
1 Young Won Lim
12/13/20

Monad P3 : Polymorphic Types (1C)

2 Young Won Lim
12/13/20

 Copyright (c) 2016 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Polymorphic Types (1C) 3 Young Won Lim
12/13/20

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Polymorphic Types (1C) 4 Young Won Lim
12/13/20

The literals 1, 2, etc. are often used to represent

both fixed and arbitrary precision integers.

Numeric operators such as + are often defined to work

on many different kinds of numbers.

the equality operator (== in Haskell) usually works on

numbers and many other (but not all) types.

the overloaded behaviors are

different for each type

in fact sometimes undefined, or error

type classes provide a structured way to control

ad hoc polymorphism, or overloading.

https://www.haskell.org/tutorial/classes.html

Overloading

In the parametric polymorphism

the type truly does not matter

(Eq a) =>

Type class

Ad hoc polymorphism

Polymorphic Types (1C) 5 Young Won Lim
12/13/20

parametric polymorphism is useful in

defining families of types

by universally quantifying over all types.

Sometimes, however, it is necessary

to quantify over some smaller set of types,

eg. those types whose elements can be compared for equality.

ad hoc polymorphism

https://www.haskell.org/tutorial/classes.html

Quantification

elem :: a -> [a] -> Bool

elem :: (Eq a) => a -> [a] -> Bool

Polymorphic Types (1C) 6 Young Won Lim
12/13/20

type classes can be seen as providing a structured way

to quantify over a constrained set of types

the parametric polymorphism can be viewed

as a kind of overloading too!

parametric polymorphism

an overloading occurs implicitly over all types

ad hoc polymorphism

a type class for a constrained set of types

https://www.haskell.org/tutorial/classes.html

Type class and parametric polymorphism

elem :: a -> [a] -> Bool

elem :: (Eq a) => a -> [a] -> Bool

Polymorphic Types (1C) 7 Young Won Lim
12/13/20

Parametric polymorphism refers to

when the type of a value contains

one or more (unconstrained) type variables,

so that the value may adopt any type

that results from substituting those variables with concrete types.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (1) definition

elem :: a -> [a] -> Bool

Polymorphic Types (1C) 8 Young Won Lim
12/13/20

In Haskell, this means any type in which a type variable,

denoted by a name in a type

beginning with a lowercase letter,

appears without constraints

(i.e. does not appear to the left of a =>).

In Java and some similar languages,

generics (roughly speaking) fill this role.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (2) unconstrained type variable

elem :: a -> [a] -> Bool

Polymorphic Types (1C) 9 Young Won Lim
12/13/20

For example, the function id :: a -> a contains

an unconstrained type variable a in its type,

and so can be used in a context requiring

Char -> Char or

Integer -> Integer or

(Bool -> Maybe Bool) -> (Bool -> Maybe Bool) or

any of a literally infinite list of other possibilities.

Likewise, the empty list [] :: [a] belongs to every list type,

and the polymorphic function map :: (a -> b) -> [a] -> [b]

may operate on any function type.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (3) examples

Polymorphic Types (1C) 10 Young Won Lim
12/13/20

Note, however, that if a single type variable appears multiple times,

it must take the same type everywhere it appears,

so e.g. the result type of id must be the same as the argument type,

and the input and output types of the function

given to map must match up with the list types.

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (4) multiple appearance

 id :: a -> a

map :: (a -> b) -> [a] -> [b]

Polymorphic Types (1C) 11 Young Won Lim
12/13/20

Since a parametrically polymorphic value does not "know"

anything about the unconstrained type variables,

it must behave the same regardless of its type.

This is a somewhat limiting

but extremely useful property

known as parametricity

https://wiki.haskell.org/Polymorphism

Parametric polymorphism (5) parametricity

 id :: a -> a

map :: (a -> b) -> [a] -> [b]

Polymorphic Types (1C) 12 Young Won Lim
12/13/20

Ad-hoc polymorphism refers to

when a value is able to adopt any one of several types

because it, or a value it uses, has been given

a separate definition for each of those types.

the + operator essentially does something entirely different

when applied to floating-point values

as compared to when applied to integers

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (1)

elem :: (Eq a) => a -> [a] -> Bool

Polymorphic Types (1C) 13 Young Won Lim
12/13/20

in languages like C, polymorphism is restricted to

only built-in functions and types.

Other languages like C++ allow programmers

to provide their own overloading,

supplying multiple definitions of a single function,

to be disambiguated by the types of the arguments

In Haskell, this is achieved via the system of

type classes and class instances.

