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Byte Address and Data in a Memory

0x000

1K x 8
Memory

address 
10 bits

dataaddress

data  
8 bits

0x001
0x002
0x003

0x3FC
0x3FD
0x3FE
0x3FF

210 = 1024

HEX
address

8 bits10 bits

dataByte Address
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Variables 

&a

data 

int a;

a can hold an integer value a 

address

&a

a = 100;

a holds the integer 100 a    100

dataaddress
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Pointer Variables

&p   

int    * p;

*p can hold an integer value

pint    * p;
pointer to int 

int 

int * p;

p holds an address  

*p

p can hold the address
of an int data 

p

type variable
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Dereferencing

           p   

The content of a pointed location :
Dereferencing operator *

         *p   

        p   

The address of a variable :
Address of operator & 

           

&

p

&p 

*

           p   

          *p   

*

p
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Variables and their addresses 

&a

data 

int a; a 

address

int  * p; &p p
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Assignment of a value 

&a

data 

int a; a = 111 

address

int b; &b b = ____

b = a; 
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Assignment of an address

&a

data 

int a; a = 111 

address

int  * p; &p p = ____

p = &a; 
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Variables with initializations

&a

data 

int a; a 

address

int  * p = &a; &p p = &a
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Pointed addresses : p

p

data 

int a; a 

address

int  * p = &a; p &p

p ≡ &a
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Dereferenced Variable : *p

p

data 

int a; *p 

address

int  * p = &a; p &p

 p ≡ &a
*p ≡   a
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Two way to access:  a and *p

*p =100  

&a

data 

a 

address

&p p

1) Read/Write   a
2) Read/Write  *p

a = 100
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1. Pass by Reference
2. Arrays
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Pass by Reference
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Variable Scopes

int main ()
{
    int x, int y;
    ...
    ...

    func1 ( 10, 20 );

    ...
    ...
}

int func1 (int a, int b)
{
    int i, int j;
    ...
    ...

    ...
    ...
}

    int x, int y;

int a, int b

    int i, int j;

i and j’s 
variable scope

x and y’s 
variable scope

Only top stack frame is active
and its variable can be accessed

Communications are performed 
only through the parameter variables

( 10,    20 )

cannot access 
each other

func1’s 
Stack 
Frame

main’s
Stack
Frame

x
y

a
b
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Pass by Reference

int main ()
{
    int x, int y;
    ...
    ...

    func1 ( &x, &y );

    ...
    ...
}

int func1 (int* a, int* b)
{
    int i, int j;
    ...
    ...

    ...
    ...
}

func1’s 
Stack 
Frame

main’s
Stack
Frame     int x, int y;

int* a, int* b

    int i, int j;

x and y’s 
variable scope ( &x,   &y )

x and y are made known to func1
func1 can read / write x and y
through their addresses 

x
y

a
b

*a
*b

 a=&x
 b=&y

*a 
*b
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Swapping integers

a = 111

b = 222

&a

&b

a = 222

b = 111

&a

&b

swap( &a, &b );

swap( int *, int * );

function call

function prototype

int a, b;
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Pass by integer reference 

void swap(int *p, int *q) {
int tmp;

    tmp = *p;
  *p = *q;

*q = tmp;
}

int a, b;
… 

swap( &a, &b );

int *     p
int      *q

int *     p
int      *q

  int     tmp
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Integer and Integer Pointer Types

int *     m
int *     n 

int       *m
int       *n 

m
n

*m
*n

treated as integer variables

integer pointer variables

int       *m
int       *n 

integer pointer declarations

a way of thinking

int *    

int

typesvariables
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Arrays
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Accessing array elements – using an address 

0

4

1
2
3

int x[5];

x holds the starting address
of 5 consecutive int variables 
 

5 int variables
address data

x

x + 1

x + 2

x + 3

x + 4

*x

*(x+2)

*(x+4)

*(x+1)

*(x+3)

x[0]

x[4]

x[1]
x[2]
x[3]

index data
cannot change 
address x 
(constant)
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Accessing an Array with a Pointer Variable 

int x [5] = { 1, 2, 3, 4, 5 };

int  *p = x;

x[0] 

x[4] 

x[1] 
x[2] 
x[3] 

60

90
40
70

*(x+0) 

*(x+4) 

*(x+1) 
*(x+2) 
*(x+3) 

p[0]  

p[4] 

p[1] 
p[2] 
p[3] 

