First Order Logic – Semantics (3A)

pyright (c) 2016 - 2017 Young W. Lim.	
rmission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any lat ion published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is ided in the section entitled "GNU Free Documentation License".	ter s
se send corrections (or suggestions) to youngwlim@hotmail.com.	
document was produced by using LibreOffice	

Based on

Contemporary Artificial Intelligence, R.E. Neapolitan & X. Jiang

Logic and Its Applications, Burkey & Foxley

Terms and Formulas

Terms

- 1. Variables
- 2. Functions

$$x$$
 y $f(x)$ $g(x,y)$

Formulas

Predicate symbols.

Equality.

Negation.

Binary connectives.

Quantifiers.

$$P(x) Q(x,y)$$

$$x = f(y)$$

$$\neg Q(x,y)$$

$$P(x) \land \neg Q(x,y)$$

$$\forall x, y (P(x) \land \neg Q(x,y))$$

Examples of Terms

no expression involving a <u>predicate</u> symbol is a **term**.

$$x$$
 y $f(x)$ $g(x,y)$

father(x) A <u>function</u> returns neither True nor False

term

The father of x

Father(x) A <u>predicate</u> returns always True or False

term

Is x a father?

 $\forall x \text{ love}(x,y)$: free variable y $\forall x \text{ tall}(x)$: no free variable

Bound variable x Free variable y

Terms

Terms

- 1. Variables. Any variable is a term.
- 2. **Functions**. Any expression $f(t_1,...,t_n)$ of n arguments is a term where each argument t_i is a term and f is a function symbol of valence n In particular, symbols denoting individual constants are 0-ary function symbols, and are thus terms.

Only expressions which can be obtained by finitely many applications of rules 1 and 2 are terms.

no expression involving a predicate symbol is a term.

Formulas (1)

Formulas (wffs)

Predicate symbols.

Equality.

Negation.

Binary connectives.

Quantifiers.

$$P(x) Q(x,y)$$

$$x = f(y)$$

$$\neg Q(x,y)$$

$$P(x) \land \neg Q(x,y)$$

$$\forall x, y (P(x) \land \neg Q(x,y))$$

Only expressions which can be obtained by finitely many applications of rules 1–5 are formulas.

The formulas obtained from the first two rules are said to be **atomic formulas**.

Formulas (2)

Formulas (wffs)

Predicate symbols.

If P is an n-ary predicate symbol and $t_1, ..., t_n$ are terms then $P(t_1,...,t_n)$ is a formula.

Equality.

If the equality symbol is considered part of logic, and t_1 and t_2 are terms, then $t_1 = t_2$ is a formula.

$$P(x)$$
 $Q(x,y)$

$$x = f(y)$$

Formulas (3)

Formulas (wffs)

Negation.

If φ is a formula,

then $\neg \phi$ is a formula.

Binary connectives.

If φ and ψ are formulas,

then $(\phi \rightarrow \psi)$ is a formula.

Similar rules apply to other binary logical connectives.

Quantifiers

If φ is a formula and x is a variable,

then $\forall x \phi$ (for all x, holds)

and $\exists x \varphi$ (there exists x such that φ) are formulas.

$$\neg Q(x,y)$$

$$P(x) \wedge \neg Q(x,y)$$

$$\forall x, y \ (P(x) \land \neg Q(x, y))$$

Atoms and Compound Formulas

a formula that contains no logical connectives

a formula that has no strict subformulas

Atoms:

the simplest well-formed formulas of the logic.

$$P(x)$$
 $Q(x,y)$

Compound formulas:

formed by combining the atomic formulas using the logical connectives.

$$P(x) \wedge \neg Q(x,y)$$

$$\forall x, y \ (P(x) \land \neg Q(x, y))$$

https://en.wikipedia.org/wiki/Atomic_formula

Atomic Formula

for propositional logic

the atomic formulas are the propositional variables

p

q

for predicate logic

the atoms are predicate symbols together with their arguments, each argument being a term.

