
1 Young Won Lim
7/7/20

Monad P3 : Types (1A)

2 Young Won Lim
7/7/20

 Copyright (c) 2016 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Types (1A) 3 Young Won Lim
7/7/20

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Types (1A) 4 Young Won Lim
7/7/20

data - creates new algebraic type with value constructors

● Can have several value constructors

● Value constructors are lazy

● Values can have several fields

● Affects both compilation and runtime, have runtime overhead

● Created type is a distinct new type

● Can have its own type class instances

● When pattern matching against value constructors,

WILL be evaluated at least to weak head normal form (WHNF) *

● Used to create new data type

(example: Address { zip :: String, street :: String })

https://www.reddit.com/r/haskell/comments/6xri4d/whats_the_difference_between_newtype_type_and_data/

data

Types (1A) 5 Young Won Lim
7/7/20

newtype - creates new “decorating” type with value constructor

● Can have only one value constructor

● Value constructor is strict

● Value can have only one field

● Affects only compilation, no runtime overhead

● Created type is a distinct new type

● Can have its own type class instances

● When pattern matching against value constructor,

CAN be not evaluated at all *

● Used to create higher level concept based on existing type

with distinct set of supported operations or

that is not interchangeable with original type

(example: Meter, Cm, Feet is Double)

https://www.reddit.com/r/haskell/comments/6xri4d/whats_the_difference_between_newtype_type_and_data/

newtype

Types (1A) 6 Young Won Lim
7/7/20

type - creates an alternative name (synonym) for a type (typedef in C)

● No value constructors

● No fields

● Affects only compilation, no runtime overhead

● No new type is created (only a new name for existing type)

● Can NOT have its own type class instances

● When pattern matching against data constructor,

behaves the same as original type

● Used to create higher level concept based on existing type

with the same set of supported operations

(example: String is [Char])

https://www.reddit.com/r/haskell/comments/6xri4d/whats_the_difference_between_newtype_type_and_data/

type

Types (1A) 7 Young Won Lim
7/7/20

data: zero or more constructors,

each can contain zero or more values.

newtype: similar to above

but exactly one constructor

and only one value in that constructor,

and has the exact same runtime representation

as the value that it stores.

type: type synonym, compiler more or less

forgets about it once it is expanded.

https://www.reddit.com/r/haskell/comments/6xri4d/whats_the_difference_between_newtype_type_and_data/

data, newtype, type

Types (1A) 8 Young Won Lim
7/7/20

Both newtype and the single-constructor data

introduce a single data constructor,

but the data constructor introduced by newtype is strict

and the data constructor introduced by data is lazy.

data D = D Int -- lazy

newtype N = N Int -- strict

Then N undefined is equivalent to undefined

and causes an error when evaluated.

But D undefined is not equivalent to undefined,

and it can be evaluated as long as you don't try to peek inside.

https://www.reddit.com/r/haskell/comments/6xri4d/whats_the_difference_between_newtype_type_and_data/

data (lazy), newtype (strict)

Types (1A) 9 Young Won Lim
7/7/20

a data definition without data constructors

cannot be instantiated

data B

a new type constructor B,

but no data constructors to produce values of type B

In fact, such a data type is declared in the Haskell base: Void

ghci> import Data.Void

ghci> :i Void

data Void -- Defined in ‘Data.Void’

https://stackoverflow.com/questions/45385621/data-declaration-with-no-data-constructor-can-it-be-instantiated-why-does-it-c

Data definition without data constructors (1)

Types (1A) 10 Young Won Lim
7/7/20

Being able to have uninhabited types turns out

to be useful in some areas

passing an uninhabited type as a type parameter

to another type constructor

https://stackoverflow.com/questions/45385621/data-declaration-with-no-data-constructor-can-it-be-instantiated-why-does-it-c

Data definition without data constructors (2)

Types (1A) 11 Young Won Lim
7/7/20

data B = String

defines

a type constructor B and

a data constructor String,

both taking no arguments.

Note that the String you define is in the value namespace,

so is different from the usual String type constructor.

ghci> data B = String

ghci> x = String

ghci> :t x

x :: B

https://stackoverflow.com/questions/45385621/data-declaration-with-no-data-constructor-can-it-be-instantiated-why-does-it-c

Data definition with data constructors

Types (1A) 12 Young Won Lim
7/7/20

This is a type where we specify the shape of each of the elements.

