
Young Won Lim
2/21/18

Pointers (1A)

Young Won Lim
2/21/18

 Copyright (c) 2010 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Series:
2. Pointers

3 Young Won Lim
2/21/18

Byte Address and Data in a Memory

0x000

1K x 8
Memory

address
10 bits

dataaddress

data
8 bits

0x001
0x002
0x003

0x3FC
0x3FD
0x3FE
0x3FF

210 = 1024

HEX
address

8 bits10 bits

dataByte Address

Series:
2. Pointers

4 Young Won Lim
2/21/18

Variables

&a

data

int a;

a can hold an integer value a

address

&a

a = 100;

a holds the integer 100 a 100

dataaddress

Series:
2. Pointers

5 Young Won Lim
2/21/18

Pointer Variables

&p

int * p;

*p can hold an integer value

pint * p;
pointer to int

int

int * p;

p holds an address

*p

p can hold the address
of an int data

p

type variable

Series:
2. Pointers

6 Young Won Lim
2/21/18

Dereferencing

 p

The content of a pointed location :
Dereferencing operator *

 *p

 p

The address of a variable :
Address of operator &

&

p

&p

*

 p

 *p

*

p

Series:
2. Pointers

7 Young Won Lim
2/21/18

Variables and their addresses

&a

data

int a; a

address

int * p; &p p

Series:
2. Pointers

8 Young Won Lim
2/21/18

Assignment of a value

&a

data

int a; a = 111

address

int b; &b b = ____

b = a;

Series:
2. Pointers

9 Young Won Lim
2/21/18

Assignment of an address

&a

data

int a; a = 111

address

int * p; &p p = ____

p = &a;

Series:
2. Pointers

10 Young Won Lim
2/21/18

Variables with initializations

&a

data

int a; a

address

int * p = &a; &p p = &a

Series:
2. Pointers

11 Young Won Lim
2/21/18

Pointed addresses : p

p

data

int a; a

address

int * p = &a; p &p

p ≡ &a

Series:
2. Pointers

12 Young Won Lim
2/21/18

Dereferenced Variable : *p

p

data

int a; *p

address

int * p = &a; p &p

 p ≡ &a
*p ≡ a

Series:
2. Pointers

13 Young Won Lim
2/21/18

Two way to access: a and *p

*p =100

&a

data

a

address

&p p

1) Read/Write a
2) Read/Write *p

a = 100

Series:
2. Pointers

14 Young Won Lim
2/21/18

1. Pass by Reference
2. Arrays

Series:
2. Pointers

15 Young Won Lim
2/21/18

Pass by Reference

Series:
2. Pointers

16 Young Won Lim
2/21/18

Variable Scopes

int main ()
{
 int x, int y;
 ...
 ...

 func1 (10, 20);

 ...
 ...
}

int func1 (int a, int b)
{
 int i, int j;
 ...
 ...

 ...
 ...
}

 int x, int y;

int a, int b

 int i, int j;

i and j’s
variable scope

x and y’s
variable scope

Only top stack frame is active
and its variable can be accessed

Communications are performed
only through the parameter variables

(10, 20)

cannot access
each other

func1’s
Stack
Frame

main’s
Stack
Frame

x
y

a
b

Series:
2. Pointers

17 Young Won Lim
2/21/18

Pass by Reference

int main ()
{
 int x, int y;
 ...
 ...

 func1 (&x, &y);

 ...
 ...
}

int func1 (int* a, int* b)
{
 int i, int j;
 ...
 ...

 ...
 ...
}

func1’s
Stack
Frame

main’s
Stack
Frame int x, int y;

int* a, int* b

 int i, int j;

x and y’s
variable scope (&x, &y)

x and y are made known to func1
func1 can read / write x and y
through their addresses

x
y

a
b

*a
*b

 a=&x
 b=&y

*a
*b

Series:
2. Pointers

18 Young Won Lim
2/21/18

Swapping integers

a = 111

b = 222

&a

&b

a = 222

b = 111

&a

&b

swap(&a, &b);

swap(int *, int *);

function call

function prototype

int a, b;

Series:
2. Pointers

19 Young Won Lim
2/21/18

Pass by integer reference

void swap(int *p, int *q) {
int tmp;

 tmp = *p;
 *p = *q;

*q = tmp;
}

int a, b;
…

swap(&a, &b);

int * p
int *q

int * p
int *q

 int tmp

Series:
2. Pointers

20 Young Won Lim
2/21/18

Integer and Integer Pointer Types

int * m
int * n

int *m
int *n

m
n

*m
*n

treated as integer variables

integer pointer variables

int *m
int *n

integer pointer declarations

a way of thinking

int *

int

typesvariables

Series:
2. Pointers

21 Young Won Lim
2/21/18

Arrays

Series:
2. Pointers

22 Young Won Lim
2/21/18

Accessing array elements – using an address

0

4

1
2
3

int x[5];

x holds the starting address
of 5 consecutive int variables

5 int variables
address data

x

x + 1

x + 2

x + 3

x + 4

*x

*(x+2)

*(x+4)

*(x+1)

*(x+3)

x[0]

x[4]

x[1]
x[2]
x[3]

index data
cannot change
address x
(constant)

Series:
2. Pointers

23 Young Won Lim
2/21/18

Accessing an Array with a Pointer Variable

int x [5] = { 1, 2, 3, 4, 5 };

int *p = x;

x[0]

x[4]

x[1]
x[2]
x[3]

60

90
40
70

*(x+0)

*(x+4)