P(x)

Q(x,f(y))

In model theory

atomic formula are merely strings of symbols with a given signature which may or may not be satisfiable with respect to a given model

https://en.wikipedia.org/wiki/Atomic_formula

Basic Entities in FOL

<u>propositional logic</u> assumes world contains **facts** <u>first-order logic</u> assumes the world contains **objects**, **relations**, and **functions**

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries ...
- Relations: red, round, bogus, prime, multistoried, is the brother of, is bigger than, is inside, is part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of

https://www.cs.umd.edu/~nau/cmsc421/chapter08.pdf

Types of Logic

Language	Ontological commitment*	Epistemological commitment*	
	(what it talks about)	(what it says about truth)	
Prop. Logic	facts	true/false/unknown	
First-order logic	facts, objects, relations	true/false/unknown	
Temporal logic	facts, objects, relations, times	true/false/unknown	
Probability theory	facts	degree of belief	
Fuzzy logic	facts + degree of truth	known interval value	

ontological commitment \approx our assumptions about what things exist epistemological commitment \approx what we can know about those things

https://www.cs.umd.edu/~nau/cmsc421/chapter08.pdf

Model

A model is a pair M= (D,I),

D is a domain and
I is an interpretation

D contains
more than 1 **objects** (domain elements)
and **relations** among them

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries ...
- Relations: red, round, bogus, prime, multistoried, Is the brother of, is bigger than, is inside, is part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of

I specifies referents for

constant symbols → objects in the domain

predicate symbols → relations over objects in the domain

function symbols → functional relations over objects in the domain

Relation and Predicates

mathematically, a relation is a set of ordered n-tuples

An **atomic** sentence **predicate**(term₁,...,term_n) is **true** in **M** iff the **objects** referred to by term₁,...,term_n are in the **relation** referred to by **predicate**

M is a model of a sentence S

If S is true in M

M= (D,I),D is a domain andI is an interpretation

P1() ... P2() ... S T ...

Interpretation $I_1 \rightarrow T$ TInterpretation $I_2 \rightarrow T$ FInterpretation $I_3 \rightarrow F$ T TInterpretation $I_4 \rightarrow F$ FInterpretation $I_5 \rightarrow T$ Interpretation $I_6 \rightarrow T$ Interpretation $I_7 \rightarrow T$ Interpretation $I_8 \rightarrow T$ Interpretation $I_8 \rightarrow T$ Interpretation $I_8 \rightarrow T$

a model M

A Signature

First specify a signature

Constant **Symbols** $\{c_1, c_2, \dots c_n\} = D$

Predicate **Symbols** $\{P_1, P_2, \dots P_m\}$

Function **Symbols** $\{\mathbf{f}_1, \mathbf{f}_2, \dots \mathbf{f}_l\}$

A model is a pair M = (D,I),

D is a domain and

I is an interpretation

contains

more than 1 objects (domain elements)

