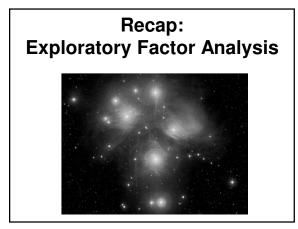

Psychometric Instrument Development Instrument Development Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspan="2"



2

1 Recap: Exploratory factor analysis
2 Concepts & their measurement
3 Measurement error
4 Psychometrics
5 Reliability & validity
6 Composite scores
7 Writing up instrument development

What is factor analysis?

- Factor analysis is:
 - a *family* of multivariate correlational methods used to identify clusters of covariance (called factors)
- Two main purposes: - Theoretical (PAF) - Data reduction (PC)
- Two main types (extraction methods): -Exploratory factor analysis (EFA)
 - -Confirmatory factor analysis (CFA)

EFA steps

1 Test assumptions

- Sample size
 - 5+ cases x no. of variables (min.)
 - 20+ cases x no. of variables (ideal)
 - Another guideline: N > 200
- Outliers & linearity
- Factorability Use any of:
 Correlation matrix: Some > .3?
 - Correlation matrix: Some > .3?
 Anti-image correlation matrix diags > .5
 - Measures of Sampling Adequacy:
 - KMO > ~ .5 to 6
 - Bartlett's sig?

EFA steps

2 Select type of analysis

- Extraction

- Principal Components (PC)
- Principal Axis Factoring (PAF)
- Rotation
 - Orthogonal (Varimax)
 - Oblique (Oblimin)

6

EFA steps

3. Determine no. of factors

- Theory?

- Kaiser's criterion?
- Eigen Values and Scree plot?
- -% variance explained?
- Interpretability of weakest factor?

EFA steps

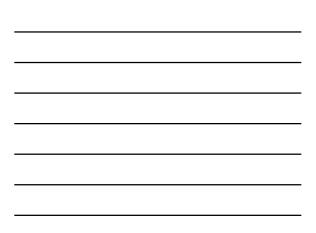
4. Select items

- Use factor loadings to help identify which items belong in which factor
- Drop items one at a time if they don't belong to any factor e.g., consider any items for which primary (highest) loading is low? (< .5 ?) • cross- (other) loading(s) are high? (> .3 ?)

 - item wording doesn't match the meaning of the factor

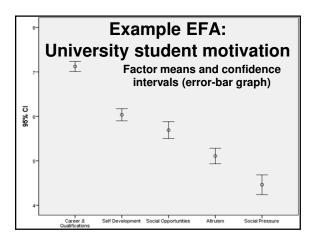
EFA steps

- 5 Name and describe factors
- 6 Examine correlations amongst factors
- 7 Analyse internal reliability
- 8 Compute composite scores Covered in
- 9 Check factor structure across this lecture sub-groups


9

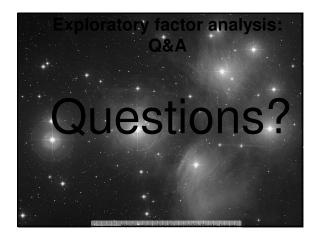
EFA example 4: University student motivation

Example EFA: University student motivation . 271 UC students responded to 24

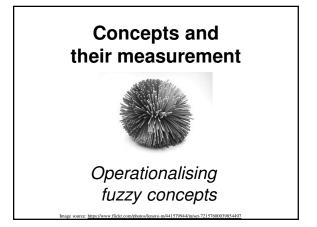

- student motivation statements in 2008
- . 8-point Likert scale (False to True)
- . For example:
 - "I study at university ... "
 - to enhance my job prospects.
 - because other people have told me I should.
- EFA PC Oblimin revealed 5 factors 11

				<u>^</u>		
			2	Component 3	4	5
	motiv15	.964				-
	motiv20	.914	This is	a pat	tern m	atrix
	motiv25		showi	ha fac	tor	
	motiv10		loadin			imple
×	motiv05	.713	loadin			
FA tri)	motiv09		.955	facto	struc	ture.
e EF⊿ matri	motiv14		.922	Prima	ry loa	dinge
at El	motiv24		.912			, v
шш	motiv04		.885	for ea	ch itei	n are
	motiv19	1 A A	.765	above	9.5	
	motiv07	·		•.906	-	
	motiv22			884		
	motiv17			883		
E 0	motiv01			876		
xample attern n	motiv12			734		
	motiv03			725		
X	motiv13	l Cro	ss-loa	dinas	.925	
шс	motiv23		all bel		.862	
	motiv18	aie		0.0.	.847	
	motiv11					.817
	motiv21 motiv02					.767
	motivU2 motiv16			248		.740
	motiv06			240		.628
	mouV06					.628