Algebraic refers to the property that

 an Algebraic Data Type is created by algebraic operations.

The algebra here is sums and products:

 sum is alternation (A | B, meaning A or B but not both)

 product is combination (A B, meaning A and B together)

http://wiki.haskell.org/Algebraic_data_type

Algebraic type

Types (1A) 13 Young Won Lim
7/7/20

data Pair = P Int Double

a pair of numbers, an Int and a Double together.

The tag P is used (in constructors and pattern matching)

to combine the contained values into a single structure

that can be assigned to a variable.

data Pair = I Int | D Double

 just one number, either an Int or else a Double.

the tags I and D are used (in constructors and pattern matching)

to distinguish between the two alternatives.

http://wiki.haskell.org/Algebraic_data_type

Algebraic type

Types (1A) 14 Young Won Lim
7/7/20

Sums and products can be repeatedly combined

into an arbitrarily large structures.

Algebraic Data Type is not to be confused with *Abstract* Data Type,

which (ironically) is its opposite, in some sense.

The initialism ADT usually means *Abstract* Data Type,

but GADT usually means Generalized Algebraic Data Type.

http://wiki.haskell.org/Algebraic_data_type

Algebraic type

Types (1A) 15 Young Won Lim
7/7/20

types, functions and values

Type variables in Haskell are typically named starting at a, b, etc.

They are sometimes (but not often)

decorated with numbers like a1 or b3.

http://wiki.haskell.org/Algebraic_data_type

Decorate type

Types (1A) 16 Young Won Lim
7/7/20

Functions used as higher-order arguments

are typically named starting at f, g, etc.

They will sometimes be decorated with numbers like type variables

and will also be decorated with the ' character like g'.

You would read this latter example as "Jee-prime"

and it is typically a function that is

in some way related to g used as a helper or the like.

Occasionally functions may be given names

that are not on this continuum as an aide memoir,

for example a function parameter used internally

as a predicate may be given the name p.

http://wiki.haskell.org/Algebraic_data_type

Decorate type

Types (1A) 17 Young Won Lim
7/7/20

Arguments to functions, or variables used exclusively

inside short functions, are often given names starting at x, y, etc.,

again occasionally decorated by numbers.

Other single-letter variable names may be chosen

if they can act as a mnemonic for their role such

as using a variable named p for a value known to be prime.

Note that these are guidelines and not rules.

Any of them can and will be ignored,

modified and/or abused in any given piece of Haskell code.

(A quick look at the Standard Prelude

as provided in the Haskell 98 Report should

be convincing enough for this.)

http://wiki.haskell.org/Algebraic_data_type

Decorate type

Types (1A) 18 Young Won Lim
7/7/20

newtype is used when you want to wrap one type in another type and nothing more complicated

than that. Because of this restriction, it can be represented the same as the original type in

memory, meaning there is zero runtime penalty for using a newtype

newtype Dollars = Dollars Int

Here, newtype is being used to take the somewhat uninformative type Int and create a more

descriptive type, Dollars. To make a value of Dollars, one might write Dollars 3.)

https://webcache.googleusercontent.com/search?q=cache:_5Dl-cKznPcJ:https://andre.tips/wmh/newtype/
+&cd=12&hl=en&ct=clnk&gl=us

Newtype

Types (1A) 19 Young Won Lim
7/7/20

Sometimes you want to make a type that’s almost the same as another type. For example

imagine our program calls for a Dollar type, a Yen type, and a Euro type, which are all just

wrappers around Double. And let’s say also we had a Currency typeclass with a

convertToDollars and convertFromDollars function. We’d like to add, subtract, and multiply our

currency like we could regular numbers.

One way to make our types would be as follows:

data Dollar = Dollar Double deriving (Read, Show)

data Euro = Euro Double deriving (Read, Show)

data Yen = Yen Double deriving (Read, Show)

https://webcache.googleusercontent.com/search?q=cache:_5Dl-cKznPcJ:https://andre.tips/wmh/newtype/
+&cd=12&hl=en&ct=clnk&gl=us

Newtype

Types (1A) 20 Young Won Lim
7/7/20

Now, this has two issues. The first is that we can’t add or subtract two Dollars. We’d have to

make each of these an instance of the Num typeclass, like this.

data Dollar = Dollar Double deriving (Read, Show)

data Euro = Euro Double deriving (Read, Show)

data Yen = Yen Double deriving (Read, Show)