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (2)

Polymorphic Types (1C) 14 Young Won Lim
12/13/20

Despite the similarity of the name,

Haskell's type classes are quite different from

the classes of most object-oriented languages.

They have more in common with interfaces,

in that they specify a series of methods or values

by their type signature,

to be implemented by an instance declaration.

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (3)

class Eq a where

 (==) :: a -> a -> Bool

instance Eq Integer where

 x == y = x `integerEq` y

instance Eq Float where

 x == y = x `floatEq` y

Polymorphic Types (1C) 15 Young Won Lim
12/13/20

So, for example, if my type can be compared for equality

(most types can, but some, particularly function types, cannot)

then I can give an instance declaration of the Eq class

All I have to do is specify

the behaviour of the == operator on my type,

and I gain the ability to use all sorts of functions

defined using == operator, e.g.

checking if a value of my type is present in a list,

or looking up a corresponding value in a list of pairs.

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (4)

class Eq a where

 (==) :: a -> a -> Bool

instance Eq Integer where

 x == y = x `integerEq` y

instance Eq Float where

 x == y = x `floatEq` y

Polymorphic Types (1C) 16 Young Won Lim
12/13/20

Unlike the overloading in some languages,

overloading in Haskell is not limited to functions

– minBound is an example of an overloaded value,

as a Char, it will have value '\NUL'

as an Int it might be -2147483648

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (5)

Polymorphic Types (1C) 17 Young Won Lim
12/13/20

Haskell even allows class instances to be defined for types

which are themselves polymorphic (either ad-hoc or parametrically).

So for example, an instance can be defined of Eq

that says "if a has an equality operation, then [a] has one".

Then, of course, [[a]] will automatically also have an instance,

and so complex compound types can have instances built for them

out of the instances of their components.

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (6)

Polymorphic Types (1C) 18 Young Won Lim
12/13/20

data List a = Nil | Cons a (List a)

instance Eq a => Eq (List a) where

 (Cons a b) == (Cons c d) = (a == c) && (b == d)

 Nil == Nil = True

 _ == _ = False

https://stackoverflow.com/questions/30520219/how-to-define-eq-instance-of-list-without-gadts-or-datatype-contexts

Ad hoc polymorphism (7)

Polymorphic Types (1C) 19 Young Won Lim
12/13/20

You can recognise the presence of ad-hoc polymorphism

by looking for constrained type variables:

that is, variables that appear to the left of =>,

like in elem :: (Eq a) => a -> [a] -> Bool.

Note that lookup :: (Eq a) => a -> [(a,b)] -> Maybe b

exhibits both parametric (in b) and ad-hoc (in a) polymorphism.

https://wiki.haskell.org/Polymorphism

Ad hoc polymorphism (8)

Polymorphic Types (1C) 20 Young Won Lim
12/13/20

Parametric polymorphism ad hoc polymorphism

Type variables Type calsses

(a, b, etc) (Eq, Num, etc)

Universal Existential?

Compile time Runtime (also)

C++ templates Classical

Java generics (ordinary OO)

http://sm-haskell-users-group.github.io/pdfs/Ben%20Deane%20-%20Parametric%20Polymorphism.pdf

Parametric and ad hoc polymorphism

Polymorphic Types (1C) 21 Young Won Lim
12/13/20

data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Either a b = Left a | Right b

reverse :: [a] -> [a]

fst :: (a,b) -> a

id :: a -> a

http://sm-haskell-users-group.github.io/pdfs/Ben%20Deane%20-%20Parametric%20Polymorphism.pdf

Polymorphic data types and functions

Polymorphic Types (1C) 22 Young Won Lim
12/13/20

types that are universally quantified in some way over all types.

polymorphic type expressions essentially describe families of types.

For example, (forall a) [a] is the family of types

consisting of, for every type a, the type of lists of a.

● lists of integers (e.g. [1,2,3]),

● lists of characters (['a','b','c']),

● even lists of lists of integers, etc.,

(Note, however, that [2,'b'] is not a valid example,

since there is no single type that contains both 2 and 'b'.)

https://www.haskell.org/tutorial/goodies.html

Polymorphic Types

Polymorphic Types (1C) 23 Young Won Lim
12/13/20

Identifiers such as a above are called type variables,

and are uncapitalized to distinguish them

from specific types such as Int.

since Haskell has only universally quantified types,

there is no need to explicitly write out the symbol

for universal quantification,

and thus we simply write [a] in the example above.

