
ELF1 7A Linking Background - ELF Study 1999

Young W. Lim

2020-07-16 Thr

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 1 / 61

Outline

1 Based on

2 Static binary and dynamic binary
Static binary
Dynamic binary

3 Types of linking
TOC
Staic vs. dynamic linking
Build-time, load-time, run-time linking

4 Linking for dynamic executables / libraries
TOC
Build-time linking for dynamic executables / libraries
Load-time linking for dynamic executables / libraries

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 2 / 61

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 3 / 61

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 4 / 61

Static binary (1)

dynamic binaries load code from external binaries (.so file)
in static binairies library code (.a libraries)
is copied inside the binary at build time
ddvantages of dynamic binaries are

libraries can be reused between different running applications.
so they need less memory
libraries can be changed later on without recompiling
as long as the ABI (Application binary interface)
of the library doesn’t change.

https://www.reddit.com/r/linux/comments/6pkzf5/static_and_dynamic_binaries/

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 5 / 61

Static binary (2)

code in a static library need not be PIC

position-_dependent_ code can jump and call directly
without needing any intermediate steps
the linker adjusts the instructions/data
for direct cross-references

this performance benefit shows up only in high-performance code;
e.g., you might get a teenthy boost from a video encoder
if you statically compile & link it.
if the program does any blocking I/O it won’t matter at all.

https://www.reddit.com/r/linux/comments/6pkzf5/static_and_dynamic_binaries/

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 6 / 61

Static binary (3)

modern linkers are able to do link-time optimization (LTO)
the compiler does its job and emits some GIMPLE bytecode
along with the usual machine code in the object file.
The bytecode gives a gist of what functions/variables are where,
what everything does, how to piece it together,
and possibly some analysis that’s been done as well,
since that’s a side-effect of optimization.

The linker can use this to knit together code from several object files
when it’s producing the final executable,
without LTO the linker basically mashes pieces of object files
together as indivisible blocks (+noise).
So in theory, you might be able to do significantly better
with static compilation as long as

sufficiently many of your object files are produced by gcc -flto
linker supports LTO
burning on inter-object calls/accesses in loops.

https://www.reddit.com/r/linux/comments/6pkzf5/static_and_dynamic_binaries/
Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 7 / 61

Dynamic binary (1)

the libraries must be able to be loaded anywhere
in the process virtual address space and must be relocated.
the kernel does only map the program file in memory
the dynamic linker (a.k.a. the interpreter) must

locate and map all dependencies
as well as shared object specified in LD_PRELOAD
relocate the files

https://www.gabriel.urdhr.fr/2015/01/22/elf-linking/#base-address

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 8 / 61

Dynamic binary (2)

the kernels initialises the process:

it maps the main program, the interpreter (dynamic linker) segments
and the vDSO in the virtual address space;
it sets up the stack (passing the arguments, environment)
calls the dynamic linker entry point

https://www.gabriel.urdhr.fr/2015/01/22/elf-linking/#base-address

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 9 / 61

Dynamic binary (3)

the dynamic linker loads the different ELF objects
and binds them together

it relocates itself
it finds and loads the necessary libraries
it does the relocations (which binds the ELF objects)
it calls the initialisation functions of the shared objects

those functions are specified in the DT_INIT
and DT_INIT_ARRAY entries of the ELF objects.

it calls the main program entry point

found in the AT_ENTRY entry of the auxiliary vector:
it has been initialised by the kernel
from the e_entry ELF header field.

the executable then initialises itself.

https://www.gabriel.urdhr.fr/2015/01/22/elf-linking/#base-address

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 10 / 61

TOC: Types of linking

Static vs. dynamic linking
Build-time, load-time, run-time linking
Build-time dynamic linking
Load-time dynamic linking
ld-linux.so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 11 / 61

TOC: Static and dynamic linking

Binary executable files
Statically linked files
Dynamically linked files
In-memory copy of an executable

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 12 / 61

Binary executable file

a statically linked binary
with all libraries loaded into the executable itself

a dynamically linked binary
with only some libraries statically linked

https://unix.stackexchange.com/questions/356709/difference-between-ld-and-ld-so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 13 / 61

Statically linked files

when you statically link a file into an executable,
the contents of the files are included
in the executable at link time.