-- This, but for every currency:

instance Num Dollar where

 (Dollar a) + (Dollar b) = Dollar (a + b)

 (Dollar a) - (Dollar b) = Dollar (a - b)

 (Dollar a) * (Dollar b) = Dollar (a * b)

 negate (Dollar a) = Dollar (-a)

 abs (Dollar a) = Dollar (abs a)

https://webcache.googleusercontent.com/search?q=cache:_5Dl-cKznPcJ:https://andre.tips/wmh/newtype/
+&cd=12&hl=en&ct=clnk&gl=us

Newtype

Types (1A) 21 Young Won Lim
7/7/20

same for every currency! Wrapping one type (in our case, Double) in another (in our case, Dollar)

is such a common need that we have special syntax for it, newtype.

newtype Dollar = Dollar Double deriving (Read, Show)

newtype Euro = Euro Double deriving (Read, Show)

newtype Yen = Yen Double deriving (Read, Show)

https://webcache.googleusercontent.com/search?q=cache:_5Dl-cKznPcJ:https://andre.tips/wmh/newtype/
+&cd=12&hl=en&ct=clnk&gl=us

Newtype

Types (1A) 22 Young Won Lim
7/7/20

The main difference between using newtype and data is that newtype only works with the very

simple situation of wrapping one type in one other type. You can’t use sum types or have

multiple types wrapped up in one. And there’s a special GHC feature that makes newtype much

more useful by letting it automatically derive typeclasses for you, and you turn it on by putting {-#

LANGUAGE GeneralizedNewtypeDeriving #-} at the top of your code. This is called a pragma to

turn on a language extension. We’ll discuss these later, for now just know that putting that at the

top of a file turns on an extra feature of GHC. Here’s how it looks in action:

https://webcache.googleusercontent.com/search?q=cache:_5Dl-cKznPcJ:https://andre.tips/wmh/newtype/
+&cd=12&hl=en&ct=clnk&gl=us

Newtype

Types (1A) 23 Young Won Lim
7/7/20

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype Dollar = Dollar Double deriving (Read, Show, Num)

newtype Euro = Euro Double deriving (Read, Show, Num)

newtype Yen = Yen Double deriving (Read, Show, Num)

With GeneralizedNewtypeDeriving turned on, we were able to add Num to our list of typeclasses

we’d like to be automatically derived, which is very useful! We’d be able to run (Dollar 3) + (Dollar

4) to get Dollar 7.0.

https://webcache.googleusercontent.com/search?q=cache:_5Dl-cKznPcJ:https://andre.tips/wmh/newtype/
+&cd=12&hl=en&ct=clnk&gl=us

Newtype

Types (1A) 24 Young Won Lim
7/7/20

There’s one other difference between newtype and data. Specifically, whether the constructor is

strict or lazy. Imagine the following:

data D = D Int

newtype N = N Int

Now, you may remember that Haskell tries to only evaluate things when really necessary, so if

you write 1+2 it won’t actually evaluate that until it needs to. Haskell also has a special value

named undefined which you can pass to any function and causes your program to instantly crash

when it’s evaluated.

https://webcache.googleusercontent.com/search?q=cache:_5Dl-cKznPcJ:https://andre.tips/wmh/newtype/
+&cd=12&hl=en&ct=clnk&gl=us

Newtype

Types (1A) 25 Young Won Lim
7/7/20

 data is for making new, complicated types, like data Person = Bob | Cindy | Sue.

 newtype is for “decorating” or making a copy of an existing type, like newtype Dollar = Dollar

Double.

 type is for renaming a type, like type Polygon = [Point], which just makes Dollar be equivalent

to Double and is mostly only used for making certain code easier to read.

https://webcache.googleusercontent.com/search?q=cache:_5Dl-cKznPcJ:https://andre.tips/wmh/newtype/
+&cd=12&hl=en&ct=clnk&gl=us

Newtype

Types (1A) 26 Young Won Lim
7/7/20

Type classes allow us

to declare which types are instances of which class, and

to provide definitions of the overloaded operations

associated with a class.

https://www.haskell.org/tutorial/classes.html

Type class instances

Types (1A) 27 Young Won Lim
7/7/20

For example, let's define a type class containing an equality operator:

class Eq a where

 (==) :: a -> a -> Bool

Eq is the name of the class being defined,

== is the single operation in the class.

a type a is an instance of the class Eq

if there is an (overloaded) operation ==,

of the appropriate type, defined on it.