In other words, all type variables are implicitly universally quantified

https://www.haskell.org/tutorial/goodies.html

Type variables – universally quantified

Polymorphic Types (1C) 24 Young Won Lim
12/13/20

Lists are a commonly used data structure in functional languages,

and are a good tool for explaining the principles of polymorphism.

The list [1,2,3] in Haskell is actually shorthand for

the list 1:(2:(3:[])),

where [] is the empty list and

: is the infix operator

that adds its first argument to the front

of its second argument (a list).

Since : is right associative, we can also write this list as

1:2:3:[].

https://www.haskell.org/tutorial/goodies.html

List

Polymorphic Types (1C) 25 Young Won Lim
12/13/20

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

length [1,2,3] => 3

length ['a','b','c'] => 3

length [[1],[2],[3]] => 3

an example of a polymorphic function.

It can be applied to a list containing elements of any type,

for example [Integer], [Char], or [[Integer]].

https://www.haskell.org/tutorial/goodies.html

Polymorphic function example

Polymorphic Types (1C) 26 Young Won Lim
12/13/20

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

The left-hand sides of the equations contain

patterns such as [] and x:xs.

In a function application these patterns are

matched against actual parameters in a fairly intuitive way

https://www.haskell.org/tutorial/goodies.html

Patterns in functions

Polymorphic Types (1C) 27 Young Won Lim
12/13/20

length :: [a] -> Integer

length [] = 0

length (x:xs) = 1 + length xs

[] only matches the empty list,

x:xs will successfully match any list with at least one element,

binding x to the first element and xs to the rest of the list

If the match succeeds,

the right-hand side is evaluated

and returned as the result of the application.

If it fails, the next equation is tried,

and if all equations fail, an error results.

https://www.haskell.org/tutorial/goodies.html

Matching patterns

Polymorphic Types (1C) 28 Young Won Lim
12/13/20

Function head returns the first element of a list,

function tail returns all but the first.

head :: [a] -> a

head (x:xs) = x

tail :: [a] -> [a]

tail (x:xs) = xs

Unlike length, these functions are not defined

for all possible values of their argument.

A runtime error occurs when these functions

are applied to an empty list.

https://www.haskell.org/tutorial/goodies.html

Not all possible cases – runtime errors

Polymorphic Types (1C) 29 Young Won Lim
12/13/20

With polymorphic types, we find that

some types are in a sense strictly more general than others

in the sense that the set of values they define is larger.

the type [a] is more general than [Char].

type [Char] can be derived from [a]

by a suitable substitution for a.

https://www.haskell.org/tutorial/goodies.html

General types

Polymorphic Types (1C) 30 Young Won Lim
12/13/20

With regard to this generalization ordering,

Haskell's type system possesses two important properties:

1. every well-typed expression is guaranteed

 to have a unique principal type (explained below),

2. the principal type can be inferred automatically.

In comparison to a monomorphically typed language such as C,

the reader will find that polymorphism improves expressiveness,

and type inference lessens the burden of types on the programmer.

https://www.haskell.org/tutorial/goodies.html

Principal type

Polymorphic Types (1C) 31 Young Won Lim
12/13/20

An expression's or function's principal type is

the least general type that, intuitively,

"contains all instances of the expression".

For example, the principal type of head is [a]->a;

[b]->a, a->a, or even a are correct types, but too general,

whereas something like [Integer]->Integer is too specific.

The existence of unique principal types is

the hallmark feature of the Hindley-Milner type system,

which forms the basis of the type systems of Haskell

https://www.haskell.org/tutorial/goodies.html

Unique principal types

Polymorphic Types (1C) 32 Young Won Lim
12/13/20

to explicitly bring fresh type variables into scope.

 Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

for any combination of types a and b

choose a = Int and b = String

then it's valid to say that map has the type

(Int -> String) -> [Int] -> [String]

Here we are instantiating the general type of map

to a more specific type.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Explicitly Quantifying Type Variables

Polymorphic Types (1C) 33 Young Won Lim
12/13/20

any introduction of a lowercase type parameter

implicitly begins with a forall keyword,

Example: Two equivalent type statements

id :: a -> a

id :: forall a . a -> a

We can apply additional constraints

on the quantified type variables

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Implicit forall

Polymorphic Types (1C) 34 Young Won Lim
12/13/20

Basically, there are 3 different common uses for the forall keyword

(or at least so it seems), and each has its own Haskell extension:

Scoped Type Variables

specify types for code inside where clauses

RankN Types / Rank2 Types,

The type is labeled "Rank-N" where N is the number of foralls

which are nested and cannot be merged with a previous one.

Existential Quantification

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Three different usages for forall

Polymorphic Types (1C) 35 Young Won Lim
12/13/20

foob :: forall a b. (b -> b) -> b -> (a -> b) -> Maybe a -> b

foob postProcess onNothin onJust mval =

 postProcess val

 where

 val :: b

 val = maybe onNothin onJust mval

This code doesn't compile (syntax error) in plain Haskell 98.

It requires an extension to support the forall keyword.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Extensions for forall

Polymorphic Types (1C) 36 Young Won Lim
12/13/20

Scoped Type Variables

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Polymorphic Types (1C) 37 Young Won Lim
12/13/20

ScopedTypeVariables helps one

to specify types for code inside where clauses.

It makes the b in val :: b the same one as

the b in foob :: forall a b. (b -> b) -> b -> (a -> b) -> Maybe a -> b

A confusing point:

when you omit the forall from a type it is actually still implicitly there.

(normally these languages omit the forall from polymorphic types).

This claim is correct, but it refers to the other uses of forall,

and not to the ScopedTypeVariables use.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Scoped Type Variables

Polymorphic Types (1C) 38 Young Won Lim
12/13/20

{-# LANGUAGE ScopedTypeVariables #-}

...

mkpair1 :: forall a b. a -> b -> (a,b)

mkpair1 aa bb = (ida aa, bb)

 where

 ida :: a -> a -- This refers to a in the function's type signature

 ida = id

https://wiki.haskell.org/Scoped_type_variables

Scoped Type Variables

Polymorphic Types (1C) 39 Young Won Lim
12/13/20

mkpair2 :: forall a b. a -> b -> (a,b)

mkpair2 aa bb = (ida aa, bb)

 where

 ida :: b -> b -- Illegal, because refers to b in type signature

 ida = id

mkpair3 :: a -> b -> (a,b)

mkpair3 aa bb = (ida aa, bb)

 where

 ida :: b -> b -- Legal, because b is now a free variable

 ida = id

https://wiki.haskell.org/Scoped_type_variables

Scoped Type Variables

forall a. a -> (forall b. b -> (a,b))

Polymorphic Types (1C) 40 Young Won Lim
12/13/20

Scoped type variables make it possible

to specify the particular type of a function in situations

where it is not otherwise possible,

which can in turn help avoid problems

with the Monomorphism restriction.

https://wiki.haskell.org/Scoped_type_variables

Scoped Type Variables

Polymorphic Types (1C) 41 Young Won Lim
12/13/20

ScopedTypeVariables breaks GHC’s usual rule

that explicit forall is optional and

doesn’t affect semantics.

the explicit forall is required

If omitted, usually the program will not compile;

in a few cases it will compile

but the functions get a different signature.

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#ghc-flag--XScopedTypeVariables

Scoped Type Variables

Polymorphic Types (1C) 42 Young Won Lim
12/13/20

to trigger those forms of ScopedTypeVariables,

the forall must appear against

the top-level signature (or outer expression)

but not against nested signatures

referring to the same type variables.

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#ghc-flag--XScopedTypeVariables

Scoped Type Variables

Polymorphic Types (1C) 43 Young Won Lim
12/13/20

f :: forall a. [a] -> [a]

f xs = ys ++ ys

 where

 ys :: [a]

 ys = reverse xs

the explicit forall in the type signature f

brings the type variable a into scope,

The type variables a bound by a forall scope

over the entire definition of f

the type variable a scopes over the whole definition of f,

including over the type signature for ys.

In Haskell 98 it is not possible to declare a type for ys;

a major benefit of scoped type variables is that it becomes possible to do so.

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#ghc-flag--XScopedTypeVariables

Scoped Type Variables

Polymorphic Types (1C) 44 Young Won Lim
12/13/20

f :: [a] -> [a]

f (xs :: [aa]) = xs ++ ys

 where

 ys :: [aa]

 ys = reverse xs

without the explicit forall form, type variable a from f’s signature

is not scoped over f’s equation(s).

type variable aa bound by the pattern signature

is scoped over the right-hand side of f’s equation.

therefore there is no need to use a distinct type variable a

using a would be equivalent

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#ghc-flag--XScopedTypeVariables

Scoped Type Variables

f :: [a] -> [a]

f (xs :: [a]) = xs ++ ys

 where

 ys :: [a]

 ys = reverse xs

Polymorphic Types (1C) 45 Young Won Lim
12/13/20

Let's start with that

mayb :: b -> (a -> b) -> Maybe a -> b

is equivalent to

mayb :: forall a b. b -> (a -> b) -> Maybe a -> b

except for when ScopedTypeVariables is enabled.

This means that it works for every a and b.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Scoped Type

Polymorphic Types (1C) 46 Young Won Lim
12/13/20

Rank N Types / Rank 2 Types

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Polymorphic Types (1C) 47 Young Won Lim
12/13/20

Normal Haskell '98 types are considered Rank-1 types.

a -> b -> a

implies that the type variables are universally quantified

forall a b. a -> b -> a

forall can be floated out of the right-hand side of ->

forall a. a -> (forall b. b -> a)

is also a Rank-1 type because it is equivalent to the previous signature.

https://wiki.haskell.org/Rank-N_types

Rank-N types (1)

Polymorphic Types (1C) 48 Young Won Lim
12/13/20

https://wiki.haskell.org/Rank-N_types

Rank-N types (2)

forall can be floated

(xxx) -> (forall o. ooo)

out of the right-hand side of ->

forall o. ((xxx) -> ooo)

However, a forall appearing within the left-hand side of (->)

(forall x. xxx) -> ooo

cannot be moved up, and therefore forms another level or rank.

forall x. ((xxx) -> ooo)) not equivalent

forall o. ((forall x. xxx)) -> ooo)

Polymorphic Types (1C) 49 Young Won Lim
12/13/20

The type is labeled "Rank-N"

where N is the number of foralls

which are nested and

cannot be merged with a previous one.

forall o. ((forall x. xxx)) -> ooo)

Rank-2

https://wiki.haskell.org/Rank-N_types

Rank-N types (3)

Polymorphic Types (1C) 50 Young Won Lim
12/13/20

https://wiki.haskell.org/Rank-N_types

Rank-N types (4)

(forall a. a -> a) -> (forall b. b -> b)

is a Rank-2 type

the forall b can be moved to the start

forall b. (forall a. a -> a) -> (b -> b) (O)

but the forall a cannot.

forall a b. (a -> a) -> (b -> b)) – not equivalent (X)

there are two levels of universal quantification.

Polymorphic Types (1C) 51 Young Won Lim
12/13/20

Rank-N type reconstruction is undecidable in general,

and some explicit type annotations are required in their presence.

Rank-2 or Rank-N types may be specifically enabled

by the language extensions

{-# LANGUAGE Rank2Types #-} or

{-# LANGUAGE RankNTypes #-}.

https://wiki.haskell.org/Rank-N_types

Rank-N types (5)

Polymorphic Types (1C) 52 Young Won Lim
12/13/20

foo :: (forall a. a -> a) -> (Char, Bool)

bar :: forall a. ((a -> a) -> (Char, Bool))

The type of foo above is of rank 2.

An ordinary polymorphic type, like that of bar, is rank-1,

but it becomes rank-2 if the types of arguments are

required to be polymorphic, with their own forall quantifier.

And if a function takes rank-2 arguments

then its type is rank-3, and so on.

In general, a type that takes polymorphic arguments of rank n

has rank n + 1.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Polymorphic arguments of Rank-N

(forall a. a -> a)

Polymorphic Types (1C) 53 Young Won Lim
12/13/20

In the normal case

(forall n. Num n => (n -> n) -> (Int, Double))

we choose an n first and

then provide a function. (n -> n)

So we could pass in a function of type (n -> n)

Int -> Int,

Double -> Double,

Rational -> Rational

and so on.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Rank-N example A (1)

Polymorphic Types (1C) 54 Young Won Lim
12/13/20

the previous case is normal (Rank-1)

because that's how type variables work by default.

If you don't have a forall at all, your type signature is

equivalent to having forall at the very beginning.

prenex form

Num n => (n -> n) -> (Int, Double)

is implicitly the same as

forall n. Num n => (n -> n) -> (Int, Double).

https://stackoverflow.com/questions/33446759/understanding-haskells-rankntypes

Rank-N example A (2)

Polymorphic Types (1C) 55 Young Won Lim
12/13/20

In the Rank-2 case

((forall n. Num n => n -> n) -> (Int, Double))

we have to provide the function before we know n.

the type of a function that works for any n

It's exactly forall n. Num n => n -> n.

https://stackoverflow.com/questions/33446759/understanding-haskells-rankntypes

Rank-N example A (3)

Polymorphic Types (1C) 56 Young Won Lim
12/13/20

In the rank-N case f has to be a polymorphic function

which is valid for all numeric types n. (+1) for Num n

In the rank-1 case f only has to be defined

for a single numeric type n

{-# LANGUAGE RankNTypes #-}

rankN :: (forall n. Num n => n -> n) -> (Int, Double)

rankN = undefined

rank1 :: forall n. Num n => (n -> n) -> (Int, Double)

rank1 = undefined

https://stackoverflow.com/questions/33446759/understanding-haskells-rankntypes

Rank-N example A (4)

Polymorphic Types (1C) 57 Young Won Lim
12/13/20

rankN :: (forall n. Num n => n -> n) -> (Int, Double)

rankN takes a parameter f :: Num n => n -> n and

returns (Int, Double), where

for any numeric type n, f can take an n and return an n

rank1 :: forall n. Num n => (n -> n) -> (Int, Double)

for any numeric type n, rank1 takes an argument f :: n -> n

and returns an (Int, Double)

by default all foralls are implicitly placed at the outer-most position

(resulting in a rank-1 type).

https://stackoverflow.com/questions/33446759/understanding-haskells-rankntypes

Rank-N example A (5)

Polymorphic Types (1C) 58 Young Won Lim
12/13/20

main = print $ rankN (+1)

rankN :: (forall n. Num n => n -> n) -> (Int, Double)

requires a function from n to n for some Num n;

rankN f = (f 1, f 1.0) (2, 2.0)

Int -> Int Double -> Double

 (+1) (+1)

rank1 :: forall n. Num n => (n -> n) -> (Int, Double)

requires a function from n to n for every Num n.

https://stackoverflow.com/questions/33446759/understanding-haskells-rankntypes

Rank-N example A (6)

the example code given

because the function f

that's passed in

is applied to two different types:

an Int and a Double.

So it has to work for both of them.

Polymorphic Types (1C) 59 Young Won Lim
12/13/20

foo :: Int -> Int -- monomorphic

foo n = n + 1

test1 = rank1 foo -- OK

test2 = rankN foo -- does not type check

test3 = rankN (+1) -- OK since (+1) is polymorphic

-- (+1) :: Int -> Int

-- (+1) :: Double -> Double

rank1 :: forall n. Num n => (n -> n) -> (Int, Double)

rankN :: (forall n. Num n => n -> n) -> (Int, Double)

https://stackoverflow.com/questions/33446759/understanding-haskells-rankntypes

Rank-N example A (7)

Polymorphic Types (1C) 60 Young Won Lim
12/13/20

bar :: (forall n. Num n => n -> n) -> (Int, Double) -> (Int, Double)

bar f (i,d) = (f i, f d)

That is, we apply f to both an Int and a Double.

without using RankNTypes it won't type check:

{-# LANGUAGE RankNTypes #-}

https://stackoverflow.com/questions/33446759/understanding-haskells-rankntypes

Rank-N example B (1)

Polymorphic Types (1C) 61 Young Won Lim
12/13/20

bar :: (forall n. Num n => n -> n) -> (Int, Double) -> (Int, Double)

bar f (i,d) = (f i, f d)

none of the following signature work

even with using RankNTypes it won't type check:

bar' :: Num n => (n -> n) -> (Int, Double) -> (Int, Double)

bar' f (i,d) = (f i, f d)

bar' :: (Int -> Int) -> (Int, Double) -> (Int, Double)

bar' :: (Double -> Double) -> (Int, Double) -> (Int, Double)

https://stackoverflow.com/questions/33446759/understanding-haskells-rankntypes

Rank-N example B (2)

Polymorphic Types (1C) 62 Young Won Lim
12/13/20

ghci> let putInList x = [x]

ghci> liftTup putInList (5, "Blah")

([5], ["Blah"])

the type of this liftTup?

liftTup :: (forall x. x -> f x) -> (a, b) -> (f a, f b)

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Rank-N example C (1)

(5, "Blah")

([5], ["Blah"])

Num -> [Num]

[Char] -> [[Char]]

Polymorphic Types (1C) 63 Young Won Lim
12/13/20

ghci> let liftTup liftFunc (a, b) = (liftFunc a, liftFunc b)

ghci> liftTup (\x -> [x]) (5, "Hello")

 No instance for (Num [Char])

 ...

ghci> :t liftTup

liftTup :: (t -> t1) -> (t, t) -> (t1, t1)

(Num -> Num) -> (Num, Num) -> ([Num], [Num])

GHC infer that the tuple must contain two of the same type

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Rank-N example C (2) – code 1

5 -> [5] – Num -> [Num]

”Hello” -> [”Hello”] – [Char] -> [[Char]]

Polymorphic Types (1C) 64 Young Won Lim
12/13/20

– test.hs

liftTup :: (x -> f x) -> (a, b) -> (f a, f b)

liftTup liftFunc (t, v) = (liftFunc t, liftFunc v)

ghci> :l test.hs

 Couldnt match expected type 'x' against inferred type 'b'

 ...

so here GHC doesn't let us apply liftFunc on v

because v :: b and liftFunc wants an x.

Need a function that accepts any possible x

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Rank-N example C (3) – code 2

t :: a ↔ x

v :: b ↔ x

Polymorphic Types (1C) 65 Young Won Lim
12/13/20

{-# LANGUAGE RankNTypes #-}

liftTup :: (forall x. x -> f x) -> (a, b) -> (f a, f b)

liftTup liftFunc (t, v) = (liftFunc t, liftFunc v)

So it's not liftTup that works for all x,

it's the function liftFunc that it gets that works for all x.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Rank-N example C (4) – code 3

Polymorphic Types (1C) 66 Young Won Lim
12/13/20

Existential Quantification

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Polymorphic Types (1C) 67 Young Won Lim
12/13/20

-- test.hs

{-# LANGUAGE ExistentialQuantification #-}

data EQList = forall a. EQList [a]

eqListLen :: EQList -> Int

eqListLen (EQList x) = length x

ghci> :l test.hs

ghci> eqListLen $ EQList ["Hello", "World"]

2

["Hello", "World"]

[[Char]] [a]

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential quantification

the value contained
can be of any suitable type,

Polymorphic Types (1C) 68 Young Won Lim
12/13/20

With Rank-N-Types,

forall a means that

your expression must fit all possible a’s.

ghci> :set -XRankNTypes

ghci> length (["Hello", "World"] :: forall a. [a])

 Couldnt match expected type 'a' against inferred type '[Char]'

 ...

ghci> length ([] :: forall a. [a])

0

An empty list does work as a list of any type.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential quantification

["Hello", "World"]
[[Char], [Char]]

[Int, Int]

[a , a]

Polymorphic Types (1C) 69 Young Won Lim
12/13/20

{-# LANGUAGE ExistentialQuantification #-}

data EQList = forall a. EQList [a]

with Existential-Quantification,

foralls in data definitions mean that,

the value contained can be of any suitable type,

not that it must be of all suitable types.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential quantification

Polymorphic Types (1C) 70 Young Won Lim
12/13/20

Existential quantification actually works

a lot like universal quantification.

data Univ a = Univ a

data Exis = forall a. Exis a

toUniv :: a -> Univ a

toUniv = Univ

toExis :: a -> Exis

toExis = Exis

https://stackoverflow.com/questions/9259921/haskell-existential-quantification-in-detail

Existential quantification

Polymorphic Types (1C) 71 Young Won Lim
12/13/20

useUniv :: (a -> b) -> Univ a -> b

useUniv f (Univ x) = f x

useExis :: (forall a. a -> b) -> Exis -> b

useExis f (Exis x) = f x

The function useExis is useless, but it's still valid code.

https://stackoverflow.com/questions/9259921/haskell-existential-quantification-in-detail

Existential quantification

Polymorphic Types (1C) 72 Young Won Lim
12/13/20

First, note that toUniv and toExis are nearly the same.

both take a free type parameter a

because both data constructors are polymorphic.

But while a appears in the return type of toUniv

a doesn't appear in the return type of toExis

when it comes to the kind of type errors

you might get from using a data constructor,

there's not a big difference

between existential and universal types.

https://stackoverflow.com/questions/9259921/haskell-existential-quantification-in-detail

Existential quantification

data Univ a = Univ a

data Exis = forall a. Exis a

toUniv :: a -> Univ a

toUniv = Univ

toExis :: a -> Exis

toExis = Exis

Polymorphic Types (1C) 73 Young Won Lim
12/13/20

note the rank-2 type (forall a. a -> b) in useExis.

This is the big difference in type inference.

The existential type a taken

from the pattern match (Exis x) x :: a

acts like an extra, hidden type variable

passed to the body of the function, f x :: b

and it must not be unified with other types.

In useUniv, the type variable a is part of the function type.

In useExis, it's the existential type from the data structure (Exis x)

https://stackoverflow.com/questions/9259921/haskell-existential-quantification-in-detail

Existential quantification

data Univ a = Univ a

data Exis = forall a. Exis a

useUniv :: (a -> b) -> Univ a -> b

useUniv f (Univ x) = f x

useExis :: (forall a. a -> b) -> Exis -> b

useExis f (Exis x) = f x

x :: a

f x :: b

Polymorphic Types (1C) 74 Young Won Lim
12/13/20

To make this clearer, here are some wrong declarations

of the last two functions useUniv and useExis

where we try to unify types that shouldn't be unified.

In both cases, we force the type of x to be

unified with an unrelated type variable.

https://stackoverflow.com/questions/9259921/haskell-existential-quantification-in-detail

Existential quantification

Polymorphic Types (1C) 75 Young Won Lim
12/13/20

useUniv' :: forall a b c. (c -> b) -> Univ a -> b

useUniv' f (Univ x) = f x -- Error, can't unify 'a' with 'c'

 -- Variable 'a' is there in the function type

Univ x :: Univ a

x :: a

c -> b

https://stackoverflow.com/questions/9259921/haskell-existential-quantification-in-detail

Existential quantification

Polymorphic Types (1C) 76 Young Won Lim
12/13/20

useExis' :: forall b c. (c -> b) -> Exis -> b

useExis' f (Exis x) = f x -- Error, can't unify 'a' with 'c'.

 -- Variable a comes from the pattern Exis x

 -- via the existential in

-- data Exis = forall a. Exis a

Exis x :: Exis

Exis x :: forall a. Exis a

x :: a

c -> b

https://stackoverflow.com/questions/9259921/haskell-existential-quantification-in-detail

Existential quantification

Polymorphic Types (1C) 77 Young Won Lim
12/13/20

In Haskell, the things being quantified over are types

our logical statements are also types,

and instead of being "true" we think about "can be implemented".

a universally quantified type like forall a. a -> a means that,

for any possible type "a", we can implement

a function whose type is a -> a.

Since a is universally quantified, we know nothing about it,

and therefore cannot inspect the argument in any way.

So id is the only possible function of this type

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential quantification

id :: forall a. a -> a

id x = x

Polymorphic Types (1C) 78 Young Won Lim
12/13/20

In Haskell, universal quantification is the "default"--

any type variables in a signature

are implicitly universally quantified

thus the type of id is normally written as just a -> a

this is also known as parametric polymorphism,

often just called "polymorphism" in Haskell,

and in some other languages (e.g., C#) known as "generics".

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential quantification

Polymorphic Types (1C) 79 Young Won Lim
12/13/20

An existentially quantified type like exists a. a -> a means that,

for some particular type "a", we can implement a function

whose type is a -> a. Any function will do, so I'll pick one:

func :: exists a. a -> a

func True = False

func False = True

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential quantification

Polymorphic Types (1C) 80 Young Won Lim
12/13/20

func :: exists a. a -> a

func True = False

func False = True

This is of course the "not" function on booleans.

we can't use it as such,

because all we know about the type "a" is that it exists.

Any information about which type it might be

has been discarded,

which means we can't apply func to any values.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential quantification

Polymorphic Types (1C) 81 Young Won Lim
12/13/20

it's a function with the same type for its input and output,

so we could compose it with itself, for example.

Essentially, the only things you can do

with something that has an existential type

are the things that is related to

the non-existential parts of the type.

Similarly, given something of type exists a. [a]

we can find its length, or concatenate it to itself,

or drop some elements, or anything else we can do to any list.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential quantification

Polymorphic Types (1C) 82 Young Won Lim
12/13/20

the reason why Haskell doesn't have existential types directly

since things with existentially quantified types

can only be used with operations

that have universally quantified types,

we can write the type exists a. a as

forall r. (forall a. a -> r) -> r

--in other words, for all result types r

given a function that for all types a

takes an argument of type a

and returns a value of type r,

we can get a result of type r.

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential quantification

Polymorphic Types (1C) 83 Young Won Lim
12/13/20

forall r. (forall a. a -> r) -> r

note that the overall type is

not universally quantified for a

--rather, it takes an argument

that itself is universally quantified for a,

which it can then use

with whatever specific type a it chooses.

the equivalence between an existential type

and a universally quantified argument

https://stackoverflow.com/questions/14299638/existential-vs-universally-quantified-types-in-haskell

Existential quantification

Polymorphic Types (1C) 84 Young Won Lim
12/13/20

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