Example EFA: University student motivation 1. Career & Qualifications (6 items; α = .92) 2. Self Development (5 items; α = .81) 3. Social Opportunities


- Social Opportunities (3 items; α = .90)
- 4. Altruism
- (5 items; α = .90)
- 5. Social Pressure $(5 \text{ items}; \alpha = .94)$
- (5 items, a = .5-

Example EFA: University student motivation Factor correlations									
Motivation	Self Develop ment	Social Enjoyme nt	Altruism	Social Pressure					
Career & Qualifications	.26	.25	.24	.06					
Self Development		.33	.55	18					
Social Enjoyment			.26	.33					
Altruism .11									
				15					



Readings: Psychometrics

- 1 Bryman & Cramer (1997).
- Concepts and their measurement. [UCLearn Reading List] 2 DeCoster, J. (2000).
- 2 Decoster, J. (2000).
 Scale construction notes. [Online]
 3 Howitt & Cramer (2005).
 Reliability and validity: Evaluating the value of tests and measures. [Textbook/UCLearn Reading List]
- Howitt & Cramer (2014).
 Ch 37: Reliability in scales and measurement: Consistency and measurement. [Textbook/UCLearn Reading List]
- 5 Wikiversity. Composite scores. [Online] Measurement error. [Online] Reliability and validity. [Online]

Concepts and their measurement

Bryman & Cramer (1997)

Concepts

- express common elements in the world (to which we give a name)
- form a linchpin in the process of social research

20

Concepts and their measurement Bryman & Cramer (1997)

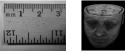
Hypotheses

 specify expected relations between concepts

Concepts and their measurement

Bryman & Cramer (1997)

Operationalisation

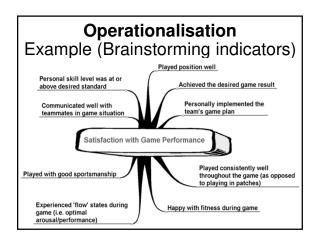

- A concept needs to be *operationally defined* in order to be systematically researched.
- "An operational definition specifies the procedures (operations) that will permit differences between individuals in respect of the concept(s) concerned to be precisely specified ..."

Bryman & Cramer (1997)

"... What we are in reality talking about here is *measurement*, that is, the assignment of numbers to the units of analysis - be they people, organizations, or nations - to which a

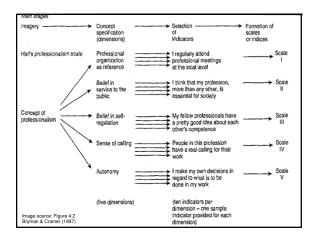
concept refers."

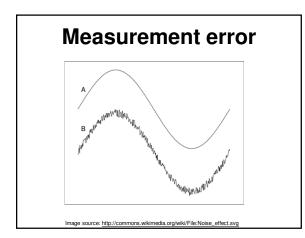
23


Operationalisation

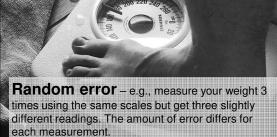
- The act of making a *fuzzy concept* measurable.
- Social science often uses *multi-item measures* to assess related but distinct aspects of a fuzzy concept.

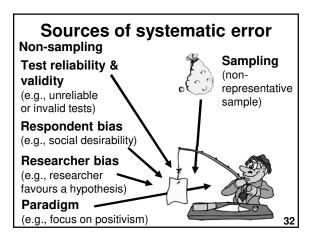
Operationalisation steps


- 1 Brainstorm indicators of a concept
- 2 Define the concept
- 3 Draft measurement items
- 4 Pre-test and pilot test
- 5 Examine psychometric properties
- how precise are the measures?
- 6 Redraft/refine and re-test








Measurement error

Measurement error is statistical deviation from the **true value** caused by the measurement procedure.

- Observed score = true score +/- measurement error
 - **Measurement error** = systematic error +/- random error
 - Systematic error = sampling error +/- non-sampling error

Systematic error – e.g., bathroom scales aren't calibrated properly, and every measurement is 0.5kg too high. This error occurs for each measurement.

