Descriptives \& Graphing

Lecture 3
Survey Research \& Design in Psychology James Neill, 2018

Getting to know data
 (how to approach data)

Getting to know data

Readings

Howitt \& Cramer (2014):

- Chapter 01 - Why statistics?
- Chapter 02 - Some basics: Variability and measurement
- Chapter 03 - Describing variables: Tables and diagrams
- Chapter 04 - Describing variables numerically: Averages, variation and spread
- Chapter 05 - Shapes of distributions of scores
- Chapter 06 - Standard deviation and z-scores: The standard unit of measurement in statistics

LOM \rightarrow statistics

Level of measurement determines the type of statistics that can be used, including types of:

- descriptive statistics
- graphs
- inferential statistics

LOM - Parametric vs. nonparametric
Categorical \& ordinal data DV \rightarrow non-parametric
(Does not assume a normal distribution)
Interval \& ratio data DV \rightarrow parametric
(Assumes a normal distribution) \rightarrow non-parametric
(If distribution is non-normal)
DVs = dependent variables
17

Level of measurement \& types of statistics

Parametric statistics

- Statistics which estimate parameters of a population, based on the normal distribution
-Univariate:
mean, standard deviation, skewness, kurtosis
-Bivariate:
correlation, linear regression, t-tests
-Multivariate:
multiple linear regression, ANOVAs

Parametric statistics

- More powerful
(more sensitive)
- More assumptions (population is normally distributed)
- Vulnerable to violations of assumptions (less robust)

Non-parametric statistics

- Statistics which do not assume sampling from a population which is normally distributed
-There are non-parametric alternatives for many parametric statistics
-e.g., sign test, chi-squared, MannWhitney U test, Wilcoxon matched-pairs signed-ranks test.

Summary: LOM \& statistics

- If a normal distribution can be assumed, use parametric statistics (more powerful)
- If not, use non-parametric statistics (less power, but less sensitive to violations of assumptions)

Univariate descriptive statistics

Non-parametric statistics

- Less powerful
(less sensitive)
- Fewer assumptions (do not assume a normal distribution)
- Less vulnerable to assumption violation (more robust)

Number of variables

Univariate
= one variable
Bivariate
= two variables
Multivariate
= more than two variables
reliability analysis, factor
analysis, multiple linear
mean, median, mode, histogram, bar chart

correlation, t-test,

 scatterplot, clustered bar chartregression

What to describe?

. Central tendency(ies): e.g., frequencies, mode, median, mean
. Distribution:

- Spread (dispersion): min., max., range, IQR, percentiles, variance, standard deviation
- Shape: e.g., skewness, kurtosi

Distribution

- Measures of shape, spread, dispersion, and deviation from the central tendency

Non-parametric: Parametric:

- Min. and max. •SD
- Range
- Skewness
- Percentiles - Kurtosis

Central tendency

Statistics which represent the "centre" of a frequency distribution:

- Mode (most frequent)
-Median ($50^{\text {th }}$ percentile)
-Mean (average)
Which ones to use depends on:
-Type of data (level of measurement)
-Shape of distribution (esp. skewness)
Reporting more than one may be appropriate.

Distribution

	Min / Max, Range	Percentile	Var / SD
Nominal	x	x	x
Ordinal	\checkmark	If meaningful	x
Interval	\checkmark	\checkmark	\checkmark
Ratio	\checkmark	\checkmark	\checkmark

Descripives for nominal data

- Nominal LOM = Labelled categories
- Descriptive statistics:
-Most frequent? (Mode - e.g., females)
-Least frequent? (e.g., Males)
-Frequencies (e.g., 20 females, 10 males)
-Percentages (e.g. 67% females, 33% males)
-Cumulative percentages
-Ratios (e.g., twice as many females as males)

Descripives for ordinal data

- Ordinal LOM = Conveys order but not distance (e.g., ranks)
- Descriptives approach is as for nominal (frequencies, mode etc.)
- Plus percentiles (including median) may be useful

Mode (Mo)

- Most common score - highest point in a frequency distribution - a real score - the most common response
- Suitable for all levels of data, but may not be appropriate for ratio (continuous)
- Not affected by outliers
- Check frequencies and bar graph to see whether it is an accurate and useful statistic

