Spectrum Representation (2B)

Copyright (c) 2009 - 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

ω_{s} and ω_{0}

Fourier Transform Types

Continuous Time Fourier Series

$$C_{k} = \frac{1}{T} \int_{0}^{T} x(t) e^{-jk\omega_{0}t} dt \quad \Longleftrightarrow x(t) = \sum_{k=-\infty}^{+\infty} C_{k} e^{+jk\omega_{0}t}$$

Discrete Time Fourier Series

$$\gamma[\mathbf{k}] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\mathbf{k}\hat{\omega}_0 n} \quad \longleftrightarrow \ x[n] = \sum_{k=0}^{N-1} \gamma[k] e^{+jk\hat{\omega}_0 n}$$

Continuous Time Fourier <u>Transform</u>

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) \ e^{-j\omega t} dt \qquad \Longleftrightarrow \ x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) \ e^{+j\omega t} d\omega$$

Discrete Time Fourier Transform

$$X(j\hat{\boldsymbol{\omega}}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\hat{\boldsymbol{\omega}}n} \qquad \longleftrightarrow \quad x[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(j\hat{\boldsymbol{\omega}}) e^{+j\hat{\boldsymbol{\omega}}n} d\hat{\boldsymbol{\omega}}$$

4

Computation at $k\omega_0$

Computations using DFT

CTFTAperiodic x(t)
$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$
 $X(jk\omega_0) \approx T_s DFT\{x(nT_s)\}$ $\omega \leftarrow k\omega_0$ $(\omega) = k\hat{\omega}_0 f_s = k\left(\frac{2\pi}{NT_s}\right) rad/sec$

DTFS Periodic x[n] $\gamma[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\hat{\omega}_0 n}$ $\gamma[k] = \frac{1}{N} DFT\{x[n]\}$ $k\hat{\omega}_0$ $(a) k\omega_0 = k\hat{\omega}_0 f_s = k \left(\frac{2\pi}{NT_s}\right) rad/sec$

DTFT Aperiodic x[n]

$$X(j\hat{\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\hat{\omega}n}$$

$$X(jk\hat{\omega}_{0}) \approx DFT\{x[n]\}$$

$$\hat{\omega} \leftarrow k\hat{\omega}_{0}$$

$$(a) k\omega_{0} = k\hat{\omega}_{0}f_{s} = k\left(\frac{2\pi}{NT_{s}}\right) rad/sec$$

Computations using DFT

FFT Amplitude and Power Spectrum

Two-Sided Amplitude Spectrum

$$A_{k} = \frac{1}{N} |X[k]| \qquad (V/Hz^{-1/2})$$
$$= \frac{1}{N} \sqrt{\Re^{2} \{X[k]\} + \Im^{2} \{X[k]\}}$$

$$k = 0, 1, 2, \cdots, N/2, N/2 + 1, \cdots, N - 1$$

One-Sided Amplitude Spectrum

$$\bar{A}_0 = \frac{1}{N} |X[0]| \qquad k = 0$$
$$\bar{A}_k = \frac{2}{N} |X[k]| \qquad k = 1, 2, \dots, N/2$$

Frequency Bin

$$f = k \frac{f_s}{N}$$

Two-Sided Power Spectrum

$$P_{k} = \frac{1}{N^{2}} |X[k]|^{2} \qquad (V^{2}/Hz^{-1})$$
$$= \frac{1}{N^{2}} (\Re^{2} \{X[k]\} + \Im^{2} \{X[k]\})$$

$$k = 0, 1, 2, \cdots, N/2, N/2 + 1, \cdots, N - 1$$

One-Sided Power Spectrum

$$\bar{P}_{0} = \frac{1}{N^{2}} |X[0]|^{2} \quad k = 0$$
$$\bar{P}_{k} = \frac{2}{N^{2}} |X[k]|^{2} \quad k = 1, 2, \dots, N/2$$

Frequency Bin

$$f = k \frac{f_s}{N}$$

Spectrum Representation (2B)

FFT Amplitude and Phase Spectrum

Two-Sided Amplitude Spectrum

$$A_{k} = \frac{1}{N} |X[k]|$$
$$= \frac{1}{N} \sqrt{\Re^{2} \{X[k]\} + \Im^{2} \{X[k]\}}$$

$$k = 0, 1, 2, \cdots, N/2, N/2 + 1, \cdots, N - 1$$

Two-Sided Phase Spectrum

$$\phi_k = \tan^{-1} \left(\frac{\Im \{X[k]\}}{\Re \{X[k]\}} \right)$$

$$k = 0, 1, 2, \dots, N/2, N/2 + 1, \dots, N - 1$$

Frequency Bin

$$f = k \frac{f_s}{N}$$

Spectrum Representation (2B)