*(x+1)
*(x+2)
*(x+3)

p[0]

p[4]

p[1]
p[2]
p[3]

*(p+0)

*(p+4)

*(p+1)
*(p+2)
*(p+3)

x&x p&p
x is a constant symbol
cannot be changed

p is a variable
can point to other addresses

80

Series:
2. Pointers

24 Young Won Lim
2/21/18

Byte Address
Little Endian
Big Endian

Series:
2. Pointers

25 Young Won Lim
2/21/18

Byte Addresses

long a; a

Increasing address

&a ?8-byte size data type

Series:
2. Pointers

26 Young Won Lim
2/21/18

Little / Big Endian Ordering of Bytes

long a;

LSByteMSByte Little Endian

a

Increasing address

MSByteLSByte Big Endian

a7 a6 a5 a4 a3 a2 a1 a0

a0 a1 a2 a3 a4 a5 a6 a7

Series:
2. Pointers

27 Young Won Lim
2/21/18

Increasing address, Increasing byte weight

Little
Endian

Big
Endian

Little
Endian

Big
Endian

&a &a

&a &a

https://stackoverflow.com/questions/15620673/which-bit-is-the-address-of-an-integer

downward, increasing address upward, increasing address

Series:
2. Pointers

28 Young Won Lim
2/21/18

Pointer Types

Series:
2. Pointers

29 Young Won Lim
2/21/18

Integer Type Variables and Their Addresses

&a

long a;

int b;

short c;
&b

&c
char d;

&d

d

a

b

c

Increasing address

Little Endian

Series:
2. Pointers

30 Young Won Lim
2/21/18

Points to the LSByte

d

a

b

c

Increasing address

Little Endian

&q q

&r r

&s s

&p p long *p;

int *q;

short *r;

char *s;

Series:
2. Pointers

31 Young Won Lim
2/21/18

Aligning variables of different sizes

sizeof(long) 8 (bytes)

sizeof(int) 4 (bytes)

sizeof(short) 2 (bytes)

sizeof(char) 1 (bytes) d

a

b

c

Memory Alignment
in the Little Endian

long a;

int b;

short c;

char d;

Increasing address

&a

&b

&c

&d

Series:
2. Pointers

32 Young Won Lim
2/21/18

Possible addresses for int values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int *p;

4⋅k k = 0,1,2,⋯

Series:
2. Pointers

33 Young Won Lim
2/21/18

Possible addresses for short values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

short *q;

2⋅k k = 0,1,2,⋯

Series:
2. Pointers

34 Young Won Lim
2/21/18

Possible addresses for char values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

char *r;

1⋅k k = 0,1,2,⋯

Series:
2. Pointers

35 Young Won Lim
2/21/18

Data size at the pointed addresses

int *p;

short *q;

char *r;

p

q

r

Increasing address

Series:
2. Pointers

36 Young Won Lim
2/21/18

Associated data at the pointed addresses

int *p;

short *q;

char *r;

p

q

r

Increasing address

*p

*q

*r

Series:
2. Pointers

37 Young Won Lim
2/21/18

Incrementing / decrementing pointers

int *p;

short *q;

char *r;

p

q

r

p+1

q+1

r+1

p–1

q–1

r–1

Increasing address

Series:
2. Pointers

38 Young Won Lim
2/21/18

Dereferencing the inc/decremented pointers

int *p;

short *q;

char *r;

p

q

r

Increasing address

*(p+1)

*q

*r

*(p-1)*p

*(q+1) *(q-1)

*(r+1) *(r-1)

Series:
2. Pointers

39 Young Won Lim
2/21/18

Pointer Type Cast

Series:
2. Pointers

40 Young Won Lim
2/21/18

Changing the associated data type of an address

long a;

int * p;

short * q;

char * r;

address of a long value

address of an int value

address of a short value

address of a char value

&a

Series:
2. Pointers

41 Young Won Lim
2/21/18

Pointer Type Casting

long a;

int * p;

short * q;

char * r;

&a

q = (short *) &a

r = (char *) &a

p = (int *) &a

address of a long value

address of an int value

address of a short value

address of a char value

Series:
2. Pointers

42 Young Won Lim
2/21/18

Re-interpretation of memory data – case I

long a;

int *p;

short *q;

char *r; 80

0x7080

0x50607080

0x1020304050607080

&a

q = (short *) &a

r = (char *) &a

p = (int *) &a

Series:
2. Pointers

43 Young Won Lim
2/21/18

Re-interpretation of memory data – case II

10 20 30 40 50 60 70 80

&c

q = (short *) &c

a = (long *) &c

p = (int *) &cint *p;

short *q;

char *r;

long *a;

char c;

r = &c

Memory
alignment
constraint
is not met

Depending on &C, the memory alignment constraint can be broken

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80

Series:
2. Pointers

44 Young Won Lim
2/21/18

const pointers

Series:
2. Pointers

45 Young Won Lim
2/21/18

const type, const pointer type (1)

const int * p;

int * const q ;

const int * const r ;

read only integer value

read only integer pointer

read only integer value
read only integer pointer

Series:
2. Pointers

46 Young Won Lim
2/21/18

const type, const pointer type (2)

qqp

integerinteger

read only

integerwr

read only

wr

const int * p; int * const q ;

address address

Series:
2. Pointers

47 Young Won Lim
2/21/18

const type, const pointer type (3)

address

rr

read only

integerinteger

read only

const int * const r ;

wr

wr

Series:
2. Pointers

48 Young Won Lim
2/21/18

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

