## Gear ratio:

The solar cell will supply I and U :

$$
I=I s c-I s\left(e^{\frac{U}{m \cdot N \cdot U r}}-1\right)
$$

So if we want the max power:

$$
\mathbf{P}=\mathbf{U} \times \mathbf{I}
$$

I have caculated it by maple14.
When

$$
\begin{gathered}
U=7.55 \mathrm{~V} \\
\mathrm{I}=0.93 \mathrm{~A} \\
\text { Pmax }=7 \mathrm{~W}
\end{gathered}
$$

Therefore:

$$
\begin{aligned}
& U \cdot I \cdot \eta=F_{\text {wheel }} \cdot V_{A / B} \\
& T_{\text {wheel }}=8.55 \cdot 70 \% \cdot I \cdot 10^{-3} \cdot n \quad(n \text { is the gear ratio) } \\
& T_{\text {wheel }}=F_{\text {wheel }} \cdot R_{\text {wheel }} \\
& S=1 / 2 a \cdot t^{2}=1 / 2 V_{A / B} \cdot t_{A / B} \quad(S=6 \mathrm{~m} \text {, at point } A / B) \\
& F \cdot t=m \cdot \Delta V \rightarrow\left(F_{\text {wheel }}-F_{\text {rolling }}\right) \cdot t_{A / B}=m \cdot V_{A / B}
\end{aligned}
$$

Estimate the weight of the car $(\mathrm{m})$ and the radius of the wheel ( $\mathrm{R}_{\text {wheel }}$ ).

Taking $m=0.75 \mathrm{~kg}, \mathrm{R}_{\text {wheel }}=\mathbf{0 . 0 4 m}, \mathrm{F}_{\text {rolling }}$ can be calculated by $\mathrm{Fr}=\mathrm{C}_{\mathrm{rr}} \mathbf{x N}$

N is the normal force

## $\mathrm{C}_{\mathrm{rr}}$ is the rolling resistance coefficient

## $\mathrm{C}_{\mathrm{rr}}=0.015$

$$
U=7.56 \mathrm{~V} ; \mathrm{I}=0.93 \mathrm{~A} ; \eta=70 \% ; \mathrm{S}=6 \mathrm{~m}
$$

## So we calculate it by maple14:

$$
\begin{aligned}
& \text { eq1 }:=7 \cdot 0.7=\text { Fwheel } \cdot \text { Vab } \\
& 4.9=\text { Fwheel Vab } \\
& \text { eq } 2:=T \text { wheel }=5.985 \cdot 0.001 \cdot n \cdot 0.9272 \\
& \text { Twheel }=0.0055492920 n \\
& \text { eq } 5:=\text { Twheel }=\text { Fwheel } \cdot 0.04 \\
& \text { Twheel }=0.04 \text { Fwheel } \\
& e q 3:=6=\frac{1}{2} \cdot V a b \cdot t \\
& 6=\frac{1}{2} V a b t \\
& \text { eq } 4:=(F \text { wheel }-0.1104) \cdot t=0.75 \cdot \mathrm{Vab} \\
& (\text { Fwheel }-0.1104) t=0.75 \mathrm{Vab} \\
& \text { simplify(solve( }\{\text { eq1, eq2, eq3, eq4, eq5\}, [Vab, n, t, Fwheel, Twheel])) } \\
& \text { [ }[V a b=4.142427119, n=8.526359055, t=2.896852414 \text {, } \text { Fwheel } \\
& =1.182881402, \text { Twheel }=0.04731525609],[V a b=-2.071213560 \\
& -3.825725660 \mathrm{I}, n=-3.865290932+7.139554796 \mathrm{I}, t= \\
& -1.313242534+2.425682101 \text { I, } \text { Fwheel }=-0.5362407012 \\
& +0.9904868579 \text { I, Twheel }=-0.02144962805 \\
& +0.03961947432 \mathrm{I}],[\mathrm{Vab}=-2.071213560+3.825725660 \mathrm{I}, n= \\
& -3.865290932-7.139554796 \mathrm{I}, t=-1.313242534 \\
& -2.425682101 \text { I, } \text { Fwheel }=-0.5362407012-0.9904868579 \text { I, } \\
& \text { Twheel }=-0.02144962805-0.03961947432 \mathrm{I}]]
\end{aligned}
$$

Now we get:

$$
\begin{gathered}
\mathbf{V}_{\text {max }}=4.142 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{n}=8.53 \\
\mathrm{~F}_{\text {wheel }}=1.183 \mathrm{~N} \\
\mathrm{~T}_{\text {wheel }}=0.0473 \mathrm{~N} \cdot \mathrm{~m}
\end{gathered}
$$

When the car gets max velocity, it will take $t$.

$$
t=2.897 s
$$

When our car arrives at the slope:


On the slope
Total resistant force:
Rolling resistance; Part of the weight;
Air resistance (neglected)
$\mathrm{F}_{\mathrm{r}}=\mathrm{F}_{\text {rolling }}+\mathrm{mg} \cdot \sin \left(3^{\circ}\right) \approx 0.4953 \mathrm{~N}$
Thus, On the slope $F_{\text {whee }}>F_{r}$
$F_{\text {wheel }}=F_{r}=0.4953 \mathrm{~N} \rightarrow T_{\text {wheel }}$, gear ratio $i$ is known
$\rightarrow$ I (current) $\rightarrow$ solar panel U-I graph $\rightarrow \mathbf{U}$
$\rightarrow \mathrm{U} \cdot \mathrm{I} \cdot \boldsymbol{\eta}=\mathrm{F}_{\text {wheel }} \cdot \mathrm{V} \rightarrow \mathrm{V}_{\text {slope }}=4.77 \mathrm{~m} / \mathrm{s}$
$V_{\text {final }} \approx 3.66 \mathrm{~m} / \mathrm{s}$
In this case, $\mathbf{V}_{\mathrm{A} / \mathrm{B}}$ and $\mathbf{V}_{\text {final }}$ are almost equal
So $\mathrm{t}_{\text {slope }}<8 \mathrm{~m} / \mathrm{V}_{\mathrm{A} / \mathrm{B}} \approx 1.813 \mathrm{~s}$

$$
t_{\text {total }} \approx t_{\mathrm{A} / \mathrm{B}}+\mathrm{t}_{\text {slope }}=2.897+1.813=4.71 \mathrm{~s}
$$