CTFS and Power Spectrum

Two-Sided Power Spectrum

$$\frac{1}{N^2} |X[k]|^2 = |C_k|^2 = \frac{1}{4} (a_k^2 + b_k^2) = \frac{1}{4} |g_k|^2$$

Single-Sided Power Spectrum

$$\frac{2}{N^2} |X[k]|^2 = 2 |C_k|^2 = \frac{1}{2} |g_k|^2 = |g_{k,rms}|^2$$

$$C_{k} = \frac{1}{2}g_{k} e^{ij\phi_{k}} \quad (k > 0)$$

$$C_{k} = \frac{1}{2}g_{-k} e^{-j\phi_{k}} \quad (k < 0)$$

$$x(t) = g_{0} + \sum_{k=1}^{\infty} g_{k} \cos(k\omega_{0}t + \phi_{k})$$

 g_k each sinusoid's amplitude $g_{k,rms}$ each sinusoid's amplitude rms value

Average Power and Total Energy

5A Spectrum Representation

11

Parseval's Theorem for DFT

Periodogram as a frequency domain samples

5A Spectrum Representation

13

Parseval's Theorem

Approximate CTFS Parseval's Theorem

5A Spectrum Representation

15

DTFS Parseval's Theorem

Approximate CTFT Parseval's Theorem

Approximate **DTFT** Parseval's Theorem

Average Power and Total Energy

Periodic Signals	Aperiodic Signals
Average Power	Total Energy

Parseval's Theorem

Periodic Signals	Aperiodic Signals
Average Power	Total Energy

Continuous Time	
Discrete Time	

CTFS Average Power	CTFT Total Energy
$\frac{1}{T}\int_{T} x(t) ^{2}dt = \sum_{k=-\infty}^{+\infty} C_{k} ^{2}$	$\int_{T} x(t) ^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^{2} d\omega$
DTFS Average Power	DTFT Total Energy
$\frac{1}{N}\sum_{n=0}^{N-1} x[n] ^2 = \sum_{k=0}^{N-1} y[k] ^2$	$T_{s} \sum_{n=0}^{N-1} x[n] ^{2} = \frac{T_{s}}{2\pi} \int_{2\pi} X(j\hat{\omega}) ^{2} d\hat{\omega}$

Average Power and Total Energy

Periodic Signals	Aperiodic Signals
Average Power	Total Energy

Average Power CTFS CTFT **Total Energy Continuous** Time $\cdot T$ $\frac{1}{T}\int_{T}|x(t)|^{2}dt$ $\int |x(t)|^2 dt$ DTFS DTFT **Average Power Total Energy Discrete** Time **Total Energy Average Power**

DFT Approximation

Periodic Signals	Aperiodic Signals
Average Power	Total Energy

CTFSAverage PowerCTFTTotal Energy $\frac{1}{N^2} \sum_{k=0}^{N-1} |X[k]|^2 = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$ $\frac{T_s}{N} \sum_{k=0}^{N-1} |X[k]|^2 = T_s \sum_{n=0}^{N-1} |x[n]|^2$ DTFSAverage PowerDTFTTotal Energy $\frac{1}{N^2} \sum_{k=0}^{N-1} |X[k]|^2 = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$ $\frac{T_s}{N} \sum_{k=0}^{N-1} |X[k]|^2 = T_s \sum_{n=0}^{N-1} |x[n]|^2$

Continuous

Time

Discrete

Time

Fourier Series Coefficients

	Periodic Signals	Aperiodic Signals
Frequency Spacing	$\omega_0 = \frac{2\pi}{NT_s}$	$\omega_0 = \frac{2\pi}{NT_s} \left(\hat{\omega}_0 = \frac{2\pi}{N}\right)$
Two Sided F.S. Coefficient	$\frac{1}{N}X[k] = C_k$	$\frac{T_0}{N} X[k] = T_s X[k] = X(jk\omega_0)$
Frequency Bin	$k\omega_0 = k \left(\frac{2\pi}{NT_s}\right)$	$k\omega_0 = k\hat{\omega}_0 f_s = k \left(\frac{2\pi}{NT_s}\right)$
	\mathbf{C}_{i} will be spread	over f_{μ} $(C_{\mu} / f_{\mu} = C_{\mu} T_{\mu})$