(Note that == is only defined on pairs of objects of the same type.)

https://www.haskell.org/tutorial/classes.html

Type class instances

class Eq a
class
name

class
instance

type

Types (1A) 28 Young Won Lim
7/7/20

Eq a expresses a constraint that

a type a must be an instance of the class Eq

Eq a

is not a type expression

expresses a constraint on a type

called a context

placed at the front of type expressions

https://www.haskell.org/tutorial/classes.html

Type class instances

Types (1A) 29 Young Won Lim
7/7/20

For example, the effect of the above class declaration

is to assign the following type to ==:

(==) :: (Eq a) => a -> a -> Bool

for every type a that is an instance of the class Eq,

== has type a->a->Bool

elem :: (Eq a) => a -> [a] -> Bool

for every type a that is an instance of the class Eq,

elem has type a->[a]->Bool

https://www.haskell.org/tutorial/classes.html

Type class instances

Types (1A) 30 Young Won Lim
7/7/20

An instance declaration specifies

which types are instances of the class Eq, and

the actual behavior of == on each of those types

instance Eq Integer where

 x == y = x `integerEq` y

the definition of == is called a method.

integerEq happens to be the primitive function

in general, any valid expression for a function definition

https://www.haskell.org/tutorial/classes.html

Type class instances

instance Eq integer
class
name

class
instance

type

class
name

class
instance

type

Types (1A) 31 Young Won Lim
7/7/20

instance Eq Integer where

 x == y = x `integerEq` y

the type Integer is an instance of the class Eq

the definition of the method ==

instance Eq Float where

x == y = x `floatEq` y

the type Float is an instance of the class Eq

the definition of the method ==

https://www.haskell.org/tutorial/classes.html

Type class instances

Types (1A) 32 Young Won Lim
7/7/20

simply substituting type class for class, and type for object,

yields a valid summary of Haskell's type class mechanism:

"Classes capture common sets of operations.

 A particular object may be an instance of a class,

and will have a method corresponding to each operation.

Classes may be arranged hierarchically,

forming notions of superclasses and sub classes,

and permitting inheritance of operations/methods.

A default method may also be associated with an operation."

https://www.haskell.org/tutorial/classes.html

Type class instances

type class class

type object

Haskell OOP

Types (1A) 33 Young Won Lim
7/7/20

In contrast to OOP, it should be clear that types are not objects,

and in particular there is no notion of an object's or

type's internal mutable state.

An advantage over some OOP languages is that

methods in Haskell are completely type-safe:

any attempt to apply a method to a value

whose type is not in the required class

will be detected at compile time instead of at runtime.

In other words, methods are not "looked up" at runtime

but are simply passed as higher-order functions.

https://www.haskell.org/tutorial/classes.html

Type class instances

Types (1A) 34 Young Won Lim
7/7/20

parametric polymorphism is useful in defining families of types

by universally quantifying over all types.

Sometimes, however, it is necessary

to quantify over some smaller set of types,

eg. those types whose elements can be compared for equality.

https://www.haskell.org/tutorial/classes.html

Type class instances

Types (1A) 35 Young Won Lim
7/7/20

type classes can be seen as providing a structured way

to quantify over a constrained set of types

Indeed, we can think of parametric polymorphism

as a kind of overloading too!

an overloading occurs implicitly over all types

a type class for a constrained set of types

https://www.haskell.org/tutorial/classes.html

Type class instances

Types (1A) 36 Young Won Lim
7/7/20

types that are universally quantified in some way over all types.

polymorphic type expressions essentially describe families of types.

For example, (forall a) [a] is the family of types

consisting of, for every type a, the type of lists of a.

Lists of integers (e.g. [1,2,3]), lists of characters (['a','b','c']),

even lists of lists of integers, etc., are all members of this family.

(Note, however, that [2,'b'] is not a valid example,

since there is no single type that contains both 2 and 'b'.)

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Types (1A) 37 Young Won Lim
7/7/20

Identifiers such as a above are called type variables,

and are uncapitalized to distinguish them

from specific types such as Int.

since Haskell has only universally quantified types,

there is no need to explicitly write out the symbol

for universal quantification,

and thus we simply write [a] in the example above.

In other words, all type variables are implicitly universally quantified

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Types (1A) 38 Young Won Lim
7/7/20

Lists are a commonly used data structure in functional languages,

and are a good vehicle for explaining the principles of polymorphism.

