integer-in-a-range-in-haskell

randomR

A seed of the type StdGen

A new seed is generated

by newStdGen

State Monad Example
(3H)

10 Young Won Lim
2/16/18

Otherwise, you can use randomRIO

to get a random number directly in the IO monad,

with all the StdGen stuff taken care of for you:

> import System.Random

> randomRIO (1, 10)

6

https://stackoverflow.com/questions/8416365/generate-a-random-integer-in-a-range-in-haskell

randomR

State Monad Example
(3H)

11 Young Won Lim
2/16/18

randomR (1, 6) :: StdGen -> (Int, StdGen)

rollDie :: State StdGen Int

rollDie = state $ randomR (1, 6)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

State Monad Example
(3H)

12 Young Won Lim
2/16/18

import Control.Monad.Trans.State

import System.Random

-- The StdGen type we are using is an instance of RandomGen.

randomR :: (Random a, RandomGen g) => (a, a) -> g -> (a, g)

randomR (1, 6) :: StdGen -> (Int, StdGen)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

State Monad Example
(3H)

13 Young Won Lim
2/16/18

rollDie :: State StdGen Int

rollDie = state $ randomR (1, 6)

rollDie :: State StdGen Int

rollDie = do generator <- get

 let (value, newGenerator) = randomR (1,6) generator

 put newGenerator

 return value

GHCi> evalState rollDie (mkStdGen 0)

6

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

State Monad Example
(3H)

14 Young Won Lim
2/16/18

rollDice :: State StdGen (Int, Int)

rollDice = liftA2 (,) rollDie rollDie

GHCi> evalState rollDice (mkStdGen 666)

 (6,1)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

randomR

Young Won Lim
2/16/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15