and relations among them

I specifies referents for

constant symbols > objects in the domain

signature \ \ predicate symbols \ → \ \ relations \ \ over objects in the domain

function symbols / functional relations over objects in the domain

A Language

Determines the language

Given a language

A model is specified

A domain of discourse

a set of entities

{entity₁, entity₂, ... entity_n}

An interpretation

constant assignments

 $\{c_1, c_2, \dots c_n\} = D$

<u>function</u> assignments

 $f_1(), f_2(), ... f_1()$

<u>truth</u> value assignments

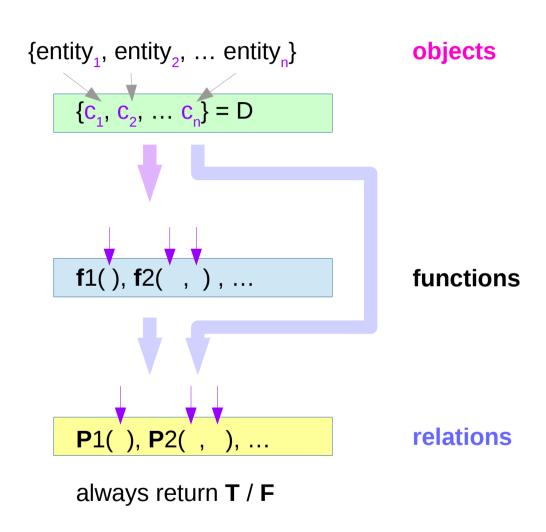
 $P_1(), P_2(), ... P_m()$

Interpretation – assigning the signature

Constant assignments

Function assignments

Truth value assignments



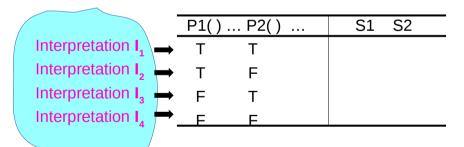
Interpretation – assigning atoms

Propositional Logic

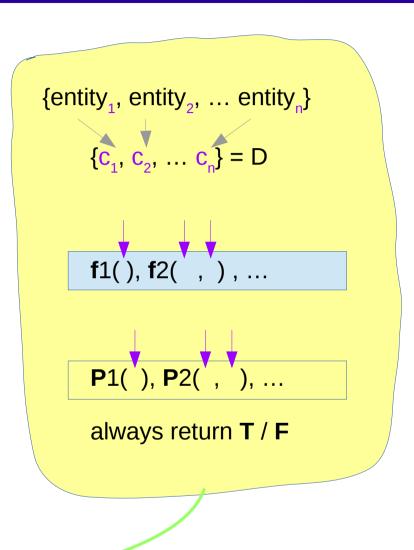
	Α	В	
Interpretation $I_1 \longrightarrow$	Т	Т	
Interpretation $I_2 \longrightarrow$	Т	F	
Interpretation $I_3 \rightarrow$	F	Т	
Interpretation $I_{4} \rightarrow$	F	F	

First Order Logic

Sentences



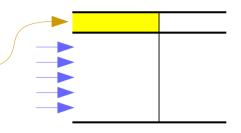
To assign truth values to predicates, constants and functions must be assigned



PL: A Model

A model or a possible world:

Every atomic proposition is assigned a value T or F



The set of all these assignments constitutes

A model or a possible world

All possible worlds (assignments) are permissible

Α	В	A ∧ B	$A \Lambda B \Rightarrow A$
Т	T	Т	Т
Т	F	F	Т
F	Т	F	T
F	F	F	T
•	•		

TT TT TT TF FT FF

Every atomic proposition: A, B

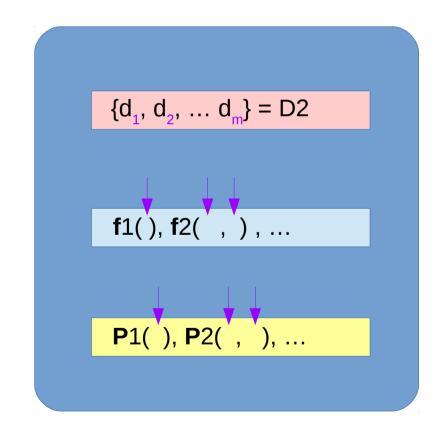
Models and Signatures

{John, Baker, ..., Paul} = D1

$$\{c_1, c_2, ... c_n\} = D1$$
 $f1(), f2(), ...$

Different sets of constants (entities or objects)

{Mary, Jane, ..., Elizabeth} = D2

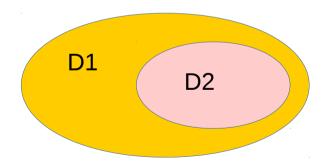


Models and Signatures

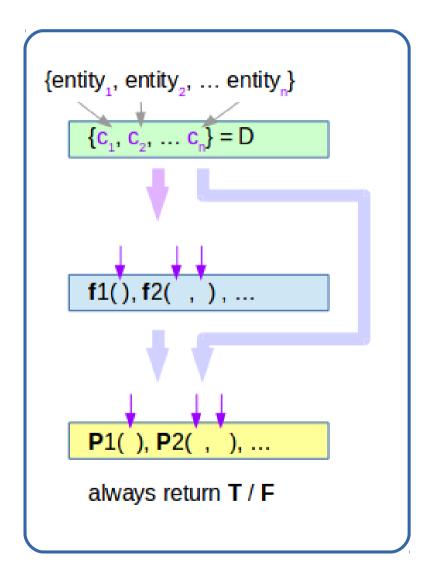
$\{c_1, c_2, \dots c_n\} = D1$ **f**1(), **f**2(','), ... P1('), P2(', '), ...