statically linked executable and library files
never change
(the last step in the compilation prcess)

https://stackoverflow.com/questions/311882/what-do-statically-linked-and-dynamically-linked-mean

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 14 / 61

Dynamically linked files

when you dynamically link a file into an executable,
a pointer to the file is included in the executable
but the contents of the file are not included at link time.

these referenced dynamically linked files are

not brought in the memory until you run the executable
loaded into memory by the dynamic linker at run time

https://stackoverflow.com/questions/311882/what-do-statically-linked-and-dynamically-linked-mean

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 15 / 61

In-memory copy of an executable

dynamically linked files are only brought
into the in-memory copy of the executable,
not the executable file on the disk.

files on the disk are not modified
a shared library is shared across several processes

dynamically loaded libraries
can change at the next run time
just by replacing the corresponding files on the disk.

https://stackoverflow.com/questions/311882/what-do-statically-linked-and-dynamically-linked-mean

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 16 / 61

TOC: Build-time, load-time, run-time linking

Build-time, load-time, run-time
Build-time vs. load-time linking
(1) build-time linking for staic executables / libraries
(2) build-time linking for dynamic executables / libraries
(3) load-time linking for dynamic executables / libraries
Load-time vs. run-time dynamic linking
Run-time dynamic linking
Build-time linker ld
Run-time linker ld.so
Linker at the build time
Kernel at the load time
Dynamic loader at the load time

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 17 / 61

Build-time, load-time, run-time

compile step link step run step run step
build-time build-time load-time run-time

https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and-runtime

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 18 / 61

Build-time and. load-time linkers

build-time linking build-time linking load-time linking
static linking static linking dynamic linking
ld ld ld.so
for statically for dynamically for dynamically
linked exectuables linked executables linked executables
or static libraries or shared libraries or shared libraries

https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are-between-the-various-libc-so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 19 / 61

(1) build-time linking for static executables / libraries

static linking, at build-time
the build-time linker ld

resolves all the objects used in the program
during the build,
merges the objects which are used, and
produces an executable binary
which doesn’t use external libraries;

https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are-between-the-various-libc-so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 20 / 61

(2) build-time linking for dynamic executables / libraries

static linking, at build-time:
the build-time linker ld

resolves all objects used in the program, but
it only stores references to them;
instead of storing them in the executable (no merge)
records

which shared libraries are required at the run time,
possibly which versions of libraries or symbols are required.
which run time loader should be used

https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are-between-the-various-libc-so
https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and-runtime

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 21 / 61

(3) load-time linking for dynamic executables / libraries

dynamic linking, at run-time (specifically load-time) :
the run-time linker ld.so, or dynamic linker,

resolves all the references stored in the executable,
loading all the required libraries (shared objects) and
updating all the object references before running the program.

https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are-between-the-various-libc-so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 22 / 61

Load-time vs. run-time dynamic linking

load-time dynamic linking
the OS handles unresolved symbols in the library

referenced by the executable (or another library)
resolved when the executable/library is loaded into memory

run-time dynamic linking
an API provided by the OS or through a library

can explicitly load a DLL or DSO when you need it
and then perform the symbol resolution

https://stackoverflow.com/questions/2055840/difference-between-load-time-dynamic-linking-and-run-time-dynamic-linking

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 23 / 61

Run-time dynamic linking

using libdl

dlopen() gain access to an executable object file
dclose() close a dlopen object
dlsym() obtain the address of a symbol from a dlopen object
dlvsym() Programming interface to dynamic linking loader.
dlerror() get diagnostic information

http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 24 / 61

Build-time linker ld

a static linker

links a program or library at compile (build) time
usually as the last step in the compilation process,
creating a binary executable or a library.

a static library
has the suffix name .a denoting archive
is created by the ar utility

ld is a static linker (build-time linker)

ld also plays a role in dynamic linking (build-time linker)

stores all object references in a dynamic executable

https://unix.stackexchange.com/questions/356709/difference-between-ld-and-ld-so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 25 / 61

Run-time linker ld.so

a dynamic linker

loads the dynamic libraries
into the process’ address space at run time.
libraries were dynamically linked at compile (build) time

a dynamic library

so represents shared object
the suffix name of shared libraries
a library that may be dynamically linked into programs
one library is shared among several programs

ld.so is a dynamic linker (run-time linker)

https://unix.stackexchange.com/questions/356709/difference-between-ld-and-ld-so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 26 / 61

