
Young Won Lim
8/22/17

State Monad (3D)

Young Won Lim
8/22/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

State Monad (3D) 3 Young Won Lim
8/22/17

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

State Monad (3D) 4 Young Won Lim
8/22/17

The Haskell type State describes functions

that take a state

and return both a result and an updated state,

which are given back in a tuple.

The state function is wrapped by a data type definition

which comes along with a runState accessor

no need for pattern matching

Control.Monad.Trans.State, transformers package. (focused here)

Control.Monad.State, mtl package.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad

S0 (x, S1)

newtype State s a = State { runState :: s -> (s, a) }

accessor

State Monad (3D) 5 Young Won Lim
8/22/17

newtype State s a = State { runState :: s -> (a, s) }

s : the type of the state,

a : the type of the produced result

s -> (a, s) : function type

Calling the type State is arguably a bit of a misnomer

because the wrapped value is not the state itself

but a state processor (accessor function: runState)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad

State String,

State Int,

State SomeLargeDataStructure,

and so forth.

State Monad (3D) 6 Young Won Lim
8/22/17

Control.Monad.Trans.State, transformers package. (focused here)

no State constructor

but a state function

state :: (s -> (s, a)) -> State s a

Control.Monad.State, mtl package

Implements the State in somewhat different way

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad – state function

State Monad (3D) 7 Young Won Lim
8/22/17

to wrap a function type and give it a name.

for every type s, State s can be made a Monad instance,

the instance is State s, and not just State

(State can't be made an instance of Monad,

as it takes two type parameters, rather than one.)

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Instantiating a State Monad

instance Monad (State s) where

newtype State s a = State { runState :: s -> (s, a) }

State String,

State Int,

State SomeLargeDataStructure,

and so forth.

return

(>>=);

State Monad (3D) 8 Young Won Lim
8/22/17

instance Monad (State s) where

many different State monads,

one for each possible type of state -

State String,

State Int,

State SomeLargeDataStructure,

and so forth.

only need to write one implementation of

 return and

(>>=);

these methods will be able to deal with all choices of s.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

Instantiating a State Monad

State Monad (3D) 9 Young Won Lim
8/22/17

instance Monad (State s) where

return :: a -> State s a

return x = state (\ s -> (x, s))

giving a value (x) to return produces a function state

which takes a state (s) and returns it unchanged,

together with value x we want to be returned.

As a finishing step, the function is wrapped up with the state function.

state :: (s -> (a, s)) -> State s a

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad – return method

newtype State s a = State { runState :: s -> (s, a) }

State Monad (3D) 10 Young Won Lim
8/22/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

 q' s0 = (y, s2) where -- q' :: s -> (b, s)

 (x, s1) = p' s0 -- (x, s1) :: (a, s)

 (y, s2) = k' x s1 -- (y, s2) :: (b, s)

 q = state q'

p >>= k = state $ \ s0 ->

 let (x, s1) = runState p s0 -- running the first processor on s0.

 in runState (k x) s1 -- running the second processor on s1.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad – binding operator

p'S0 (x, S1)

k'x
(y, S2)

S1

State Monad (3D) 11 Young Won Lim
8/22/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

 q' s0 = (y, s2) where -- q' :: s -> (b, s)

 (x, s1) = p' s0 -- (x, s1) :: (a, s)

 (y, s2) = k' x s1 -- (y, s2) :: (b, s)

 q = state q'

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad – binding operator

state :: (s -> (a, s)) -> State s a

newtype State s a = State { runState :: s -> (s, a) }

s (s, a)

runState p

s (s, a)

runState . k

s0 (x, s1)

s1 (y, s2)

State Monad (3D) 12 Young Won Lim
8/22/17

instance Monad (State s) where

(>>=) :: State s a -> (a -> State s b) -> State s b

p >>= k = q where

 p' = runState p -- p' :: s -> (a, s)

 k' = runState . k -- k' :: a -> s -> (b, s)

 q' s0 = (y, s2) where -- q' :: s -> (b, s)

 (x, s1) = p' s0 -- (x, s1) :: (a, s)

 (y, s2) = k' x s1 -- (y, s2) :: (b, s)

 q = state q'

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

State Monad – binding operator

state :: (s -> (a, s)) -> State s a

newtype State s a = State { runState :: s -> (s, a) }

s (s, a)

runState p

s (s, a)

runState . k

s0 (x, s1)

s1 (y, s2)

p >>= k

State s a -> (a -> State s b) -> State s b

p k

Young Won Lim
8/22/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