The list [1,2,3] in Haskell is actually shorthand for the list 1:(2:(3:[])),

where [] is the empty list and : is the infix operator

that adds its first argument to the front of its second argument (a list).

Since : is right associative, we can also write this list as 1:2:3:[].

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Types (1A) 39 Young Won Lim
7/7/20

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

length [1,2,3] => 3

length ['a','b','c'] => 3

length [[1],[2],[3]] => 3

an example of a polymorphic function.

It can be applied to a list containing elements of any type,

for example [Integer], [Char], or [[Integer]].

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Types (1A) 40 Young Won Lim
7/7/20

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

The left-hand sides of the equations contain

patterns such as [] and x:xs.

In a function application these patterns are

matched against actual parameters in a fairly intuitive way

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Types (1A) 41 Young Won Lim
7/7/20

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

[] only matches the empty list,

x:xs will successfully match any list with at least one element,

binding x to the first element and xs to the rest of the list

If the match succeeds,

the right-hand side is evaluated

and returned as the result of the application.

If it fails, the next equation is tried,

and if all equations fail, an error results.

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Types (1A) 42 Young Won Lim
7/7/20

Function head returns the first element of a list,

function tail returns all but the first.

head :: [a] -> a

head (x:xs) = x

tail :: [a] -> [a]

tail (x:xs) = xs

Unlike length, these functions are not defined

for all possible values of their argument.

A runtime error occurs when these functions

are applied to an empty list.

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Types (1A) 43 Young Won Lim
7/7/20

With polymorphic types, we find that

some types are in a sense strictly more general than others

in the sense that the set of values they define is larger.

For example, the type [a] is more general than [Char].

In other words, the latter type can be derived from the former

by a suitable substitution for a.

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Types (1A) 44 Young Won Lim
7/7/20

With regard to this generalization ordering,

Haskell's type system possesses two important properties:

First, every well-typed expression is guaranteed

to have a unique principal type (explained below),

and second, the principal type can be inferred automatically.

In comparison to a monomorphically typed language such as C,

the reader will find that polymorphism improves expressiveness,

and type inference lessens the burden of types on the programmer.

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Types (1A) 45 Young Won Lim
7/7/20

An expression's or function's principal type is

the least general type that, intuitively,

"contains all instances of the expression".

For example, the principal type of head is [a]->a; [b]->a, a->a,

or even a are correct types, but too general,

whereas something like [Integer]->Integer is too specific.

The existence of unique principal types is the hallmark feature

of the Hindley-Milner type system,

which forms the basis of the type systems of Haskell,

ML, Miranda, ("Miranda" is a trademark of Research Software, Ltd.)

and several other (mostly functional) languages.

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Types (1A) 46 Young Won Lim
7/7/20

to explicitly bring fresh type variables into scope.

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

for any combination of types a and b

choose a = Int and b = String

then it's valid to say that map has the type

(Int -> String) -> [Int] -> [String]

Here we are instantiating the general type of map

to a more specific type.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Explicitly Quantifying Type Variables

Types (1A) 47 Young Won Lim
7/7/20

any introduction of a lowercase type parameter

implicitly begins with a forall keyword,

Example: Two equivalent type statements

id :: a -> a

id :: forall a . a -> a

We can apply additional constraints

on the quantified type variables

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Implicit forall

Types (1A) 48 Young Won Lim
7/7/20

Normally when creating a new type

using type, newtype, data, etc.,

every type variable that appears on the right-hand side

must also appear on the left-hand side.

newtype ST s a = ST (State# s -> (# State# s, a #))

Existential types are a way of escaping

Existential types can be used for several different purposes.

But what they do is to hide a type variable on the right-hand side.

https://wiki.haskell.org/Existential_type

Existential Types

Types (1A) 49 Young Won Lim
7/7/20

Normally, any type variable appearing on the right must

also appear on the left:

data Worker x y = Worker {buffer :: b, input :: x, output :: y}

This is an error, since the type of the buffer

isn't specified on the right (it's a type variable rather than a type)

but also isn't specified on the left (there's no 'b' in the left part).

In Haskell98, you would have to write

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

https://wiki.haskell.org/Existential_type

Type Variable Example – (1) error

Types (1A) 50 Young Won Lim
7/7/20

However, suppose that a Worker can use any type 'b'

so long as it belongs to some particular class.