Measurement precision & noise

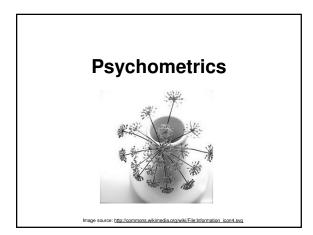
- The lower the measurement precision, the more participants are needed to make up for the "noise" in the measurements.
- Even with a larger sample, noisy data can be hard to interpret.
- Especially when testing and assessing individual clients, special care is needed when interpreting results of noisy tests.

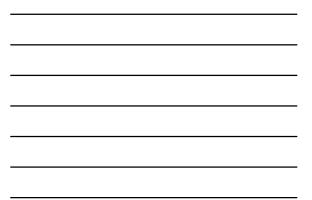
http://www.sportsci.org/resource/stats/precision.htm

Minimising measurement error

- Standardise administration conditions with clear instructions and questions
- Minimise potential demand characteristics (e.g., train interviewers)
- Use multiple indicators for fuzzy constructs

Minimising measurement error


- Obtain a representative sample:
 - -Use probability-sampling, if possible
 - For non-probability sampling, use strategies to minimise selection bias
- Maximise response rate:
 - -Pre-survey contact
 - -Minimise length / time / hassle
 - -Rewards / incentives
 - Coloured paper
 - -Call backs / reminders


35

34

Minimising measurement error

- Ensure administrative accuracy:
 - -Set up efficient coding, with welllabelled variables
 - -Check data (double-check at least a portion of the data)

Psychometrics: Goal

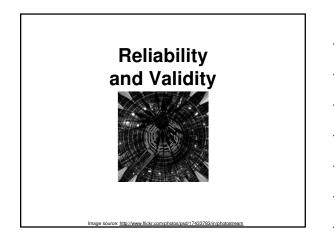
To validly measure differences between individuals and groups in psychosocial qualities such as attitudes and personality.

38

Psychometrics: Tasks

- Develop approaches and procedures (theory and practice) for measuring psychological phenomena
- Design and test psychological measurement instrumentation (e.g., examine and improve reliability and validity of psychological tests)

Psychometrics: In demand

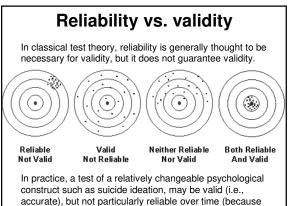

"Psychometrics, one of the most obscure, esoteric and cerebral professions in America, is now also one of the hottest." <u>As test-taking grows, test-makers grow rarer</u>, David M. Herszenhor, May 5, 2006, New York Times

Psychometricians are in demand due to increased testing of educational and psychological capacity and performance.

Psychometrics: Methods

- Factor analysis
 - Exploratory
 - Confirmatory
- Classical test theory -Reliability
 - -Validity

41



Reliability and validity (Howitt & Cramer, 2005)

Reliability and validity ("classical test theory") are ways of evaluating the accuracy of psychological tests and measures.

- Reliability is about consistency of – items within the measure
 - the measure over time
- Validity is about whether the measure actually measures what it is intended to measure.

43

accurate), but not particularly reliable over tin suicide ideation is likely to fluctuate).

Reliability vs. validity Reliability • A car which starts every time is reliable. • A car which only starts sometimes is unreliable.

Validity

A car which always reaches the desired destination is valid.
A car which misses the desired destination is not valid.

Image source: https://commons.wikimedia.org/wiki/File:Aiga_carrental_cropped.svg

Reliability and validity (Howitt & Cramer, 2005)

 Reliability and validity are not inherent characteristics of measures. They are affected by the context and purpose of the measurement → a measure that is valid for one purpose may not be valid for another purpose.