a subset of constants

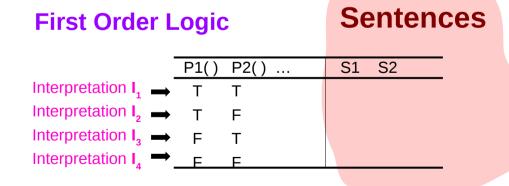
$$\{d_1, d_2, \dots d_m\} = D2$$



Truth values of sentences

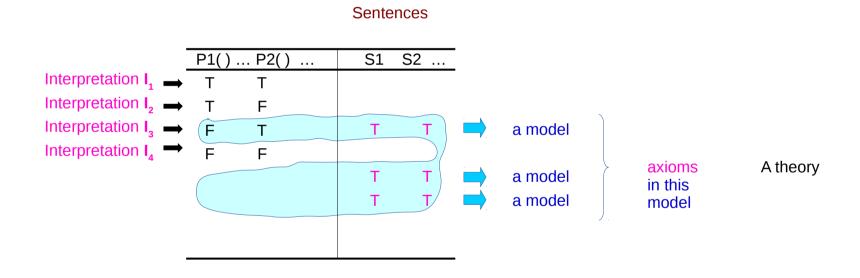


terms	x y $f(x)$ $g(x,y)$
atomic formulas	P(x) $Q(x,f(y))$
formulas / sentences	$\forall x,y \ (P(x) \land \neg Q(x,y))$



Model Theory (1)

A first-order theory of a particular <u>signature</u> is a set of <u>axioms</u>, which are <u>sentences</u> consisting of <u>symbols</u> from that <u>signature</u>.

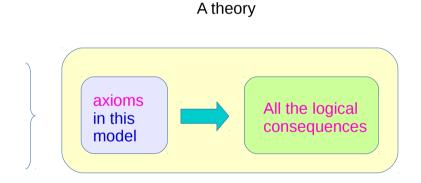


https://en.wikipedia.org/wiki/First-order_logic#First-order_theories.2C_models.2C_and_elementary_classes

Model Theory (2)

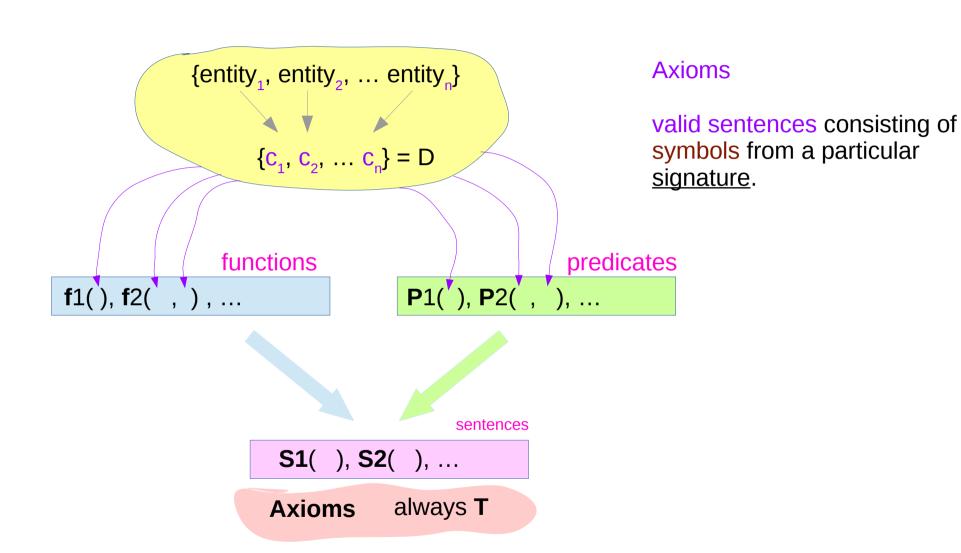
The set of axioms is often **finite** or **recursively enumerable**, in which case the theory is called **effective**.

Sometimes theories often include all logical consequences of the axioms.



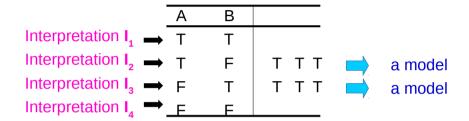
https://en.wikipedia.org/wiki/First-order_logic#First-order theories.2C models.2C and elementary classes