Then every function that uses a Worker will have a type like

foo :: (Buffer b) => Worker b Int Int

In particular, failing to write an explicit type signature (Buffer b)

will invoke the dreaded monomorphism restriction.

Using existential types, we can avoid this:

https://wiki.haskell.org/Existential_type

Type Variable Example – (2) explicit type signature

Types (1A) 51 Young Won Lim
7/7/20

data Worker x y = forall b. Buffer b =>

Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

The type of the buffer (Buffer) now does not appear

in the Worker type at all.

https://wiki.haskell.org/Existential_type

Type Variable Example – (3) existential type

Types (1A) 52 Young Won Lim
7/7/20

data Worker x y = forall b. Buffer b =>

Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

● it is now impossible for a function

to demand a Worker having a specific type of buffer.

● the type of foo can now be derived automatically

without needing an explicit type signature.

(No monomorphism restriction.)

https://wiki.haskell.org/Existential_type

Type Variable Example – (4) characteristics

Types (1A) 53 Young Won Lim
7/7/20

data Worker x y = forall b. Buffer b =>

Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

● since code now has no idea

what type the buffer function returns,

you are more limited in what you can do to it.

https://wiki.haskell.org/Existential_type

Type Variable Example – (4) characteristics

Types (1A) 54 Young Won Lim
7/7/20

In general, when you use a 'hidden' type in this way,

you will usually want that type to belong to a specific class,

or you will want to pass some functions along

that can work on that type.

Otherwise you'll have some value belonging

to a random unknown type,

and you won't be able to do anything to it!

https://wiki.haskell.org/Existential_type

Hiding a type

Types (1A) 55 Young Won Lim
7/7/20

Note: You can use existential types

to convert a more specific type

into a less specific one.

There is no way to perform the reverse conversion!

https://wiki.haskell.org/Existential_type

Conversion to less a specific type

Types (1A) 56 Young Won Lim
7/7/20

This illustrates creating a heterogeneous list,

all of whose members implement "Show",

and progressing through that list to show these items:

data Obj = forall a. (Show a) => Obj a

xs :: [Obj]

xs = [Obj 1, Obj "foo", Obj 'c']

doShow :: [Obj] -> String

doShow [] = ""

doShow ((Obj x):xs) = show x ++ doShow xs

With output: doShow xs ==> "1\"foo\"'c'"

https://wiki.haskell.org/Existential_type

A heterogeneous list example

Types (1A) 57 Young Won Lim
7/7/20

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Bottom

Types (1A) 58 Young Won Lim
7/7/20

bottom in Haskell specifically called undefined.

This is only one form of it

though technically bottom is also

a non-terminating computation, such as length [1..]

bottom is used to represent an expression which is

● not computable

● runs forever

● never returns a value

● throws an exception

● etc.

https://stackoverflow.com/questions/26428828/what-does-%E2%8A%A5-mean-in-the-strictness-monad-from-p-wadlers-paper

Bottom

Types (1A) 59 Young Won Lim
7/7/20

The term bottom refers to

a computation which never completes successfully.

a computation that fails due to some kind of error,

a computation that just goes into an infinite loop

(without returning any data).

The mathematical symbol for bottom is ' '. ⊥'.

In plain ASCII, '_|_'.

https://wiki.haskell.org/Bottom

Bottom represents computations

Types (1A) 60 Young Won Lim
7/7/20

Bottom is a member of any type,

even the trivial type () or

the equivalent simple type:

data Unary = Unary

https://wiki.haskell.org/Bottom

Bottom – a member of any type

Types (1A) 61 Young Won Lim
7/7/20

Bottom can be expressed in Haskell thus:

bottom = bottom

bottom = error "Non-terminating computation!"

Indeed, the Prelude exports a function

undefined = error "Prelude.undefined"

Other implementations of Haskell, such as Gofer, defined bottom as:

undefined | False = undefined

The type of bottom is arbitrary, and defaults to the most general type:

undefined :: a

https://wiki.haskell.org/Bottom

Bottom – definitions

Types (1A) 62 Young Won Lim
7/7/20

As bottom is an inhabitant of every type a value of every type

bottoms can be used wherever a value of that type would be.