Linker at the build time

compile, link, run

ld is not called at either compile or run time
only at the link step is /usr/bin/ld is invoked.
on Linux, ld is part of the binutils package.

a link step is performed as a final step
in producing an executable, or a shared library (build time)

this is called static linking, to differentiate this step
from dynamic loading that will happen at run time
(specifically load time)

https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and-runtime

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 27 / 61

kernel at the load time

The kernel

loads executable into memory, and
checks whether runtime loader was requested at static link time.
If it was, the dynamic loader is also loaded into memory, and
execution control is passed to it (instead of the main executable).

https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and-runtime

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 28 / 61

dynamic loader at the load time

the dynamic loader

examines the executable

which other libraries are required
whether correct versions can be found,

loads them into memory, and
performs symbol resolution
between the main executable and the shared libraries
this is the runtime loading step,
often also called dynamic linking
on Linux, dynamic loader is a part of libc
(GLIBC, uClibc and musl each have their own loader).

https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and-runtime

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 29 / 61

TOC: Linking for dynamic executables / libraries

Build-time linking for dynamic executables / libraries
Load-time linking for dynamic executables / libraries

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 30 / 61

TOC: Build-time linking for dynamic executables / libraries

Unresolved symbols
Referenced libraries
Copy relocation and symbol table
PLT thunks
Dynamic symbol table
Dynamic relocation table
Converted relocation types

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 31 / 61

Unresolved symbols

unresolved symbols in a dynamic execuble

should be resolved

unresolved symbols in a shared library

remain valid

https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against-dynamic-shared-library

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 32 / 61

Referenced libraries

ld stores the needed library
in a DT_NEEDED record of
the _DYNAMIC object of the output file

When the application starts, the dynamic linker
looks at the DT_NEEDED field to find the required libraries.
This field contains the soname of the library,
so the next step is for the dynamic linker
to walk through all the libraries in its search path
looking for it.

http://bottomupcs.sourceforge.net/csbu/x4012.htm
https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against-dynamic-shared-library

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 33 / 61

Copy relocation and symbol table

If the output is not position-independent and
references data objects in the shared library,

generate a copy relocation
to copy the original image of the object
into the main program’s data segment at load time,
create a proper symbol table entry
so that references to the object in the shared library itself
get resolved to the new copy in the main program,
rather than the original copy in the library.

https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against-dynamic-shared-library

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 34 / 61

PLT thunks

generating PLT thunks
for the destination of each function call in the output

remain unresolved at build-time

https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against-dynamic-shared-library

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 35 / 61

Dynamic symbol table

creating a dynamic symbol table,

the runtime linker ld.so can use dynamic symbol table
to link the executable against the library at run-time

To see details:
objdump -T myprog (--dynamic-syms)

https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against-dynamic-shared-library

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 36 / 61

Dynamic relocation table

creating the dynamic relocation table
to check which machine code locations need to be changed
to point toynamically linked symbols.

To see details:
objdump -R myprog (--dynamic-reloc)

https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against-dynamic-shared-library

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 37 / 61

Converted relocation types

that ld takes object files with various relocation types

representing anything the compiler or assembler can produce

resolves most of them except a small number of relocation types

for static linking, unresolved relocations are not allowed
for dynamic linking, all the remaining relocations shall be
converted into a limited set of relocation types
shall be resolved by the dynamic linker at load time.

https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against-dynamic-shared-library

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 38 / 61

TOC: Load-time linking for dynamic executables / libraries

At the link time
ld-linux.so vs. ld.so
glibc

ld-linux.so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 39 / 61

(1) dynamic applications

a dynamic applications (binary, executable)

consist of one or more dynamic objects
typically a dynamic executable and
one or more shared object dependencies

run time linker for dynamic objects

https://renenyffenegger.ch/notes/development/dynamic-loader
https://docs.oracle.com/cd/E19253-01/816-5165/ld.so.1-1/index.html

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 40 / 61

(2) search shared libraries

to see the shared object libraries used by a given application
use the ldd command

shared library directories

/lib
/usr/lib.

additional search directory

/etc/ld.so.conf can be used to configure the dynamic loader
to search for other directories (eg. /usr/local/lib or /opt/lib)

https://renenyffenegger.ch/notes/development/dynamic-loader
https://docs.oracle.com/cd/E19253-01/816-5165/ld.so.1-1/index.html