*(p+0) 

*(p+4) 

*(p+1) 
*(p+2) 
*(p+3) 

x&x p&p
x is a constant symbol 
cannot be changed

p is a variable 
can point to other addresses

80
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Byte Address 
Little Endian
Big Endian 
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Byte Addresses

long  a; a 

Increasing address

&a ?8-byte size data type
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Little / Big Endian Ordering of Bytes

long  a;

LSByteMSByte Little Endian

a 

Increasing address

MSByteLSByte Big Endian

a7 a6 a5 a4 a3 a2 a1 a0

a0 a1 a2 a3 a4 a5 a6 a7
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Increasing address, Increasing byte weight

Little 
Endian

Big 
Endian

Little 
Endian

Big 
Endian

&a &a

&a &a

https://stackoverflow.com/questions/15620673/which-bit-is-the-address-of-an-integer

downward, increasing address upward, increasing address
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Pointer Types
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Integer Type Variables and Their Addresses

&a

long  a;

int   b;

short  c;
&b

&c
char  d;

&d

d

a 

b 

c 

Increasing address

Little Endian
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Points to the LSByte

d

a 

b 

c 

Increasing address

Little Endian

&q q

&r r

&s s

&p p long  *p;

int   *q;

short  *r;

char  *s;
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Aligning variables of different sizes

sizeof(long)  8 (bytes)

sizeof(int)    4 (bytes)

sizeof(short)  2 (bytes)

sizeof(char)  1 (bytes) d

a 

b 

c 

Memory Alignment
in the Little Endian

long  a;

int   b;

short  c;

char  d;

Increasing address

&a

&b

&c

&d
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Possible addresses for int values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

int  *p;

4⋅k k = 0,1,2,⋯
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Possible addresses for short values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

short   *q;

2⋅k k = 0,1,2,⋯
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Possible addresses for char values

0
x
3

0
0

7

0
x
3

0
0

6

0
x
3

0
0

5

0
x
3

0
0

4

0
x
3

0
0

3

0
x
3

0
0

2

0
x
3

0
0

1

0
x
3

0
0

0

char   *r;

1⋅k k = 0,1,2,⋯
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Data size at the pointed addresses

int  *p;

short *q;

char *r;

p

q

r

Increasing address
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Associated data at the pointed addresses

int  *p;

short *q;

char *r;

p

q

r

Increasing address

*p

*q

*r
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Incrementing / decrementing pointers  

int  *p;

short *q;

char *r;

p

q

r

p+1

q+1

r+1

p–1

q–1

r–1

Increasing address
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Dereferencing the inc/decremented pointers  

int  *p;

short *q;

char *r;

p

q

r

Increasing address

*(p+1)

*q

*r

*(p-1)*p

*(q+1) *(q-1)

*(r+1) *(r-1)
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Pointer Type Cast
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Changing the associated data type of an address 

long  a;

int  *  p;

short *  q;

char *  r;

address of a long  value

address of an int value

address of a short value

address of a char value

&a
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Pointer Type Casting

long  a;

int  *  p;

short *  q;

char *  r;

&a

q = (short *) &a

r = (char  *) &a

p = (int     *)  &a

address of a long  value

address of an int value

address of a short value

address of a char value
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Re-interpretation of memory data – case I

long  a;

int  *p;

short *q;

char *r; 80

0x7080

0x50607080

0x1020304050607080

&a

q = (short *) &a

r = (char *) &a

p = (int *) &a



Series:
2. Pointers

43 Young Won Lim
2/21/18

Re-interpretation of memory data – case II 

10 20 30 40 50 60 70 80

&c

q = (short *) &c

a = (long *) &c

p = (int *) &cint  *p;

short *q;

char *r;

long *a;

char  c;

r =               &c

Memory 
alignment 
constraint 
is not met

Depending on &C, the memory alignment constraint can be broken

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80
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const pointers
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const type, const pointer type (1)

const int  * p;

int * const q  ;

const int  * const r  ;

read only integer value

read only integer pointer

read only integer value
read only integer pointer
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const type, const pointer type (2)

qqp

integerinteger

read only 

integerwr

read only 

wr

const int  * p; int * const q  ;

address address
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const type, const pointer type (3)

address

rr

read only 

integerinteger

read only 

const int  * const r  ;

wr

wr
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