One-sided Fourier Series Coefficients

	Periodic Signals	Aperiodic Signals
Frequency Spacing	$\omega_0 = \frac{2\pi}{NT_s} = \frac{2\pi}{T_0}$	$\omega_0 = \frac{2\pi}{NT_s} \left(\hat{\omega}_0 = \frac{2\pi}{N}\right)$
Two Sided F.S. Coefficient	$\frac{1}{N}X[k] = C_k$	$\frac{T_0}{N} X[k] = X(jk\omega_0)$
One Sided F.S. Coefficient	$\frac{1}{N}X[k] k=0, \ \frac{N}{2}$	$\frac{T_0}{N} X[k] \qquad k=0, \ \frac{N}{2}$
	$\frac{2}{N}X[k] k=1,\cdots,\frac{N}{2}-1$	$\frac{2I_0}{N}X[k] \qquad k=1,\cdots,\frac{N}{2}-1$
Frequency Bin	$k\omega_0 = k\left(\frac{2\pi}{NT_s}\right)$	$k\omega_0 = k\hat{\omega}_0 f_s = k \left(\frac{2\pi}{NT_s}\right)$
	Average Power	Total Energy

Spectral Density Functions

Using Periodograms

	Periodic Signals	Aperiodic Signals
Two Sided F.S. Coefficient	$\frac{1}{N}X[k] = C_k$	$\frac{T_0}{N} X[k] = X(jk\omega_0)$
Parseval's Theorem	$\sum_{k=0}^{N-1} C_k ^2 = \frac{1}{T} \int_T x(t) ^2 dt$	$\frac{1}{2\pi}\int_{-\infty}^{+\infty} X(j\omega) ^2d\omega=\int_{-\infty}^{+\infty} x(t) ^2dt$
		$\cdot \omega_0 \left(= \frac{2 \pi}{T_0} \right)$
Approximation By DFT's	$\sum_{k=0}^{N-1} \left \frac{X[k]}{N} \right ^2 = \frac{T_s}{T} \sum_{n=0}^{N-1} x[n] ^2$	$\frac{1}{NT_s} \sum_{k=0}^{N-1} T_s X[k] ^2 = T_s \sum_{n=0}^{N-1} x[n] ^2$
	$\frac{1}{N}\sum_{k=0}^{N-1} \left\{ \frac{1}{N} X[k] ^2 \right\} = \frac{1}{N}\sum_{n=0}^{N-1} x[n] ^2$	$T_{s}\sum_{k=0}^{N-1} \left\{ \frac{1}{N} X[k] ^{2} \right\} = T_{s}\sum_{n=0}^{N-1} x[n] ^{2}$
	Averaging Operation	Integrating Operation
Using Periodograms	$\frac{1}{N} \sum_{k=0}^{N-1} P_{xx}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] ^2$	$T_{s} \sum_{k=0}^{N-1} P_{xx}[k] = T_{s} \sum_{n=0}^{N-1} x[n] ^{2}$
	Average Power	Total Energy
Spectrum Representation (2B)	26	Young Won L 1/21/

Using Periodograms

	Periodic Signals	Aperiodic Signals
Two Sided F.S. Coefficient	$\frac{1}{N}X[k] = C_k$	$\frac{T_0}{N}X[k] = X(jk\omega_0)$
Parseval's Theorem	$\sum_{k=0}^{N-1} C_k ^2 = \frac{1}{T} \int_T x(t) ^2 dt$	$\frac{1}{2\pi}\int_{-\infty}^{+\infty} X(j\omega) ^2d\omega=\int_{-\infty}^{+\infty} x(t) ^2dt$
Using Periodograms	$\frac{1}{N} \sum_{k=0}^{N-1} P_{xx}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] ^2$	$T_{s}\sum_{k=0}^{N-1} P_{xx}[k] = T_{s}\sum_{n=0}^{N-1} x[n] ^{2}$
	Average Power	Total Energy
Periodograms	$P_{xx}[k] = \sum_{k=0}^{N-1} \frac{1}{N} X[k] ^2$	$P_{xx}[k] = \sum_{k=0}^{N-1} \frac{1}{N} X[k] ^2$
Approximated PSD & ESD	$PSD[k] = \frac{1}{N^2} X[k] ^2$	$ESD[k] = \frac{T_s}{N} X[k] ^2$
Average Power & Total Energy	$\sum_{k=0}^{N-1} PSD[k] = \sum_{k=0}^{N-1} \frac{1}{N^2} X[k] ^2$	$\sum_{k=0}^{N-1} ESD[k] = \sum_{k=0}^{N-1} \frac{T_s}{N} X[k] ^2$