This can be useful in a number of circumstances:

-- For leaving a todo in your program to come back to later:

foo = undefined

-- When dispatching to a type class instance:

print (sizeOf (undefined :: Int))

-- When using laziness:

print (head (1 : undefined))

https://wiki.haskell.org/Bottom

Bottom – Usage

Types (1A) 63 Young Won Lim
7/7/20

if x is computable,

then strict f x evaluates to f x,

but if x is not computable, undefined

then strict f x evaluates to "not computable". undefined

for example, f x = 2 * x.

consider f (1 / 0)

can't evaluate it because you can't evaluate (1 / 0)

(1 / 0) not computable

f (1 / 0) not computable

https://stackoverflow.com/questions/26428828/what-does-%E2%8A%A5-mean-in-the-strictness-monad-from-p-wadlers-paper

Bottom Rule

Types (1A) 64 Young Won Lim
7/7/20

Sometimes it is necessary

to control order of evaluation in a lazy functional program.

Use the computable function strict,

 strict f x = if x ≠ then f x else .⊥ then f x else ⊥. ⊥ then f x else ⊥.

Operationally, strict f x is reduced by

first reducing x to weak head normal form (WHNF)

and then reducing the application f x.

Alternatively, it is safe to reduce x and f x in parallel,

but not allow access to the result until x is in WHNF.

https://stackoverflow.com/questions/26428828/what-does-%E2%8A%A5-mean-in-the-strictness-monad-from-p-wadlers-paper

strict f x

Types (1A) 65 Young Won Lim
7/7/20

Boxed a pointer to a heap object.

Unboxed no pointer

Lifted bottom as an element.

Unlifted no extra values.

Algebraic one or more constructors,

Primitive a built-in type

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/type-type

Classifying types – Summary

thunks

Boxed

Undefined
Infinite loop
Exception

Bottom

Lifted

a value that is
yet to be evaluated

pointer box

lifted by bottom

Types (1A) 66 Young Won Lim
7/7/20

https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

(Un)Lifted and (Un)Boxed types

Lifted type

Boxed type

● bottom _|_

pointer object

Unboxed type Unlifted type

● bottom _|_

No pointers

Lifted type Boxed type Unboxed type Unlifted type

kind * kind #

No bottom

Types (1A) 67 Young Won Lim
7/7/20

programming language :

bottom refers to a value that is less defined than any other.

It's common to assign the bottom value to every computation

that either produces an error or fails to terminate,

because trying to distinguish these conditions

which greatly weakens

the mathematics and

complicates program analysis.

https://stackoverflow.com/questions/26428828/what-does-%E2%8A%A5-mean-in-the-strictness-monad-from-p-wadlers-paper

Bottom in a programming language

Types (1A) 68 Young Won Lim
7/7/20

order theory (particularly lattice theory) :

The bottom element of a partially ordered set,

if one exists, is the one that precedes all others.

https://stackoverflow.com/questions/26428828/what-does-%E2%8A%A5-mean-in-the-strictness-monad-from-p-wadlers-paper

Bottom in an order theory

Types (1A) 69 Young Won Lim
7/7/20

Lattice theory

the logical false value

is the bottom element of a lattice of truth values,

and true is the top element

classical logic

these are the only two – true and false

but one can also consider logics

with infinitely many truthfulness values,

such as intuitionism and various forms of constructivism.

These take the notions in a rather different direction.

https://stackoverflow.com/questions/26428828/what-does-%E2%8A%A5-mean-in-the-strictness-monad-from-p-wadlers-paper

Bottom in a lattice theory

Types (1A) 70 Young Won Lim
7/7/20

standard Boolean logic

the symbol read ⊥'. falsum or bottom,

is simply a statement which is always false,

the equivalent of the false constant in programming languages.

The form is an inverted (upside-down) version of the symbol ⊤

(verum or top), which is the equivalent of true -

and there's mnemonic value in the fact that the symbol looks

like a capital letter T.

https://stackoverflow.com/questions/26428828/what-does-%E2%8A%A5-mean-in-the-strictness-monad-from-p-wadlers-paper

Bottom in a standard Boolean logic

Types (1A) 71 Young Won Lim
7/7/20

The names verum and falsum are Latin for "true" and "false";

the names "top" and "bottom" come from

the use of the symbols in the theory of ordered sets,

where they were chosen based on

the location of the horizontal crossbar

https://stackoverflow.com/questions/26428828/what-does-%E2%8A%A5-mean-in-the-strictness-monad-from-p-wadlers-paper

Bottom – verum an falsum

Types (1A) 72 Young Won Lim
7/7/20

computability theory, is also ⊥'.

the value of an uncomputable computation,

so you can also think of it as the undefined value.