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 41 / 61

(3) ldd print shared object dependencies

ldd prints the shared objects (shared libraries)
required by each program or shared object
specified on the command line.
An example of its use and output is the following:
$ ldd /bin/ls

linux-vdso.so.1 (0x00007ffcc3563000)
libselinux.so.1 => /lib64/libselinux.so.1 (0x00007f87e5459000)
libcap.so.2 => /lib64/libcap.so.2 (0x00007f87e5254000)
libc.so.6 => /lib64/libc.so.6 (0x00007f87e4e92000)
libpcre.so.1 => /lib64/libpcre.so.1 (0x00007f87e4c22000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f87e4a1e000)
/lib64/ld-linux-x86-64.so.2 (0x00005574bf12e000)
libattr.so.1 => /lib64/libattr.so.1 (0x00007f87e4817000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f87e45fa000)

https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against-dynamic-shared-library

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 42 / 61

(4) loading shared libraries

most modern programs are dynamically linked

when a dynamically linked application
is loaded by the operating system kernel

the dynamic loader must locate and load
the dynamic libraries it needs for execution.

https://www.cs.virginia.edu/~dww4s/articles/ld_linux.html

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 43 / 61

(5) interpreter

As part of the initialization and execution
of a dynamic application, an interpreter is called

to run the executable, an interpreter program is used

this interpreter completes
the binding of the application
to its shared object dependencies.

https://docs.oracle.com/cd/E19253-01/816-5165/ld.so.1-1/index.html

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 44 / 61

(6) ld-linux.so vs. ld.so

The programs ld.so and ld-linux.so
find and load the shared libraries require by a program,
prepare the program to run, and then run it.

linux binaries require dynamic linking (linking at run time)
unless the -static option was given to ld(1) during compilation.

ld.so a.out
ld-linux.so ELF
/lib/ld-linux.so.1 libc5
/lib/ld-linux.so.2 glibc2

https://linux.die.net/man/8/ld-linux

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 45 / 61

(7) specifying an interpreter

ELF allows executables to specify an interpreter,

the compiler and static linker set
the interpreter of executables
the interpreter is set to be /lib/ld-linux-ia64.so.2
which is the dynamic linker

when the kernel loads the binary executable

it will check if the PT_INTERP field is present
if so load what it points to into memory and start it.

https://www.bottomupcs.com/dynamic_linker.xhtml

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 46 / 61

(8) dynamic linker name

linux’s dynamic loader / linker

ld.so for a.out
ld-linux.so for ELF
ld-linux.so.2 for glibc

/lib/ld-linux.so.2
/lib/ld-linux-x86-64.so.2

finding the name of the dynamic loader with
readelf -l executable | grep interpreter

readelf -l dsplays the information contained
in the file’s segment headers

https://www.cs.virginia.edu/~dww4s/articles/ld_linux.html

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 47 / 61

(9) executing an interpreter

indirect execution
by running some dynamically linked program or shared object

the dynamic linker is specified
in the .interp section of an ELF file (program)
no command-line options to the dynamic linker

direct execution
by the command-line

/lib/ld-linux.so.* [OPTIONS] [PROGRAM [ARGUMENTS]]

man ld-linux.so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 48 / 61

(10) managing shared libraries

The dynamic linker is the program
that manages shared dynamic libraries
on behalf of an executable.

load libraries into memory
modify the program at runtime (resolving relocation)
call the functions in the library

https://www.bottomupcs.com/dynamic_linker.xhtml

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 49 / 61

(11) relocations

dynamically linked executables leave behind references
that will be fixed at the runtime

eg. the address of a function in a shared library.
the references that are left behind are called relocations

the essential part of the dynamic linker is
fixing up these unresolved addresses at runtime,

these addresses can be known only when
the executable and shared libraries are loaded in memory

https://www.bottomupcs.com/dynamic_linker.xhtml

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 50 / 61

(12) resolving relocations

A relocation can simply be thought of as a note
that a particular address will need to be fixed
at the load time of the runtime
before the code is ready to run
all the relocations need to be resolved

fixing the addresses it refers to to point to the right place.