Using Periodograms

	Periodic Signals	Aperiodic Signals
Two Sided F.S. Coefficient	$\frac{1}{N}X[k] = C_k$	$\frac{T_0}{N} X[k] = X(jk\omega_0)$
Approximated PSD & ESD	$\frac{ X[k] ^2}{N^2}$	$\frac{T_s}{N} X[k] ^2$
	Averaging the periodogram	Integrating the periodogram
Using Periodograms	$\frac{1}{N}\sum_{k=0}^{N-1} P_{xx}[k] = \frac{1}{N}\sum_{n=0}^{N-1} x[n] ^2$	$T_{s}\sum_{k=0}^{N-1} P_{xx}[k] = T_{s}\sum_{n=0}^{N-1} x[n] ^{2}$
	Average Power	Total Energy
Approximated PSD & ESD	$\sum_{k=0}^{N-1} PSD[k] = \sum_{k=0}^{N-1} \frac{1}{N^2} X[k] ^2$	$\sum_{k=0}^{N-1} ESD[k] = \sum_{k=0}^{N-1} \frac{T_s}{N} X[k] ^2$

FS Coefficients of Periodic and Aperiodic Signals

FS Coefficients of Periodic and Aperiodic Signals

	Periodic Signals	Aperiodic Signals
Frequency Spacing	$\Delta f = \frac{1}{N \Delta t}$	$\Delta f = \frac{1}{N \Delta t}$
Two Sided F.S. Coefficient	$\frac{1}{N}X(k)$	$\frac{\Delta t}{N} X(k)$
One Sided F.S. Coefficient	$\frac{1}{N}X(k) k=0, \ \frac{N}{2}$ $\frac{2}{N}X(k) k=1,\cdots,\frac{N}{2}-1$	$\frac{\Delta t}{N} X(k) \qquad k=0, \ \frac{N}{2}$ $\frac{2\Delta t}{N} X(k) \qquad k=1, \cdots, \frac{N}{2}-1$
Frequency Bin	$k \Delta f$	$k \Delta f$
	Average Power	Total Energy

Power Spectrum and Power Spectral Density

$$\frac{1}{N} \sum_{n=0}^{N-1} x^{2}[n] = \frac{1}{N^{2}} \sum_{k=0}^{N-1} |X[k]|^{2}$$

$$\Rightarrow \sum_{k=0}^{N-1} S[k] \Delta f$$

$$= \frac{1}{NT_{s}} \sum_{k=0}^{N-1} S[k] = \frac{1}{N^{2}} \sum_{k=0}^{N-1} |X[k]|^{2}$$

$$S[k] = \frac{T_{s}}{N} |X[k]|^{2}$$

Periodogram → Power Spectral Density

Spectrum Representation (2B)

FS Coefficients of Random Signals

Random Signals

Frequency Spacing

$$\Delta f = \frac{1}{N \Delta t}$$

Two Sided Power Spectral Density

One Sided Power Spectral Density

$P = \sum_{k=1}^{N-1} S(k) \Delta$	f

$$P = \sum_{k=0}^{N/2} S_{1}(k) \Delta f$$

$$S_{1}(k) = 2S(k) \quad k = 0, \ \frac{N}{2}$$

$$S_{1}(k) = S(k) \quad k = 1, \cdots, \frac{N}{2} - 1$$

 $\frac{1}{N\Delta t} \sum x^2 \Delta t$ $\sum S \Delta f = \frac{1}{N\Delta t} \sum S$

$$S(k) = \frac{\Delta t}{N} |X(k)|^2$$

Frequency Bin

Representation (2B)

Spectrum

 $k\Delta f$

33

Power Spectrum using FFT

Discrete Fourier <u>Transform</u>

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j(2\pi/N)kn}$$
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j(2\pi/N)kn}$$

$$x(t) = \sum_{k=-\infty}^{+\infty} C_k e^{+jk\omega_0 t}$$
 CTFS

$$x_{FS}(t) = \sum_{k=-M}^{+M} \gamma_k e^{+jk\omega_0 t}$$
 DTFS

 $C_k \approx \gamma_k = \frac{X[k]}{N}$ Approximated Fourier Coefficients

 $|C_k|^2 \approx \frac{|X[k]|^2}{N^2}$ Approximated Power Spectrum X = fft(x)

$$x = ifft(X)$$

Approximated Fourier Series Coefficients

fc = fft(x)/N = X/N

x = ifft(fc)*N

Spectrum Representation (2B)