It doesn't matter why the computation is uncomputable -

whether because it has undefined inputs,

or never terminates, or whatever.

it defines strict as a function

that makes any computation (another function) undefined

whenever its inputs (arguments) are undefined.

https://stackoverflow.com/questions/26428828/what-does-%E2%8A%A5-mean-in-the-strictness-monad-from-p-wadlers-paper

Bottom – computability theory

Types (1A) 73 Young Won Lim
7/7/20

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

WHNF (Weak Head Normal Form)

Types (1A) 74 Young Won Lim
7/7/20

An expression in normal form

 is fully evaluated,

contains no un-evaluated thunks

no sub-expression could be evaluated any further

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Normal Form

Types (1A) 75 Young Won Lim
7/7/20

in normal form:

42

(2, "hello")

\x -> (x + 1)

not in normal form:

1 + 2 -- we could evaluate this to 3

(\x -> x + 1) 2 -- we could apply the function

"he" ++ "llo" -- we could apply the (++)

(1 + 1, 2 + 2) -- we could evaluate 1 + 1 and 2 + 2

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Normal Form Examples

Types (1A) 76 Young Won Lim
7/7/20

The head in WHNF (Weak Head Normal Form)

does not refer to the head of a list,

but to the outermost function application.

thunks

generally refer to unevaluated expressions

HNF (Head normal form) is irrelevant for Haskell.

It differs from WHNF in that

the bodies of lambda expressions

are also evaluated to some extent.

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Head – outermost function application

Types (1A) 77 Young Won Lim
7/7/20

An expression in WHNF (weak head normal form)

has been evaluated to the outermost

data constructor or lambda abstraction (the head).

sub-expressions may or may not have been evaluated.

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

NF is WHNF

Normal form
(NF)

Weak Head Normal Form
(WHNF)

No unevaluated
subexpressions

No unevaluated
head expression

Types (1A) 78 Young Won Lim
7/7/20

To determine whether an expression is in weak head normal form,

we only have to look at the outermost part of the expression.

If the outermost part of the expression

is a data constructor or a lambda,

then it is in weak head normal form.

is a function application,

then it is not in weak head normal form.

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Weak Head Normal Form Test

Types (1A) 79 Young Won Lim
7/7/20

outermost application

from left to right;

lazy evaluation.

Example:

take 1 (1:2:3:[]) => { apply take }

1 : take (1-1) (2:3:[]) => { apply (-) }

1 : take 0 (2:3:[]) => { apply take }

1 : []

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Evaluation Example

Types (1A) 80 Young Won Lim
7/7/20

evaluation stops when there are

no more function applications left to replace.

the result is in normal form

(or reduced normal form, RNF).

no unevaluated subexpressions

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Reduced Normal Form

Types (1A) 81 Young Won Lim
7/7/20

No matter in which order you evaluate an expression,

you will always end up with the same normal form

(but only if the evaluation terminates).

There is a slightly different description for lazy evaluation.

Namely, it says that you should evaluate everything

to weak head normal form (WHNF) only.

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Lazy Evaluation

Types (1A) 82 Young Won Lim
7/7/20

There are precisely three cases for an expression to be in WHNF:

 A constructor: constructor expression_1 expression_2 ...

 A built-in function with too few arguments, like (+) 2 or sqrt

 A lambda-expression: \x -> expression

In other words, the head of the expression

(i.e. the outermost function application)

cannot be evaluated any further,

but the function argument may contain

unevaluated expressions.

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

The head of the expression

Types (1A) 83 Young Won Lim
7/7/20

in weak head normal form:

(1 + 1, 2 + 2) -- the outermost part is the data constructor (,)

\x -> 2 + 2 -- the outermost part is a lambda abstraction

'h' : ("e" ++ "llo") -- the outermost part is the data constructor (:)

As mentioned, all the normal form expressions listed above

are also in weak head normal form.

not in weak head normal form:

1 + 2 -- the outermost part here is an application of (+)

(\x -> x + 1) 2 -- the outermost part is an application of (\x -> x + 1)

"he" ++ "llo" -- the outermost part is an application of (++)

https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form

Weak Head Normal Form Test

in normal form:
42
(2, "hello")
\x -> (x + 1)

Types (1A) 84 Young Won Lim
7/7/20

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