Reliability Reproducibility of a measurement

Reliability: Types

- Internal consistency: Correlation among multiple items in a factor – Cronbach's Alpha (α)
- **Test-retest reliability**: Correlation between test at one time and another – Product-moment correlation (*r*)
- Inter-rater reliability: Correlation between one observer and another: – Kappa

48

Reliability: Rule of thumb

< .6 = Unreliable

.6 = OK

- .7 = Good
- .8 = Very good, strong
- .9 = Excellent
- > .95 = may be overly reliable or

redundant – this is subjective and depends on the nature what is being measured

49

ile c	of thu	ımb)
Pers and	onality Social	rnal of plied chology	
N	%	N	%
3	1.9	2	3.4
6	3.8	5	8.6
33	20.8	9	15.5
33	20.8	11	19.0
14	8.8	9	15.5
70	44.0	22	37.9
	Jour Pers and Psyc N 3 6 33 33 14	Journal of Personality and Social Psychology N 3 1.9 6 33 20.8 33 20.8 14	Personality and Social Psychology Jou Apple Psychology N % 3 1.9 2 6 3.8 5 33 20.8 9 33 20.8 11 14 8.8 9

Internal consistency (or internal reliability)

Internal consistency refers to:

- How well multiple items combine as a measure of a single concept
- The extent to which responses to multiple items are consistent with one another

Internal consistency can measured by:

- Split-half reliability
- Odd-even reliability

Cronbach's Alpha (α)

Internal consistency (recoding)

If dealing with a mixture of positively and negatively scored items, remember to recode so that all items are measured i the same direction.

Internal consistency: Split-half reliability

- Sum the scores for the first half (e.g., 1, 2, 3) of the items.
- Sum the scores for the second half (e.g., 4, 5, 6) of the items.
- Compute a correlation between the sums of the two halves.

53

52

Internal consistency: Odd-even reliability

- Sum the scores for odd items (e.g.,1, 3, 5)
- Sum the scores for even items (e.g., 2, 4, 6)
- Compute a correlation between the sums of the two halves.

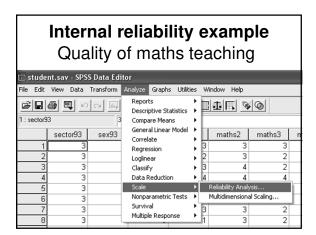
Internal consistency: Cronbach's alpha (α)

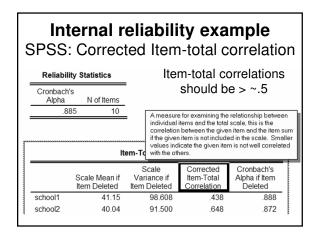
- Averages all possible split-half reliability coefficients.
- Akin to a single score which represents the degree of intercorrelation amongst the items.
- Most commonly used indicator of internal reliability.

55

How many items per factor?

- More items → greater reliability (The more items, the more "rounded" the measure)
- Minimum items to create a factor is 1.
- No maximum. Law of diminishing returns = each additional item will add less and less to the reliability.
- Typically ~ 3 to 10 items per factor are used.
- Final decision is subjective and depends on research context


56


Internal reliability example Student-rated quality of maths teaching

- 10-item scale measuring students' assessment of the educational quality of their maths classes
- 4-point Likert scale ranging from: strongly disagree to strongly agree

Internal reliability example Quality of mathematics teaching

- 1. My maths teacher is friendly and cares about me.
- 2. The work we do in our maths class is well organised.
- 3. My maths teacher expects high standards of work from everyone.
- 4. My maths teacher helps me to learn.
- 5. I enjoy the work I do in maths classes. + 5 more

Internal reliability example SPSS: Cronbach's α							
Reliability Statistics If "Cronbach's α if item deleted" is higher than the							
Cronbach's Alpha N of Items	α, consider removing item.						
.885 10 A measure for examining the relationship between individual items and the total scale, this is the value of Cronbach's Alpha for the remaining items if the given item is not included in the scale.							
Item-Total Statistics							
Scale Mean if Item Deleted	Scale Variance if Item Deleted	/ariance if Item-Total Alpha if Item					
school1 41.15	98.608	.438	.888				
school2 40.04	91.500	.648	.872				

Internal reliability example							
Item-total	Statistics	SPSS: I	Reliability	output			
	Scale	Scale	Corrected				
	Mean	Variance	Item-	Alpha			
	if Item	if Item	Total	if			
Item							
	Deleted	Deleted	Correlation				
Deleted							
MATHS1	25.2749	25.5752	(.6614)	(.8629)			
MATHS2	25.0333	26.5322	6235	-8661			
MATHS3	25.0192	30.5174	.0996	.9021			
MATHS4	24.9786	25.8671	.7255	.8589			
MATHS5	25.4664	25.6455	.6707	.8622			
MATHS6	25.0813	24.9830	.7114	.8587			
MATHS7	25.0909	26.4215	.6208	.8662			
MATHS8	25.8699	25 7345	.6513	.8637			
MATHS9	25.0340	26.120 R	emove st his i	item:8623			
MATHS10	25.4642	25.7578	. 6795	.8638			
N of Cases = 1553.0 Maths3 does not correlate well with the other items and the Cronbach's alpha wuld increase without this item 62							

Internal reliability example							
Item-total	Statistics	SPSS: F	Reliability	output			
	Scale	Scale	Corrected				
	Mean	Variance	Item-	Alpha			
	if Item	if Item	Total	if			
Item	Deleted	Deleted	Correlation				
Deleted	Deteced	Deteced	COLLETATION				
MATHS1	22.2694	24.0699	.6821	.8907			
MATHS2	22.0280	25.2710	.6078	.8961			
MATHS4	21.9727	24.4372	.7365	.8871			
MATHS5	22.4605	24.2235	.6801	.8909			
MATHS6	22.0753	23.5423	.7255	.8873			
MATHS7	22.0849	25.0777	.6166	.8955			
MATHS8	22.8642	24.3449	.6562	.8927			
MATHS9	22.0280	24.5812	.7015	.8895			
MATHS10	22.4590	24.3859	.6524	.8930			
N of Cases	= 1355.0)AI	pha improve	es			
Alpha =	. 9024	/		63			

LEQ 8-factor model	Description	3 items p	er scale
		Test- Retest r	Alpha
Achievement Motivation	Motivation to achieve excellence and put the required effort into action to attain it.	.68	.87
Active Initiative *	Initiating action in new situations.	.73	.81
Emotional Control	Maintaining emotional control when faced with potentially stressful situations.	.75	.87
Intellectual Flexibility	Adapting thinking and accommodating new information from changing conditions and different perspectives.	.60	.78
Self Confidence *	Confidence in abilities and the success of actions.	.73	.84
Social Competence	Ability in and success of social interactions.	.75	.86
Task Leadership	Ability to lead other people effectively when a task needs to be done and productivity is the primary requirement.	.81	.82
Time Management	Makes optimum use of time.	.75	.84
Total	Effective in generic life skills.	.72	.84
N		.67	.93

Validity is the extent to which an instrument actually measures what it purports to measure.

Validity = does the test measure what its meant to measure?

Validity

- Validity is multifaceted and includes:
 - Comparing wording of the items with theory and expert opinion
 - Examining correlations with similar and dissimilar measures
 - Testing how well the measure predicts the future

Validity: Types

- Face validity
- Content validity
- Criterion validity
 Concurrent validity
 - Predictive validity
- Construct validity
 - Convergent validity
 - Discriminant validity

Face validity (low-level of importance overall)

• Asks:

"At face-value, do the questions appear to measure what the test purports to measure?"

- Important for: Respondent buy-in
- How assessed: Read the test items

68

67

Content validity

(next level of importance)

• Asks:

"Are questions measuring the complete construct?"

- Important for: Ensuring holistic assessment
- How assessed: Diverse item generation (lit. review, theory, interviews, expert review)

Criterion validity (high importance)

• Asks:

"Can a test score predict real world outcomes?"

• Important for: Test relevance and usefulness

• How assessed: Concurrent validity: Correlate test scores with recognised external criteria such as performance appraisal scores

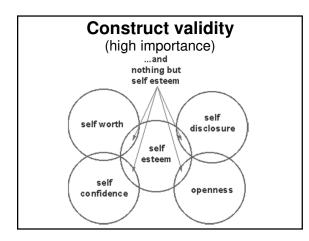
Predictive validity: Correlate test scores with

70

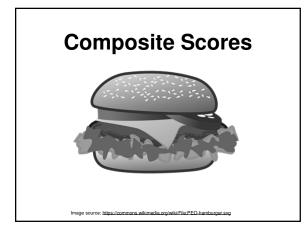
Construct validity

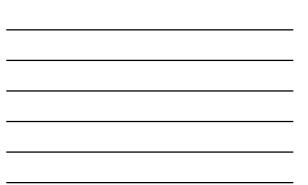
• Asks: (high importance)

Does the test assess the construct it purports to? ("the truth, the whole truth and nothing but the truth")


Important for:

Making inferences from operationalisations to theoretical constructs


How assessed:


- Theoretical (is the theory about the construct valid?) - Statistical

Convergent – correlation with similar measures Discriminant – not correlated with other constructs **71**

Composite scores

Combine item-scores into an overall factor score which represents individual differences for the target construct. The new composite score can then be used for:

- Descriptive statistics and histograms
- Correlations
- As IVs and/or DVs in inferential analyses such as MLR and ANOVA 74

Composite scores

Ways of creating composite scores:

- Unit weighting
- Regression weighting

Unit weighting

Average (or total) of item scores within a factor.

(each variable is equally weighted)

$$X = mean(y_1...y_p)$$

.25

.25 .25

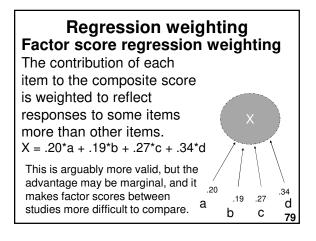
Composite scores: Missing data

To maximise the sample size, consider computing composite scores in a way that allows for some missing data.

77

.25

76


Composite scores: Missing data

SPSS syntax: Compute X = mean (v1, v2, v3, v4, v5, v6) Compute X = mean 4 (v1, v2, v3, v4, v5, v6) Specifies a min. # okitems. If the min. isn't available, the composite score will be missing. In this example, X will be computed for a case when the case has responses to at least 4 of the 6 items.

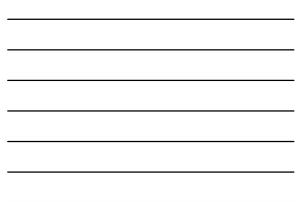
How many items can be missed? Depends on overall reliability. A rule of thumb: Allow 1 missing per 4 to 5 items Allow 2 missing per 6 to 8 items Allow 3+ missing per 9+ items Aresearche

- .

A researcher may decide to be more or less conservative depending on the factors' reliability, sample size, and the nature of the study. **78**

Regression weighting

Two calculation methods:


- Manual (use Compute New variable name = MEAN.*(list of variable names separated by commas) - Unit weighted
- Automatic (use Factor Analysis Factor Scores – Save as variables -Regression) - Regression weighted

Save as variables	Continue
Method	Cancel
 Begression C Bartlett 	Help
C Anderson-Rubin	

Va	oriah		<u> </u>		on v bles a	<u> </u>		•	uab
			analys		bies a	ulo-ca	iculate		ugn
64	FAC1_1	Nume	eric	11 5		REGR fac	tor score	1 for analys	is 1 N
65	FAC2_1	Nume	eric	11 5		REGR fac	tor score	2 for analys	is 1 🕴
66	FAC3_1	Nume	eric	11 5		REGR fac	tor score	3 for analys	is 1 🕴
67	FAC4_1	Nume	eric	11 5		REGR fac	tor score	4 for analys	is 1 🛛 🛚
68	FAC5_1	Nume	eric	11 5		REGR fac	tor score	5 for analys	is 1 🛛 🕅
69	FAC6_1	Nume	eric	11 5		REGR fac	tor score	6 for analys	is 1 🛛 🕅
70	FAC7_1	Nume	eric	11 5		REGR factor score 7 for analy		7 for analys	is 1 🛛 🛚
71	FAC8_1	Nume	eric	11 5		REGR fac	tor score	8 for analys	is 1 🛛 🕅
72	FAC9_1	Nume	eric	11 5		REGR fac	tor score	9 for analys	is 1 M
	Da Dilnîd		EAC3 1	Data a	re star	dardis	sed, ce	entred	FAC9 1
arc	JUHO	.41	-4.41	-1.29	.93	.26	-2.63		
3	-1.34	-1.90	3.17	-1.06	10	1.95	-1.39	.66	08
1	36	02	1.61	-1.27	-2.05	-1.77	74	.72	1.00
2	.51	09	.11	.56	1.05	72	93	1.06	17
5	.30	54	14	2.65	54	.11	1.82	.53	1.23
1	01	1.18	.56	26	1.35	-1.36	58	-1.06	63
2	-1.91	-1.74	1.73	36	-2.47	1.34	.37	.86	38

Writing up instrument development

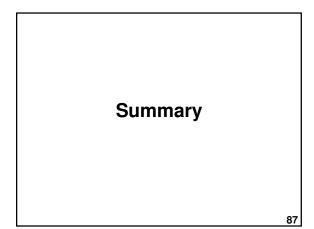
- Introduction
 - Review previous literature about the construct's underlying factors – consider both theory and research
 - -Generate a research question e.g., "What are the underlying factors of X?".
 - Could also make a hypothesis about the number of factors and what they will represent.