Periodogram using FFT

RMS in continuous time $C_k \approx \gamma_k = \frac{X[k]}{N}$ Approximated Fourier Coefficients $|C_k|^2 \approx \frac{|X[k]|^2}{N^2}$ Approximated Power Spectrum $\frac{1}{T}\int g^2(t) dt$ $\frac{1}{N} \sum_{n=0}^{N-1} x^{2}[n] = \frac{1}{N^{2}} \sum_{k=0}^{N-1} |X[k]|^{2}$ Average Power $\left| \sqrt{\frac{\sum_{k=0}^{N-1} |X[k]|^2}{N}} \right|^2 \quad \text{RMS of sq root} \\ \text{Periodogram}$ **RMS** in discrete time $\frac{|X[k]|^2}{N} \quad k=0,1,\ldots,N-1 \quad \begin{array}{c} \text{Approximated} \\ \text{Periodogram} \end{array}$ $N \Delta$ Λ $\frac{|X[k]|}{\sqrt{N}} \quad k=0,1,\ldots,N-1 \quad \begin{array}{c} \text{Square root} \\ \text{Periodogram} \end{array}$ $\frac{1}{N\Lambda} \sum_{k=0}^{N-1} |g[k]|^2 \Delta = \frac{1}{N} \sum_{k=0}^{N-1} |g[k]|^2$

From CTFS to CTFT

Continuous Time Fourier <u>Series</u>

$$C_{k} = \frac{1}{T} \int_{0}^{T} x(t) e^{-jk\omega_{0}t} dt \qquad \Longrightarrow \qquad x(t) = \sum_{n=0}^{\infty} C_{k} e^{+jk\omega_{0}t}$$

$$C_{k} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{+T_{0}/2} x_{T_{0}}(t) e^{-jk\omega_{0}t} dt \qquad \qquad x_{T_{0}}(t) = \sum_{n=0}^{\infty} C_{k} e^{+jk\omega_{0}t} \cdot \frac{2\pi}{2\pi} \cdot \frac{T_{0}}{T_{0}}$$

$$C_{k}T_{0} = \int_{-T_{0}/2}^{+T_{0}/2} x_{T_{0}}(t) e^{-jk\omega_{0}t} dt \qquad \qquad x_{T_{0}}(t) = \frac{1}{2\pi} \sum_{k=0}^{\infty} C_{k}T_{0} e^{+jk\omega_{0}t} \cdot \frac{2\pi}{T_{0}}$$

$$T_0 \rightarrow \infty$$
 $\omega_0 = \frac{2\pi}{T_0} \rightarrow d \omega$ $C_k T_0 \rightarrow X(j \omega)$ $x_{T_0} \rightarrow x(t)$

Continuous Time Fourier <u>Transform</u>

$$X(\mathbf{j}\omega) = \int_{-\infty}^{+\infty} x(t) e^{-\mathbf{j}\omega t} dt \quad \longleftrightarrow \quad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\mathbf{j}\omega) e^{+\mathbf{j}\omega t} d\omega$$

Spectrum Representation (2B)

CTFS and CTFT

Discrete Fourier <u>Transform</u>

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j(2\pi/N)kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j(2\pi/N)kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j(2\pi/N)kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{-j(2\pi/N)kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[n] e^{-j(2\pi/N)kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[n] e^{-j(2\pi/N)kn}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[n] e^{-j(2\pi/N)kn}$$

 $C_k \approx \gamma_k = \frac{X[k]}{N}$ Approximated Fourier Coefficients

Continuous Time Fourier <u>Series</u>

$$\frac{C_k T_0}{C_k T_0} = \int_{-T_0/2}^{+T_0/2} x_{T_0}(t) e^{-jk\omega_0 t} dt$$

$$\frac{X(j\omega)}{X(j\omega)} = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

$$T_0 \rightarrow \infty$$
, $\omega_0 \rightarrow 0 \ (\omega_0 \rightarrow d \ \omega)$

$$x_{T_0}(t) = \frac{1}{2\pi} \sum_{k=0}^{\infty} C_k T_0 e^{+jk\omega_0 t} \cdot \frac{2\pi}{T_0}$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega$$

Spectrum Representation (2B)

Signals without discontinuity Signals with discontinuity

Sampling frequency is not an integer multiple of the FFT length

Leakage

$\begin{bmatrix} \mathbf{0}, & \frac{f_s}{2} \end{bmatrix}$

Laplace Transform $(t) e^{-st} = f(t)e^{-(\sigma + j\omega)t}$

Linear Time Domain Analysis Initial Condition

z Transform

 $f[n] z^{-n}$

Discrete Time System Difference Equation

$$z = e^{sT} = e^{\sigma T} e^{j\omega T}$$

Spectrum Representation (2B)

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] M.J. Roberts, Fundamentals of Signals and Systems
- [4] S.J. Orfanidis, Introduction to Signal Processing
- [5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings
- [6] A "graphical interpretation" of the DFT and FFT, by Steve Mann