Axioms of a model theory



Models

Propositional Logic

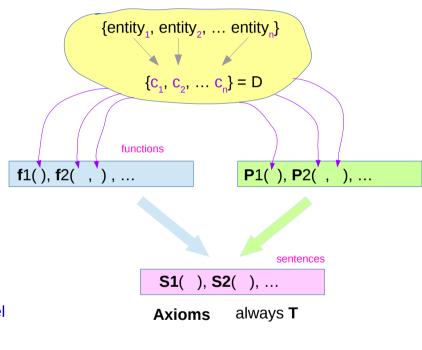


First Order Logic

Sentences

	P1() P2()		S1	S2	•	
Interpretation $I_1 \rightarrow$		Т			•	
Interpretation $I_2 \rightarrow$	Т	F				
Interpretation I_3 \longrightarrow	F	Т	Т	Т		a model
Interpretation $I_4 \rightarrow$	F	F				
			Т	Т		a model
			T	Т		a model

Signature



Axioms

Logical Axioms - axioms

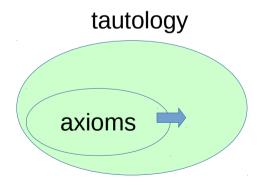
Non-logical Axioms - postulate – deductive system

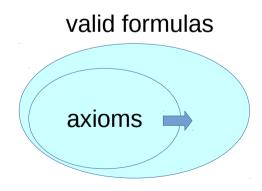
Logical Axioms

- formulas in a formal language that are universally valid
- formulas that are satisfied by every assignment of values (interpretations)

usually one takes as **logical axioms** at least some minimal set of tautologies that is sufficient for proving all tautologies in the language

in the case of predicate logic <u>more</u> logical axioms than that are required, in order to prove logical truths that are not tautologies in the strict sense.





https://en.wikipedia.org/wiki/Axiom

Non-logical Axioms

formulas that play the role of theory-specific assumptions

reasoning about two different structures, for example the natural numbers and the integers, may involve the same logical axioms;

the purpose is to find out what is <u>special</u> about *a particular structure* (or set of structures, such as groups).

Thus non-logical axioms are <u>not</u> tautologies.

Mathematical Discourse

Also called

- postulate
- axioms in mathematical discourse

this <u>does not mean</u> that it is claimed that they are true in some absolute sense

an elementary basis for a formal logic system

A deductive system

- axioms (non-logical)
- rules of inference

Need not be tautologies

general group

commutative group

commutative axiom

Non-commutative group

non-commutative axiom

this <u>does not mean</u> that it is claimed that they are true in some absolute sense

- Commutative axiom
- Non-commutative axiom

Model Theory

The axioms are considered to *hold* within the theory and

From axioms,
other sentences that *hold* within the theory can be derived.

A first-order structure that satisfies **all** sentences in a given theory is said to be a **model** of the theory.

An elementary class is the set of **all** structures satisfying a particular theory.

These classes are a main subject of study in model theory.

https://en.wikipedia.org/wiki/First-order_logic#First-order_theories.2C_models.2C_and_elementary_classes

Truth values of sentences

Entailment in propositional logic can be computed
By **enumerating** the possible worlds (i.e. model checking)

How to **enumerate** possible worlds in <u>FOL</u>?

For each number of domain number n from 1 to infinity

For each k-ary predicate Pk in the vocabulary

For each possible k-ary relation on n objects

For each constant symbol C in the vocabulary

For each choice of referent for C from n objects. ..

Computing entailment in this way is not easy.

https://www.cs.umd.edu/~nau/cmsc421/chapter08.pdf

Truth values of sentences

domain number n [1, ∞)

k-ary predicate P_k

k-ary relation f_k on n objects

constant symbol C

referent for C from n objects. ..

https://www.cs.umd.edu/~nau/cmsc421/chapter08.pdf

Model – domain of discourse

- 1. a nonempty set D of **entities** called a **domain of discourse**
 - this domain is a set
 - each <u>element</u> in the set : <u>entity</u>
 - each <u>constant symbol</u>: one <u>entity</u> in the domain

```
If we considering all individuals in a class,
The constant symbols might be
'Mary', - an entity
'Fred', - an entity
'John', - an entity
'Tom' - an entity
```

Model – interpretation

2. an interpretation

- (a) an <u>entity</u> in D is assigned to each of the <u>constant symbols</u>. Normally, every entity is assigned to a constant symbol.
- (b) for each **function**, an <u>entity</u> is assigned to each possible <u>input of entities</u> to the **function**
- (c) the predicate '**True**' is always assigned the value T

 The predicate '**False**' is always assigned the value F
- (d) for every other predicate,

the value T or F is assigned

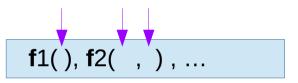
to each possible input of entities to the **predicate**

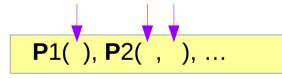
Each possible input of entities

Arity one: C(n, 1) Arity two: C(n, 2) Arity three: C(n, 3)

. . .