https://www.bottomupcs.com/dynamic_linker.xhtml

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 51 / 61

(13) base address

the executable code is not shared, and
each executable gets its own fresh address space

in an executable file, the code and data segments
are given by a base address in virtual memory
the compiler knows exact location of the data section
and can reference it directly

shared libraries have no such guarantee.

the data section will be a specified
as an offset from the base address
but exact location of the base address
can only be known at runtime

https://www.bottomupcs.com/dynamic_linker.xhtml

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 52 / 61

(14) PIC

all the shared libraries must be produced as
position independent codes (PIC).

note that the data section is still specified
as a fixed offset from the code section;
but to actually find the address of data
the offset needs to be added to the load address

https://www.bottomupcs.com/dynamic_linker.xhtml

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 53 / 61

(15) SONAME

the string written to the executable will actually be
the SONAME of the library, e.g. mylib.so.0
This will ensure that even when a newer and incompatible
mylib.so.1.42 is installed later,
the executable will use the compatible ABI version 0 instead.

To see details:
ldd myprog

https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against-dynamic-shared-library

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 54 / 61

(16) Symbolic link

Usually dynamic libraries are set up using symlinks only

libfoo.so is used by ld, and
libfoo.so points to libfoo.so.1 or
to whatever which is used by ld.so, and
libfoo.so is itself typically a symlink
to the currently-installed version of the library,
e.g. libfoo.so.1.2.3

https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are-between-the-various-libc-so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 55 / 61

(17) libc

libc implements both
standard C functions like strcpy() and
POSIX functions (which may be system calls) like getpid()
Note that not all standard C functions are in libc

most math functions are in libm

https://stackoverflow.com/questions/11372872/what-is-the-role-of-libcglibc-in-our-linux-app

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 56 / 61

(18) System calls and thunks

system calls is different from normal functions
because they call to the kernel
they can’t be resolved by the linker
architecture-specific assembly language thunks
are used to call into the kernel
libc provides those assembly language thunks

https://stackoverflow.com/questions/11372872/what-is-the-role-of-libcglibc-in-our-linux-app

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 57 / 61

(19) libc and glibc

in Linux, it is the combination of the kernel and libc
that provides the POSIX API
libc is a single library file (both .so and .a versions are available)
in most cases resides in /usr/lib

the glibc (GNU libc) project provides more than just libc
it also provides the libm
and other core libraries like libpthread

So libc is just one of the libraries provided by glibc
and there are other alternate implementations of libc
other than glibc

https://stackoverflow.com/questions/11372872/what-is-the-role-of-libcglibc-in-our-linux-app

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 58 / 61

(20) glibc

1 C library described in ANSI,c99,c11 standards.

includes macros, symbols, function implementations etc.
printf(), malloc() etc

2 POSIX standard library.

the "userland" glue of system calls. (open(), read() etc)
no actual implementations of system calls (kernel does it)
but glibc provides the user land interface to the services
provided by kernel so that user application
can use a system call just like a ordinary function.

3 Also some nonstandard but useful stuff.

https://linux.die.net/man/8/ld-linux

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 59 / 61

(21) libc.so

libc.so is usually a linker script

pointing to

the 64-bit C library (dynamic or shared)
dynamic linker

used to link 64-bit executables at the build-time
provides instructions for ld

/* GNU ld script
Use the shared library, but some functions are only in
the static library, so try that secondarily. */

OUTPUT_FORMAT(elf64-x86-64)
GROUP (/lib/x86_64-linux-gnu/libc.so.6

/usr/lib/x86_64-linux-gnu/libc_nonshared.a
AS_NEEDED (/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2))

https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are-between-the-various-libc-so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 60 / 61

(22) Linker script

In the GNU C library’s case
dynamically linked programs still need
some symbols from the static library
so a linker script is used instead
so that the linker can try both
(dynamic linking and static linking)

the linker script also refers to the dynamic linker
which will be used at the runtime
(/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2)
its name is embedded in executables in .interp

https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are-between-the-various-libc-so

Young W. Lim ELF1 7A Linking Background - ELF Study 1999 2020-07-16 Thr 61 / 61

	Based on
	Static binary and dynamic binary
	Static binary
	Dynamic binary

	Types of linking
	TOC
	Staic vs. dynamic linking
	Build-time, load-time, run-time linking

	Linking for dynamic executables / libraries
	TOC
	Build-time linking for dynamic executables / libraries
	Load-time linking for dynamic executables / libraries