Descripives for interval data

- Interval LOM = order and distance, but no true 0 (0 is arbitrary).
- Central tendency (mode, median, mean)
- Shape/Spread (min., max., range, SD, skewness, kurtosis)
Interval data is discrete, but is often treated as ratio/continuous (especially for > 5 intervals)

Descriptives for ratio data

- Ratio = Numbers convey order and distance, meaningful 0 point
- As for interval, use median, mean, $S D$, skewness etc.
- Can also use ratios
(e.g., Group A is twice as "large" as Group B)

Frequencies (f) and

 percentages (\%)- \# of responses in each category
- \% of responses in each category
- Frequency table
- Visualise using a bar or pie chart

Median (Mdn)

- Mid-point of distribution (Quartile 2, $50^{\text {th }}$ percentile)
- Not badly affected by outliers
- May not represent the central tendency in skewed data
- If Median is useful, other percentiles may also be worth reporting

Summary: Descriptive statistics

- Level of measurement and normality determines whether data can be treated as parametric
- Describe the central tendency
-Frequencies, Percentages
-Mode, Median, Mean
- Describe the distribution:
-Min., Max., Range, Quartiles
-Standard Deviation, Variance

Four moments of a normal distribution

Four mathematical qualities (parameters) can describe a continuous distribution which at least roughly follows a bell curve shape:

- $1^{\text {st }}=$ mean (central tendency)
- $2^{\text {nd }}=S D$ (dispersion)
- $3^{\text {rd }}=$ skewness (lean / tail)
- $4^{\text {th }}=$ kurtosis (peakedness / flattness)

Mean (1st moment)

- Average score

$$
\text { Mean }=\Sigma \mathrm{X} / \mathrm{N}
$$

- Use for normally distributed ratio or interval (if treating as continuous) data.
- Influenced by extreme scores (outliers)

Four moments of a normal distribution

Beware inappropriate averaging

With your head in an oven and your feet in ice

just fine
The majority of people have more than the average number of legs
($M=1.999$).

Standard deviation (2nd moment)

- $S D=$ square root of the variance

$$
=\frac{\Sigma(\mathrm{X}-\overline{\mathrm{X}})^{2}}{N-1}
$$

- Use for normally distributed interval or ratio data
- Affected by outliers
- Can also derive Standard Error $(\mathrm{SE})=S D /$ square root of N

Skewness (3rd moment)

- Lean of distribution
$-+v e=$ tail to right
- -ve = tail to left
- Skew be caused by an outlier, or ceiling or floor effects
- Skew be accurate
(e.g., cars owned per person would have a skewed distribution)

Kurtosis (4th moment)

- Flatness vs. peakedness of distribution:

$$
\begin{aligned}
& \text { +ve = peaked } \\
& \text {-ve = flattened }
\end{aligned}
$$

- Altering the X \&/or Y axis can artificially make a distribution look more peaked or flat - add a normal curve to help judge kurtosis visually.

Severity of skewness and kurtosis

- View histogram with normal curve
- Deal with outliers
- Rule of thumb:

Skewness and kurtosis >-1 or <1 is generally considered to sufficiently normal for meeting the assumptions of parametric inferential statistics

- Significance tests of skewness: Tend to be overly sensitive (therefore avoid using)

Areas under the normal curve

If distribution is normal (bell-shaped):
$\sim 68 \%$ of scores within +/- $1 S D$ of M $\sim 95 \%$ of scores within +/- 2 SD of M $\sim 99.7 \%$ of scores within +/- $3 S D$ of M

Non-normal distributions

- Modality
-Uni-modal (one peak)
-Bi-modal (two peaks)
-Multi-modal (more than two peaks)
- Skewness
-Positive (tail to right)
-Negative (tail to left)
- Kurtosis
-Platykurtic (Flat)
-Leptokurtic (Peaked)

Areas under the normal curve

Non-normal distributions

Histogram of people's weight

Histogram of fertility

Fertility. average number of kids

Non-normal distribution:

Use non-parametric descriptive statistics

- Min. \& Max.
- Range = Max. - Min.
- Percentiles
- Quartiles
-Q1
-Median (Q2)
-Q3
-IQR (Q3-Q1)

Effects of skew on measures of central tendency

+vely skewed distributions
mode < median < mean symmetrical (normal) distributions mean $=$ median $=$ mode
-vely skewed distributions
mean < median < mode

Review questions

1. If a survey question produces a "floor effect", where will the mean, median and mode lie in relation to one another?

Effects of skew on measures of central tendency

Review questions

2. Would the mean \# of cars owned in Australia exceed the median?

Transformations

- Converts data using various formulae to achieve normality and allow more powerful tests
- Loses original metric
- Complicates interpretation

Is Pivot a turning point for web exploration?
 (Gary Flake)

(TED talk - 6 min.)

Principles of graphing

- Clear purpose
- Maximise clarity
- Minimise clutter
- Allow visual comparison

Science is beautiful

- Visualise data
- Reveal data
- Describe
- Explore
- Tabulate
- Decorate
- Communicate complex ideas with clarity, precision, and efficiency

Graphing steps

1 Identify purpose of the graph (make large amounts of data coherent; present many \#s in small space; encourage the eye to make comparisons)
2 Select type of graph to use 3 Draw and modify graph to be clear, non-distorting, and welllabelled (maximise clarity, minimise clarity; show the data; avoid distortion; reveal data at several levels/layers)

Cleveland's hierarchy

Univariate graphs

- Bar graph
- Pie chart
- Histogram
- Stem \& leaf plot
- Data plot / Error bar
- Box plot

Parametric
, normaly distributed
internel or ratio

Bar chart

- Allows comparison of heights of bars
- X-axis: Collapse if too many categories
- Y-axis: Count/Frequency or \% - truncation exaggerates differences
- Can add data labels (data values for each bar)

Pie chart

- Use a bar chart instead
- Hard to read
-Difficult to show
- Small values
- Small differences -Rotation of chart and position of slices influences perception

Histogram of male and female heights

FIGURE 2.3.11 Histogram of heights constructed using the people. Photograph by Peter Morenus in conjunction with Prof. Linda Strausberg. University of Connecticut. Subjects are University of Connecticut genetics students, females in white tops, males in dark tops. Wild \& Seber (2000)

Stem and leaf plots

. Use for ordinal, interval and ratio data (if rounded)

- May look confusing to unfamiliar reader

Raw Data	Stem	Leaf
011223444555667777	0	0112234445556677778899
8899	1	0111222333334445555556666666666777888899
	2	00112233444455667889
1314141415151515151516	3	005
1616161616161616161717		
17181818181919		
2020212122222323242424		
242525262627282829		
303035		

Histogram

- For continuous data (Likert?, Ratio)
- X-axis needs a happy medium for \# of categories
- Y -axis matters (can exaggerate)

Stem and leaf plot

- Contains actual data
- Collapses tails
- Underused alternative to histogram

Box plot (Box \& whisker)

- Alternative to histogram
- Useful for screening
- Useful for comparing variables
- Can get messy - too much info
- Confusing to unfamiliar reader

86

"Like good writing, good graphical displays of data communicate ideas with clarity, precision, and efficiency. Like poor writing, bad graphical displays distort or obscure the data, make it harder to understand or compare, or otherwise thwart the communicative effect which the graph should convey."

Michael Friendly - Gallery of Data

Tufte's graphical integrity

- Some lapses intentional, some not
- Lie Factor = size of effect in graph size of effect in data
- Misleading uses of area
- Misleading uses of perspective
- Leaving out important context
- Lack of taste and aesthetics

References

1 Chambers, J., Cleveland, B., Kleiner, B., \& Tukey, P. (1983). Graphical methods for data analysis. Boston, MA: Duxbury Press.
2 Cleveland, W. S. (1985). The elements of graphing data. Monterey, CA: Wadsworth.
3 Jones, G. E. (2006). How to lie with charts. Santa Monica, CA: LaPuerta.
4 Tufte, E. R. (1983). The visual display of quantitative information. Cheshire, CT: Graphics Press.
5 Tufte. E. R. (2001). Visualizing quantitative data. Cheshire, CT: Graphics Press.
6 Tukey J. (1977). Exploratory data analysis. Addison-Wesley.
7 Wild, C. J., \& Seber, G. A. F. (2000). Chance encounters: A first course in data analysis and inference. New York: Wiley.