Arity one functions & predicates: C(n, 1)Arity two: C(n, 2)Arity three: C(n, 3) {entity₁, entity₂, ... entity_n} $\{c_1, c_2, ... c_n\} = D$





always return **T** / **F**

Interpretation

Constant assignments

(a) an entity \rightarrow the constant symbols.

Function assignments

(b) an entity \rightarrow each possible input of entities to the function

Truth value assignments

- (c) the value T → the predicate 'True' the value F → the predicate 'False'
- (d) for every other **predicate**, the value T or F is assigned → every other predicate to each possible <u>input of entities</u> to the **predicate**

Signature Model Examples A - (1)

Signature

```
    constant symbols = { Mary, Fred, Sam }
    predicate symbols = { married, young }
    married(x, y) : arity two
    young(x) : arity one
```

Model

- 1. <u>domain of discourse</u> D : the set of three particular *individuals*
 - this domain is a set
 - each <u>element</u> in the set : <u>entity</u> (= <u>individuals</u>)
 - each <u>constant symbol</u>: one <u>entity</u> in the domain (<u>= one individual</u>)

2. interpretation

- (a) a different individual is assigned to each of the constant symbols
 - (a) an <u>entity</u> in D is assigned to each of the <u>constant symbols</u>.

 Normally, every entity is assigned to a constant symbol.

Signature Model Examples A - (2)

- (b) for each **function**, an <u>entity</u> is assigned to each possible <u>input of entities</u> to the **function**
- (c) the predicate '**True**' is always assigned the value T
 The predicate '**False**' is always assigned the value F
- (d) the truth value assignments for every predicate

```
young(Mary) = F, young(Fred) = F, young(Sam) = T
```

```
married(Mary, Mary) = F, married(Mary, Fred) = T, married(Mary, Sam) = F
married(Fred, Mary) = T, married(Fred, Fred) = F, married(Fred, Sam) = F
married(Sam, Mary) = F, married(Sam, Fred) = F, married(Sam, Sam) = F
```

(d) for every other **predicate**, the value T or F is assigned to each possible input of entities to the **predicate**

```
(Mary, Mary), (Mary, Fred), (Mary, Sam)
(Fred, Mary), (Fred, Fred), (Fred, Sam)
(Sam, Mary), (Sam, Fred), (Sam, Sam)
```

Signature Model Examples B - (1)

Signature

```
    constant symbols = { Fred, Mary, Sam }
    predicate symbols = { love } love(x, y) : arity two
    function symbols = { mother } mother(x) : arity one
```

Model

- 1. <u>domain of discourse</u> D : the set of three particular individuals
- 2. interpretation
 - (a) a different individual is assigned to each of the constant symbols
 - (b) the truth value assignments for every predicate
 love(Fred, Fred) = F, love(Fred, Mary) = F, love(Fred, Ann) = F
 love(Mary, Fred) = T, love(Mary, Mary) = F, love(Mary, Ann) = T
 love(Ann, Fred) = T, love(Ann, Mary) = T, love(Ann, Ann) = F
 - (c) the function assignments mother(Fred) = Mary, mother(Mary) = Ann, mother(Ann) = - (no assignment)

Signature Model Examples B - (2)

2. interpretation

- (a) a different individual is assigned to each of the constant symbols
- (a) an <u>entity</u> in D is assigned to each of the <u>constant symbols</u>. Normally, every entity is assigned to a constant symbol.
- (b) the truth value assignments
- (b) for each **function**, an <u>entity</u> is assigned to each possible <u>input of entities</u> to the **function**

```
love(Fred, Fred) = F, love(Fred, Mary) = F, love(Fred, Ann) = F
love(Mary, Fred) = T, love(Mary, Mary) = F, love(Mary, Ann) = T
love(Ann, Fred) = T, love(Ann, Mary) = T, love(Ann, Ann) = F
```

- (c) the function assignments
- (d) for every other **predicate**, the value T or F is assigned to each possible <u>input of entities</u> to the **predicate**

mother(Fred) = Mary, mother(Mary) = Ann, mother(Ann) = - (no assignment)