83

Writing up instrument development

Method

- Materials – summarise the design and development of the measures and the expected factor structure e.g., present a table of the expected factors and their operational definitions.


Writing up instrument development

- Results
 - -Factor analysis
 - Assumption testing
 - Extraction method & rotation
 - $\ensuremath{\bullet}$ # of factors, with names and definitions
 - # of items removed and rationale
 - Item factor loadings & communalities
 - Factor correlations
 - -Reliability for each factor
 - -Composite scores for each factor
 - -Correlations between factors

Writing up instrument development

- Discussion
- Theoretical underpinning Was it supported by the data? What adaptations should be made to the theory?
- Quality / usefulness of measure Provide an objective, critical assessment, reflecting the measures' strengths and weaknesses
 Recommendations for further improvement
- Writing up a factor analysis
 Download examples: <u>http://goo.gl/fD2qby</u>

86

Summary: Psychometrics

- 1 Science of psychological measurement
- 2 Goal: Validly measure individual psychosocial differences
- 3 Design and test psychological measures e.g., using 1 Factor analysis 2 Reliability and validity

Summary: Concepts & their measurement

- 1 Concepts name common elements
- 2 Hypotheses identify relations between concepts
- 3 Brainstorm indicators of a concept
- 4 Define the concept
- 5 Draft measurement items
- 6 Pre-test and pilot test
- 7 Examine psychometric properties
- 8 Redraft/refine and re-test

89

88

Summary: Measurement error

- 1 Deviation of measure from true score 2 Sources:
 - 1Non-sampling (e.g., paradigm, respondent bias, researcher bias)
 - 2Sampling (e.g., non-representativeness)
- 3 How to minimise:
 - 1 Well-designed measures
 - 2 Representative sampling
 - 3 Reduce demand effects
 - 4 Maximise response rate 5 Ensure administrative accuracy

Summary: Reliability

Consistency or reproducibility
 Types

 Internal consistency
 Test-retest reliability

 Rule of thumb

 6 OK
 8 Very good

 Internal consistency

 Slither and the state of the sta

Summary: Validity

1 Extent to which a measure measures what it is intended to measure

2 Multifaceted

1 Compare with theory and expert opinion 2 Correlations with similar and dissimilar measures 3 Predicts future

92

91

Summary: Composite scores

Ways of creating composite (factor) scores:

- 1. Unit weighting
 - 1.Total of items or
 - 2. Average of items
 - (recommended for lab report)
- Regression weighting

 Each item is weighted by its
 importance to measuring the underlying
 factor (based on regression weights)

Summary: Writing up instrument development

1. Introduction

1. Review constructs & previous structures

2. Generate research question or hypothesis

2. Method

1. Explain measures and their development

- 3. Results
 - 1. Factor analysis
 - 2. Reliability of factors
 - 3. Descriptive statistics for composite scores
 - 4. Correlations between factors

4. Discussion

1. Theory? / Measure? / Recommendations?

References

- 1 Allen, P. & Bennett, K. (2008). *Reliability analysis* (Ch 15) in SPSS for the health & behavioural sciences (pp. 205-218). South Melbourne, Victoria, Australia: Thomson.
- 2 Bryman, A. & Cramer, D. (1997). Concepts and their measurement (Ch. 4). In Quantitative data analysis with SPSS for Windows: A guide for social scientists (pp. 53-68). Routledge. UCLearn Reading List.
- DeCoster, J. (2000). <u>Scale construction notes</u>.
 Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J.
- (199). Evaluating the use of exploratory factor analysis in psychological research. *Psychological Methods*, 4(3), 272-299.
 Fowler, F. (2002). Designing questions to be good measures. In *Survey research methods* (3rd ed.)(pp. 76-103). Thousand Oaks, CA: Sage. UCLearn Reading List.
- 6 Howitt, D. & Cramer, D. (2005). Reliability and validity: Evaluating the value of tests and measures (Ch. 13). In *Introduction to* research methods in psychology (pp. 218-231). Harlow, Essex: Pearson. UCLearn Reading List.

95

94

Next lecture

Multiple linear regression I

- Correlation (Review)
- Simple linear regression
- Multiple linear regression