Angle Recording CORDIC 1. Hu

20180910 Mon

Copyright (c) 2015 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

by encoding the angle of rotation

as a linear combination of

selected elementary angle of micro-rotations

Signal / Image processing DFT & DCT

— the rotation angle <u>known</u> a priori

greedy algorithms to perform angle recoding

linear combination of elementary rotation angles

a circular rotation

$$\begin{bmatrix} x/\\ y' \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$$

coso, sin o

CORDIC: a sequence of successive rotation

$$a(i), i = 0, ..., n-1$$

$$tan[\alpha(i)] = 2^{-i}$$

only shifts and adds operations

$$\theta = \sum_{i=0}^{n-1} u(i) a(i) + \varepsilon$$

E: an angle approximation error

$$|\mathcal{E}| \leq \alpha(n-1)$$

the direction of rotation angle

$$2(i+1) = 2(i) - u(i) \alpha(i)$$
 $i=0, ..., n-1$

Initialization
$$X(0)=X$$
 $Y(0)=Y$

Scaling operation
$$\begin{bmatrix} \chi' \\ y' \end{bmatrix} = \int_{i=0}^{n-1} \cos u(i) \alpha(i) \cdot \begin{bmatrix} \chi(n) \\ y(n) \end{bmatrix}$$

$$\begin{bmatrix} \chi' \\ y' \end{bmatrix} \leftarrow \begin{bmatrix} \chi(n) \\ \chi(n) \end{bmatrix} \leftarrow \cdots \leftarrow \begin{bmatrix} \chi(l) \\ \chi(l) \end{bmatrix} \leftarrow \begin{bmatrix} \chi(0) \\ \chi(0) \end{bmatrix}$$

shift and add operations

$$\frac{1}{\prod_{i=0}^{N-1} (os u(i)a(i))} = \frac{1}{K(n)}$$
 morm correction

$$|0| < 20(0) = \frac{\pi}{2}$$

© if
$$\pi/0/\frac{\pi}{2}$$
 $\left[\begin{array}{c} x \\ y \end{array}\right] \leftarrow \left[\begin{array}{c} y \\ -x \end{array}\right], \quad 0 < 0 - \frac{\pi}{2}$

CORDIC Angle Recoding Problem

(repetition)

desirable to minimize [| u(i) |

$$\sum_{i=0}^{n_{-1}} |u(i)|$$

-> reduce complc iterations

Angle Recoding

given
$$a(i)$$
, $i=0, ..., n-1$ $a(i) \in EAS$

0 an angle

find
$$u(i)$$
, $i=0,--,n-1$ $u(i) \in \{-1,0,+1\}$

such that

(i)
$$0 = \sum_{i=0}^{n-1} u(i) a(i) + \varepsilon$$
 $\varepsilon < a(n+1)$

CORDIC Angle Recoding Algorithm

Greedy Algorithm

Initialization: O(0) = O, f(ui) = O, $O \le i \le n-1$, k = ORepeat until |O(k)| < O(n-1) Do

(1) Chouse ix, D \(\) ix \(\) \(\) n-1 such that

 $|O(k)| - \alpha (i_k) = Min_{0 \le i \le n-1} |O(k)| - \alpha (i)$

 $\frac{2}{9(k+1)} = \frac{9(k)}{9(k)} - \frac{1}{9(k)} \frac{1}{9(k)}$ $\frac{1}{9(k+1)} = \frac{9(k)}{9(k)} - \frac{1}{9(k)} \frac{1}{9(k)}$

greedy

at every step
represent the remaining angle
Using a closest elementary CORDIC angle

draw it without replacement

```
i = 0,1,2,..., n-1 +.... n-bit word
```

$$|O(k)| < O(N-1)$$
 termination condition $k = 0, 1,, k'-1$ hopefully less than $N-1$

$$k=0$$
 $0 \le i_0 \le n-1$
 $k=1$ $0 \le i_1 \le n-1$

$$k=k'-1$$
 $0 \leqslant i_{k'+1} \leqslant n-1$

$$U(i) = 0$$
 initialization $i = 0, 1, ..., n-1$

$$O(k) > 0$$
 $U(i_k) = +1$ $O(k+1) = O(k) - O(i_k)$

$$\Theta(k) < 0$$
 $U(ik) = -1$ $\Theta(k+1) = -\Theta(k) + \alpha(ik)$

$$U(ij) = 0$$
 $i \in \{0, 1, ..., n-1\}$
 $i \in \{10, 11, ..., 144\}$

	no repeatition	repetition allowed
0	- 0 t 1	in MVR
1	2 -	111 14/11
2	4 + k'	
3	5 -	
4	8 -	
5	0	
	0	
<u></u>	0	
8		
9	0	
10	0	
	. 0	
11	0	
12	0	
13	0	
14	0	
15	0	

if the algorithm terminates at
$$k = k^*$$
, $k^* < \frac{\eta}{2}$

$$g(i) = a(i) - a(i+1)$$
 $i = 0, 1, ..., n-1$
 $a(i) = tan^{-1} 2^{-i}$

(2)
$$\alpha(i+2) < \alpha(i) - \alpha(i+1) < \alpha(i+1)$$

$$\sum_{i=0}^{n-1} |u(i)| < \frac{\eta}{2}$$

Elementary Angle Set

$$S = \{ (e \cdot tom^{-1}(2^{-r})) : \sigma \in \{+1, -1\}, r \in \{1, 2, ..., n-1\} \}$$

N-bit angle as a linear combination

$$\Theta = \sum_{i=0}^{n-1} \sigma_i \cdot \tan^{-i} (\lambda^{-i})$$

AR: O = {1,0,+1}

EAS (Elementary Angle Set) for Ak methods

SEAS = { (0. tom (2-r)): 0={+1,0,1}, r ∈ {1,2,..., n-1}}

Simple angle recording — Itu's greedy algorithm

tries to represent the remaining angle Using the closest elementary angle ±tan-i

Yestoring mode - Angle Recording

Vectoring mode - Backward Angle Recording (BAK)

initialize
$$\theta_0 = \theta$$

$$\theta_i = 0 \qquad i = 0, 1, ..., m$$

$$k = 0$$

repeat until
$$|O_k| < \tan^{-1}(2^{-n+1})$$
 do

1. Choose
$$i_k$$
, $i_k = 0, 1, 2, ..., n-1$
Such that
$$|O_k| - tan^{-1}(2^{-i_k})| = \min_{i \in [0:m]} |O_k| - tan^{-1}(2^{-i})$$