The truth value of sentences

The truth values of all sentences are assigned:

- 1. the truth values for **sentences** developed with the symbols \neg , \land , \lor , \Rightarrow , \Leftrightarrow are assigned as in propositional logic.
- 2. the truth values for two terms connected by the = symbol is **T** if both terms refer to the same entity; otherwise it is **F**
- 3. the truth values for $\forall x p(x)$ has value **T** if p(x) has value **T** for **every assignment** to x of an **entity** in the domain D; otherwise it has value **F**
- 4. the truth values for $\exists x \ p(x)$ has value **T** if p(x) has value **T** for **at least one assignment** to x of an **entity** in the domain D; otherwise it has value **F**
- 5. the operator **precedence** is as follows \neg , =, \land , \lor , \Rightarrow , \Leftrightarrow
- 6. the **quantifiers** have precedence over the operators
- 7. **parentheses** change the order of the precedence

Formulas and Sentences

An formula

- A atomic formula
- The operator ¬ followed by a **formula**
- Two formulas separated by Λ , V, \Rightarrow , \Leftrightarrow
- A quantifier following by a variable followed by a formula

A sentence

A formula with no free variables

 $\forall x \text{ love}(x,y)$: free variable y: not a sentence

 $\forall x \text{ tall}(x)$: no free variable : a sentence

Finding the truth value

Find the truth values of all sentences

- 1. \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- 2. = symbol
- 3. $\forall x p(x)$
- 4. $\exists x p(x)$
- 5. the **operator precedence** is as follows \neg , =, \land , \lor , \Rightarrow , \Leftrightarrow
- 6. the quantifiers (\forall, \exists) have precedence over the operators
- 7. **parentheses** change the order of the precedence

Sentence Examples (1)

Signature

Constant Symbols = {Socrates, Plato, Zeus, Fido} Predicate Symbols = {human, mortal, legs} all arity one

Model

D: the set of these four particular individuals

Interpretation

- (a) a different individual is assigned to each of the constant symbols
- (b) the truth value assignment

```
human(Socrates)=T, human(Plato)=T, human(Zeus)=F, human(Fido)=F
mortal(Socrates)=T, mortal(Plato)=T, mortal(Zeus)=F, mortal(Fido)=T
legs(Socrates)=T, legs(Plato)=T, legs(Zeus)=T, legs(Fido)=T
```

Sentence Examples (2)

```
Sentence 1: human(Zeus) \( \text{human}(\text{Fido}) \( \text{vhuman}(\text{Socrates}) = T \)
                        Λ F V
Sentence 2: human(Zeus) \( \lambda \) (human(Fido) \( \forall \) human(Socrates)) = F
                         ۸( F ۷ T
Sentence 3: \forall x \text{ human}(x) = F
                  human(Zeus)=F, human(Fido)=F
Sentence 4: \forall x \text{ mortal}(x) = F
                  mortal(Zeus)=F
Sentence 5: \forall x | \text{legs}(x) = T
               legs(Socrates)=T, legs(Plato)=T, legs(Zeus)=T, legs(Fido)=T
Sentence 6: \exists x \text{ human}(x) = T
                  human(Socrates)=T, human(Plato)=T
Sentence 7: \forall x \text{ (human(x)} \Rightarrow \text{mortal(x))} = T
```

Sentence Examples (3)

```
Sentence 7: \forall x \text{ (human(x)} \Rightarrow \text{mortal(x))} = T
```

```
\begin{array}{lll} & \text{human}(Socrates) = T, & \text{mortal}(Socrates) = T, & T \Rightarrow T : T \\ & \text{human}(Plato) = T, & \text{mortal}(Plato) = T, & T \Rightarrow T : T \\ & \text{human}(Zeus) = F, & \text{mortal}(Zeus) = F, & F \Rightarrow F : T \\ & \text{human}(Fido) = F & \text{mortal}(Fido) = T & F \Rightarrow T : T \\ \end{array}
```

References

[1]	en.wikipedia.org
[2]	en.wiktionary.org
[3]	U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
[4]	http://www.learnprolognow.org/ Learn Prolog Now!
[5]	http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
[6]	www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
[7]	www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
[8]	http://ilppp.cs.lth.se/, P. