## Angle Recoding CORDIC 2. Wu

## 20180514

Copyright (c) 2015 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Extended EAS (EEAS) - Wu more flexible way of decomposing the rotation angle hetten the number of iterations the error performance  $S_{EAS} = \{ (0 \cdot ton^{-1} (2^{-r})); 0 \in \{+1, 0, -1\}, r \in \{1, 2, ..., n-1\} \}$  $S_{EEAS} = \{ (0_1, \tan^{-1}(2^{-r_1}) + 0_2, \tan^{-1}(2^{-r_2}) \} :$  $0_1, 0_2 \in \{+1, 0, -1\}, n_1, n_2 \in \{1, 2, ..., n_1\}$ 

The pre do -rotation  
for i-th mirro rotations  

$$\chi_{in} = \chi_{i} - [\sigma_{i}(i) \cdot 2^{-r_{i}(i)} + \sigma_{i}(i) \cdot 2^{-r_{i}(i)}] \quad y_{i}$$

$$y_{in} = y_{i} + [\sigma_{i}(i) \cdot 2^{-r_{i}(i)} + \sigma_{i}(i) \cdot 2^{-r_{i}(i)}] \quad z_{i}$$
The previde -rotated vector  $[\chi_{R_{m}}, y_{R_{m}}]$   
after  $R_{m}$  (the required number of mirro-rotations)  
Needs to be scaled by a factor  $K = T K_{i}$   

$$K_{i} = \left[1 + \left(\sigma_{i}(i) \cdot 2^{-r_{i}(i)} + \sigma_{i}(i) \cdot 2^{-r_{i}(i)}\right)^{2}\right]^{-\frac{1}{2}}$$

$$\tilde{\chi}_{in} = \tilde{\chi}_{i} - \left[\frac{1}{k}_{i}(i) \cdot 2^{-s_{i}(i)} + \frac{1}{k}_{i}(i) \cdot 2^{-s_{i}(i)}\right] \quad \tilde{y}_{i}$$

$$\tilde{\chi}_{in} = \tilde{\chi}_{i} + \left[\frac{1}{k}_{i}(i) \cdot 2^{-s_{i}(i)} + \frac{1}{k}_{i}(i) \cdot 2^{-s_{i}(i)}\right] \quad \tilde{\chi}_{i}$$

$$\tilde{\chi}_{0} = \chi_{R_{m}} \qquad k_{1}, k_{2} \in \{1, 0, 1\}$$

$$\tilde{\chi}_{3} = \mathcal{Y}_{R_{m}} \qquad S_{1}, S_{2} \in \{1, 2, \cdots, n-1\}$$

[21] C.-S. Wu, A.-Y. Wu, and C.-H. Lin, "A high-performance/low-latency vector rotational CORDIC architecture based on extended elementary angle set and trellis-based searching schemes," *IEEE Trans. Circuits Syst. II: Anal. Digital Signal Process.*, vol. 50, no. 9, pp. 589–601, Sep. 2003.

.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 10, OCTOBER 2002

## A Unified View for Vector Rotational CORDIC Algorithms and Architectures Based on Angle Quantization Approach

An-Yeu Wu and Cheng-Shing Wu

AR: to approximate O with the combination of selected angle elements from a pre-defined EAS (Elementary Angle Set) EAS: all possible values of O(j) EAS  $S_1 = \{ \tan^{-1}(\alpha^* \cdot 2^{-s^*}) : \alpha^* \in \{1, 0, 1\} \}$  $S^* \in \{0, 1, \dots, NH\}$ EAS \$, consists of tan-1 (Single signed power of two) tan-I(Single SPT)  $\tan^{-1}(d^* \cdot 2^{-5^*})$ .

SPT-based digital filter design to increase the <u>coefficient resolution</u> -> imploy more SPT terms to represent filter coefficients [12] H. Samueli, "An improved search algorithm for the design of multiplierless FIR filters with power-of-two coefficients," IEEE Trans. Circuits Syst., vol. 36, pp. 1044–1047, July 1989. [13] Y. C. Lim, R. Yang, D. Li, and J. Song, "Signed power-of-two term allocation scheme for the design of digital filters," IEEE Trans. Circuits Syst. II, vol. 46, pp. 577-584, May 1999. EAS S, consists of tan-1 (Single signed power of two) tan-1 (Single SPT) tan-1 (d\* . 2-5\*)  $\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\tan^{-1}(\operatorname^{-1}(\operatorname^{-1}(\operatorname^{-1}(\operatorname^{-1}(\operatorname^{-1}(\operatorname^{-1}(\operatorname^{-1}($ EAS 3, consists of

$$Two \quad Signed - Power - of - Two \quad terms$$

$$S_{2} = \{ tan^{+} (\alpha_{0}^{*} \cdot 2^{-s_{0}^{*}} + \alpha_{1}^{*} \cdot 2^{-s_{1}^{*}}): \\ \alpha_{0}^{*}, \alpha_{1}^{*} \in \{ -1, 0, +1 \}$$

$$S_{0}^{*}, s^{*} \in \{ 0, 1, \dots, w^{-1} \} \}$$

S<sub>1</sub>  $1 = 2^{-0}$ I tan 1 (2 -0)  $\frac{1}{2} = 2^{1}$  $\frac{1}{4} = 2^{-2}$ tan+(2-1) **0**5 tan+(2-2) ٥.25 52  $|+| = 2^{\circ} + 2^{\circ} \pm t_{\circ} \pm t_{\circ} + 2^{\circ}$ 2  $\begin{aligned} |+\frac{1}{2} &= 2^{-0} + 2^{-1} & \pm \tan^{-1}(2^{-0} + 2^{-1}) \\ |+\frac{1}{4} &= 2^{-0} + 2^{-2} & \pm \tan^{-1}(2^{-0} + 2^{-2}) \\ | &= 2^{-0} & \pm \tan^{-1}(2^{-0}) \\ \frac{1}{2} + \frac{1}{4} &= 2^{-1} + 2^{-2} & \pm \tan^{-1}(2^{-1} + 2^{-2}) \\ \frac{1}{2} &= 2^{-1} & \pm \tan^{-1}(2^{-1}) \end{aligned}$ 1.5 1.15 1.0  $\frac{1}{2} = 2^{-1}$  $\frac{1}{4} = 2^{-2}$ 0.5 ± tan+(2-2) 0.25 - | 2 | 05 |₋5 05 € 1 1 · D Ι 1.25 0.5 0.75 05 1.5 05 05 0.25 🖌 -0.25 0.75 1.25 0.25 0.25 ·0.25  $\{0, 1, 2\} = \{0, 1, w-1\}$  $2^{-0}$ ,  $2^{-1}$ ,  $2^{-2}$ W=3  $S_{0}^{*}, S_{1}^{*} \in \{0, 1, 2\}$  $2^{5^{\dagger}}, 2^{5^{\dagger}} \in \{2^{\circ}, 2^{\circ}, 2^{\circ}\}$ 

\_\_\_\_

| given [x(0)]<br>[y(0)]                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{bmatrix} x(j+1) \\ y(j+1) \end{bmatrix} = \begin{bmatrix} 1 \\ \alpha_{0}(j) 2^{-s_{0}(j)} + \alpha_{1}(j) 2^{-s_{1}(j)} \\ \alpha_{0}(j) 2^{-s_{0}(j)} + \alpha_{1}(j) 2^{-s_{1}(j)} \end{bmatrix} \begin{bmatrix} x(j) \\ y(j) \end{bmatrix}$                                                              |
| $ \begin{bmatrix} \chi_{f} \\ \vartheta_{f} \end{bmatrix} = P \begin{bmatrix} \chi(R_{m}) \\ \vartheta(R_{m}) \end{bmatrix} = \frac{1}{\prod_{j=0}^{R_{i}-1} \sqrt{1 + [\alpha_{0}(j) \cdot 2^{-s_{1}(j)} + \alpha_{1}(j) \cdot 2^{-s_{1}(j)}]^{2}}} \begin{bmatrix} \chi(R_{m}) \\ \vartheta(R_{m}) \end{bmatrix} $ |
| Micro Potation procedure<br>the scaling operation                                                                                                                                                                                                                                                                    |
| j ncreased hardware                                                                                                                                                                                                                                                                                                  |
| reduced iteration steps                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                      |

MVR (Modified Vector Rotation) 1) Repeat of Elementary Angles Oi, Oi 2) fixed total micro-rotation Number Rm \* Vector Rotation Mode \* and the rotation angles are known in advance **Vectoring Mode** vector magnitude ?  $C' = I_c' + j0$ C= I<sub>c</sub>+ jQ<sub>c</sub> Rotate until accumulated angle is 0  $I' \rightarrow mag \times 1.647$ Accumulator View vector rotation mode **Rotation Mode**  $C' = I_c' + jQ_c'$ C= I\_+ j0 Rotate until accumulated angle is  $\theta$  $I'_c \rightarrow \cos\theta$ Accumulator View  $Q'_c \rightarrow \sin \theta$ 

Modified Vector Rotational MUR CORDIC - reduce the iteration number - maintaining the SQNR performance - modifying the basic micro rotation procedure Three Searching Algorithm ① the selective prerotation (2) the selective scaling ③ iteration - trade off scheme

Angle Quantization Quantization process on the rotational angle O decompose O into several subangles Oi's the angle quantization error  $\xi_{m} \triangleq Q - \sum_{i=0}^{N_{A}-1} \theta_{i}$ (NA) the number of subangles  $\Theta_0, \Theta_1, \cdots, \Theta_{\omega_4-1}$  $0 = 0_0 + 0_1 + \cdots + 0_{N_A-1} + \xi_m$ data: W-bit word Rength the iteration number:  $N = N \leq W$ the restricted iteration number : Rm Rm & W

AQ Process: 2 Design Issues (1) need to determine the sub-angles O: Select ( com bine sub angles to minimize the angle quantization angle 5 m

| C | SD (Canonical Signed Digit) Quantization                                                    |
|---|---------------------------------------------------------------------------------------------|
|   | digital filter de signs                                                                     |
|   | Coefficients one recoded                                                                    |
|   | in terms of SPT (Signed Power of Two) terms                                                 |
|   | multiplication can be easily realized<br>with shift-and-add operations                      |
|   | $h_2 = (-0.156249)_{10} \Rightarrow (0.07011)_2$<br>W=8, 3 non-zero digits                  |
|   | () CSD guantization decomposes<br>coefficients into several SPT terms<br>(sub-coefficients) |
|   | (2) the multiplication of a coefficient<br>can be reformed                                  |
|   | through the combination of<br>the non-zero SPT sub-coefficients                             |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |
|   |                                                                                             |

guantize the rotation angle O decompose the votation angle O into several sub-angles dis the rotational operation of each Oi should be easily realized If each  $\Theta_i$  can be realized Using only shift-and-add operations the rotation of  $\theta$  can be performed through successive applications of Sub-angle rotations in a cost-effective way

| approximation | (oefficien t                                        | Rotation angle                                                                                      |
|---------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| target        | hi                                                  | 9                                                                                                   |
| Basic         | Non-zero digit                                      | Sub-angle                                                                                           |
| Element       | 2-i                                                 | $A(i) = \tan^{-1}(2^{i})$                                                                           |
| Basic         | shift-and-add                                       | 2 shift-and-add                                                                                     |
| Operation     | operation                                           | Operations                                                                                          |
| Approximation |                                                     | ,                                                                                                   |
| Equation      | $h_i \approx \sum_{j=0}^{N_D-1} g_j \cdot 2^{-d_j}$ | $(\mathcal{G} \approx \sum_{j=0}^{\mathbf{R}_{\mathbf{n}}-\mathbf{l}} \alpha(j) \cdot \alpha(s(j))$ |
|               | g; e { -1, 0, +1}                                   |                                                                                                     |
|               | d; e { 0, 1,, w-1}                                  |                                                                                                     |
|               | No= the number of                                   | Ng= the number d                                                                                    |
|               | Non-Zero digits                                     | Sub-angles                                                                                          |
|               |                                                     |                                                                                                     |
|               |                                                     |                                                                                                     |
|               |                                                     |                                                                                                     |
|               |                                                     |                                                                                                     |
|               |                                                     |                                                                                                     |

Vector Rotation CORDIC Family (O Conventional CORDIC () AR 2 MVR S EEAS



elementary angle  $A(i) = \tan^{-1}(2^{-i})$ the number of elementary angles N the rotation sequence  $\mathcal{U}(i) = \{-1, +1\}$ +1, -1, -1, +1, +1, ..... the i-the rotation angle a(i) the W-bit word kingth the iteration number  $N \leq W$ the angle quantization error  $\xi_{m, corpic} \equiv \theta - \sum_{i=0}^{NH} \mu(i) \alpha(i)$ 

AR [Hu] skip certain micro rotations the rotation sequence  $\mu(i) = \{-1, 0, +1\}$ µ(i) = () → skip desire to minimize N [UU] so that the total number of CORPIC iterations can be minimized angle recoding method for efficient implementation of the CORDIC algorithm Hu & Naganathan, ISCAS 89 Greedy algorithm

\_\_\_\_\_

\_\_\_\_\_

try to approach the target rotation angle O  
step by Step  
decisions are made in each step  
by choosing the best combination of 
$$\alpha(i) \ \alpha(i)$$
  
So as to minimize  $|\xi_m|$   
 $\alpha(i)$ ,  $\alpha(i)$  are determined such that  
the error function is minimized  
 $J(i) = |O(i) - \alpha(i) \alpha(s(i))|$   
 $O(i) = O - \sum_{m=0}^{i-1} \alpha'(m) \alpha(s(m))$   
terminated if no further improvement can be found  
 $J(i) \ge J(i-1)$   
or  $\alpha'(Rm-1)$  and  $s'(Rm-1)$   
are determined at the end

i = 0, [, 2], 3, ..., N-1 S(j) = 0, [, 2], 3, ..., N-1 S(j) = 0, [, 2], 3, ..., N-1 d(j) = 1, 0, 0, +1, ..., -1 directional Sequence j = 0, -, -, 1, ..., N'-1effective iteration number N'= N-2 the j-th micro-rotation of A(s(j))elementary angle  $(i) = tan^{-1} (2^{-i})$   $(s_{ij}) = tan^{-1} (2^{-s_{ij}})$  $\alpha(j)\alpha(s(i)) = \alpha(j) \tan^{-1}(2^{-s(i)})$ α (j) ∈ { -1, + 1} 🗇 μιί) αιί) JL (X) ∈ {-l, 0, +l}

$$\begin{split} \tilde{\mathbf{S}}_{\mathbf{m}, \text{ connc}} &\equiv \boldsymbol{\theta} - \sum_{l=0}^{\mathbf{M}} \beta(l) \, \boldsymbol{\alpha}(l) \qquad \mu(l) \in \{-l, 0, +l\} \\ &= \boldsymbol{\theta} - \left[ \sum_{j=0}^{N} \tilde{\mathbf{G}}(j) \right] \\ &= \boldsymbol{\theta} - \left[ \sum_{j=0}^{N} \tan^{-1} \left( \alpha(j) \cdot 2^{-s(j)} \right) \right] \quad \boldsymbol{\alpha}(j) \in \{+, +l\} \\ \tilde{\mathbf{G}}(j) &= \alpha(j) \tan^{-1} \left( 2^{-s(j)} \right) \\ &= tan^{-1} \left( \alpha(j) \cdot 2^{-s(j)} \right) \\ &= tan^{-1} \left( \alpha(j) \cdot 2^{-s(j)} \right) \quad \boldsymbol{\alpha} \in \{+, 0, +l\}, \quad \boldsymbol{S} \in \{0, l, 2, \cdots, N+l\} \\ \\ \boldsymbol{S}_{\mathbf{I}} &= \left\{ \tan^{-1} \left( \boldsymbol{\alpha} \cdot 2^{-\boldsymbol{S}} \right) \quad \boldsymbol{\alpha} \in \{+, 0, +l\}, \quad \boldsymbol{S} \in \{0, l, 2, \cdots, N+l\} \right\} \end{split}$$

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

## (2) MVR (Modified Vector Rotational)

two modifications () repeat of elementary angles each micro-rotation of elementary angle can be performed repeatedly - more possible combinations - smaller Em (2) confines of total micro-votation number Confine the iteration number in the micro-rotation phase to Rm ( $Rm \ll W$ ) the role of Rm is quite similar to the number of non-zero digit ND in CSD recoding scheme

$$\begin{split} \vec{\xi}_{m,NVR} &\triangleq \Theta - \sum_{j=0}^{N-1} d(j) \ A(Sij)) \\ & \text{the rotational sequence } S(j) \\ & \vec{j} = 0, |, 2, \cdots, Nn-| \\ & \vec{j} \in \{0, 1, \cdots, Nl-1\} \\ & \text{determines the micro-rotation angle } A(Sij)) \\ & \text{in the } j-th iteration \\ & \text{the directional sequence } O(ij) \\ & O(ij) \in \{-1, 0, +1\} \\ & \text{controls the direction of the } j-th \\ & \text{micro-rotation of } A(Sij)) \\ & \vec{x}(ij) \ A(Sij)) = \tilde{\Theta}(ij) \\ & \vec{x}(ij) \ A(Sij)) = \tilde{\Theta}(ij) \\ & \vec{x}(ij) \ A(Sij) \ A(Sij)$$

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_

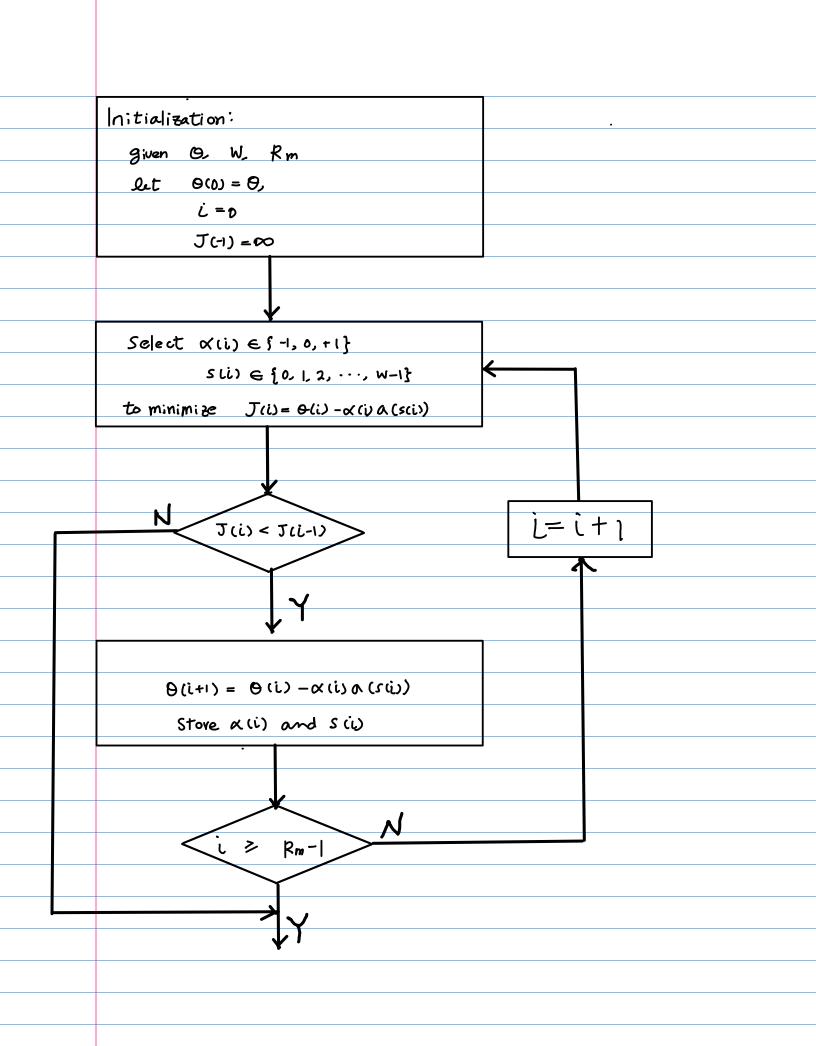
sub-angle 
$$(\alpha(i_{j}) \alpha(s(i_{j}))) \sim \tilde{\theta}(i_{j})$$
  

$$\frac{\xi_{n,AR}}{\xi_{n,R}} = \theta - \left[ \sum_{j=0}^{M-1} ton^{-1} (\alpha(i_{j}) \cdot 2^{-s(i_{j})}) \right] \\
= \theta - \left[ \sum_{j=0}^{M-1} \tilde{\theta}(i_{j}) \right] , \quad \tilde{\theta}(i_{j}) = ton^{-1} (\alpha(i_{j}) \cdot 2^{-s(i_{j})}) \\
N' \triangleq \sum_{j=0}^{N-1} |A(i_{j})| \quad the effective iteration number$$
  
EAS formed by MUR-(ORDIC
  
is the some as AR
  
also performs AQ
  
The major difference
  
i) the total number of sub-engles NA
  
(a)  $(i_{j}) O(s(i_{j}))$ 
  
 $O_{ij} = o(i_{j}) O(s(i_{j})) = \tilde{O}_{ij}$ 

\_\_\_\_\_

\_\_\_\_\_

\_\_\_\_\_


\_\_\_\_\_

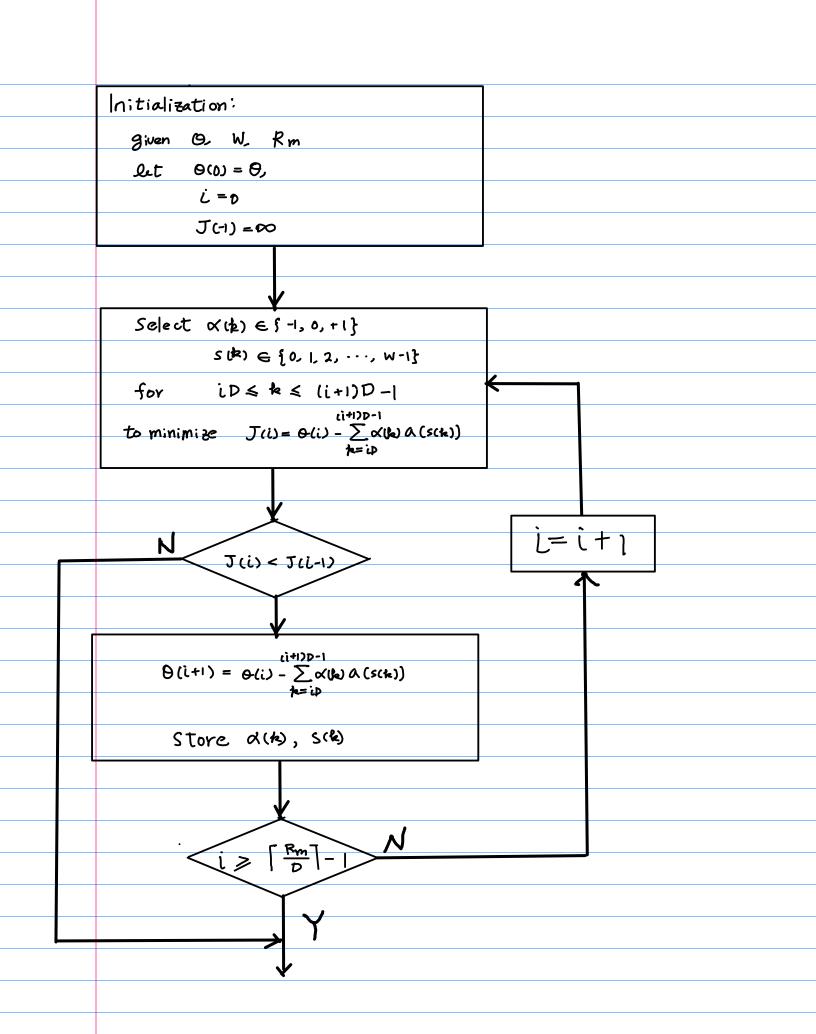
Optimization Problem EAS point of view Given 0, find the combination of Rm elementary angles from EAS S, such that the angle quantization error Ém, MUR is minimized. semi-greedy algorithm trade offs between computational complexities and performance

| bey issue in the MUR-CORDIC                  |
|----------------------------------------------|
| is to find the best sequences of             |
| s(i) and x(i) to minimize $ \xi_m $          |
| subject to the constraint that               |
| the total iteration number is confined to Rm |
|                                              |
|                                              |
| 1) Greedy Algorithm                          |
| 2) Exhaustive Algorithm                      |
| 3) Semigreedy Algorithm                      |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |

1) Greedy Algorithm

try to approach the target rotation angle, 
$$\Theta$$
,  
step by step  
in each step, decisions and made on  $\alpha(i)$  and  $s(i)$   
by choosing the best combination of  $\alpha(i) \otimes (s(i))$   
so as to minimize  $|\mathbb{E}_m|$   
 $\alpha(i)$  and stip and determined such that  
the error function  $J(i) = |\Theta(i) - \alpha(i) \otimes (s(i))|$  is minimized  
 $\Theta(i) = \Theta - \sum_{m=0}^{i-1} \alpha(m) \otimes (s(m))$   
the searching is terminated  
if no furthes improvements can be found  
 $J(i) \ge J(i-1)$   
 $\alpha([Rn-1))$  and  $s(Rm-1)$  are determined  
 $\alpha$  the end of the searching  
the greedy algorithm terminates  
 $Only$  when the residue  $angle error$   
cannot be further reduced.




2) Exhaustive Algorithm

search for the entire solution space all possible combinations of  $\sum_{i=1}^{B_{n-1}} \alpha(i) \alpha(s(i))$ in a single step decisions for  $\propto$  (i) and s (i),  $0 \leq i \leq Rm - 1$ by minimizing the error function  $\mathcal{J} = \emptyset - \sum_{i=0}^{Rm-1} \varphi(i) \varphi(si)$ global optimal solution

| Initialization:                                                      |  |
|----------------------------------------------------------------------|--|
| given O, W. Rm                                                       |  |
| $let \Theta(0) = \Theta,$                                            |  |
| <i>i</i> . = ⊅                                                       |  |
| J(-1) = 00                                                           |  |
|                                                                      |  |
|                                                                      |  |
| V                                                                    |  |
| Select $\alpha(i) \in \{-1, 0, +1\}$                                 |  |
| s Li) ∈ {0, 1, 2, ···, w-1}                                          |  |
| for 0 <i< rm-1<="" th=""><th></th></i<>                              |  |
| to minimize $J(i) = O - \sum_{i=0}^{R_m - i} \alpha(i) \alpha(s(i))$ |  |
|                                                                      |  |
|                                                                      |  |
|                                                                      |  |
| <br>¥                                                                |  |
| store a (i) and s i)                                                 |  |
| <br>for 0 <i< rm-1<="" th=""><th></th></i<>                          |  |
|                                                                      |  |
|                                                                      |  |
|                                                                      |  |
|                                                                      |  |
|                                                                      |  |
|                                                                      |  |
|                                                                      |  |
|                                                                      |  |
|                                                                      |  |
|                                                                      |  |
|                                                                      |  |
|                                                                      |  |

3) Semi-greedy Algorithm a combination of greedy and exhaustive algorithm the search space of  $\alpha(i)$  and s(i) for  $0 \leq i \leq Rm - 1$ are divided into several sections with D iterations as a segment ≁  $\mathbf{1}$ block longth block the segmentation scheme total iteration (Rm) Rm-D·(S+) D D Þ Section  $S = \left[ \frac{Rm}{D} \right]$ section 3 Section 1 Section 2 exhaustive exhaustive exhaustive exhaustive search search search search greedy greedy greedy greedy

in the i-th block decision of  $\alpha(k)$  and s(k) for  $iD \leq k \leq (i+1)D-1$  $\min_{i \neq i} D = 0$   $\int_{k=iD}^{i} O(k) (k) (k) (k)$ where  $O(i) = O - \sum_{m=0}^{i-1} \sum_{k=mD}^{(m+1)D-1} O(k) O(sk)$ the residue angle in the i-th step

