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Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps
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The Haskell type State describes functions 

that take a state 

and return both a result and an updated state, 

which are given back in a tuple.

The state function is wrapped by a data type definition 

which comes along with a runState accessor 

no need for pattern matching

Control.Monad.Trans.State, transformers package. (focused here) 

Control.Monad.State, mtl package. 

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad

S0 (x, S1)

newtype State s a = State { runState :: s -> (s, a) }

accessor
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newtype State s a = State { runState :: s -> (a, s) }

s : the type of the state, 

a : the type of the produced result

s -> (a, s) : function type

Calling the type State is arguably a bit of a misnomer 

because the wrapped value is not the state itself 

but a state processor (accessor function: runState)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad

State String, 

State Int, 

State SomeLargeDataStructure, 

and so forth. 
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Control.Monad.Trans.State, transformers package. (focused here) 

no State constructor

but a state function

state :: (s -> (s, a)) -> State s a

Control.Monad.State, mtl package

Implements the State in somewhat different way

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad – state function 
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to wrap a function type and give it a name. 

for every type s, State s can be made a Monad instance, 

the instance is State s, and not just State

(State can't be made an instance of Monad, 

as it takes two type parameters, rather than one.)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Instantiating a State Monad

instance Monad (State s) where

newtype State s a = State { runState :: s -> (s, a) }

State String, 

State Int, 

State SomeLargeDataStructure, 

and so forth. 

return 

(>>=); 
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instance Monad (State s) where

many different State monads, 

one for each possible type of state - 

State String, 

State Int, 

State SomeLargeDataStructure, 

and so forth. 

only need to write one implementation of

 return and 

(>>=); 

these methods will be able to deal with all choices of s.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Instantiating a State Monad
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instance Monad (State s) where

return :: a -> State s a

return x = state ( \ s -> (x, s) )

giving a value (x) to return produces a function state

which takes a state (s) and returns it unchanged, 

together with value x we want to be returned. 

As a finishing step, the function is wrapped up with the state function.

state :: (s -> (a, s)) -> State s a

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad – return method

newtype State s a = State { runState :: s -> (s, a) }
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instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

    p' = runState p        -- p' :: s -> (a, s)

    k' = runState . k     -- k' :: a -> s -> (b, s)

    q' s0 = (y, s2) where  -- q' :: s -> (b, s)

        (x, s1) = p' s0    -- (x, s1) :: (a, s)

        (y, s2) = k' x s1  -- (y, s2) :: (b, s)

    q = state q'

p  >>= k = state $ \ s0 ->

   let (x, s1) = runState p s0  -- running the first processor on s0.

   in runState (k x) s1         -- running the second processor on s1.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad – binding operator

p'S0 (x, S1)

k'x
(y, S2)

S1
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instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

    p' = runState p        -- p' :: s -> (a, s)

    k' = runState . k     -- k' :: a -> s -> (b, s)

    q' s0 = (y, s2) where  -- q' :: s -> (b, s)

        (x, s1) = p' s0    -- (x, s1) :: (a, s)

        (y, s2) = k' x s1  -- (y, s2) :: (b, s)

    q = state q'

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad – binding operator

state :: (s -> (a, s)) -> State s a

newtype State s a = State { runState :: s -> (s, a) }

s (s, a)

runState p

s (s, a)

runState . k 

s0 (x, s1)

s1 (y, s2)
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instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

    p' = runState p        -- p' :: s -> (a, s)

    k' = runState . k     -- k' :: a -> s -> (b, s)

    q' s0 = (y, s2) where  -- q' :: s -> (b, s)

        (x, s1) = p' s0    -- (x, s1) :: (a, s)

        (y, s2) = k' x s1  -- (y, s2) :: (b, s)

    q = state q'

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad – binding operator

state :: (s -> (a, s)) -> State s a

newtype State s a = State { runState :: s -> (s, a) }

s (s, a)

runState p

s (s, a)

runState . k 

s0 (x, s1)

s1 (y, s2)

p >>= k

State s a -> (a -> State s b) -> State s b

p  k
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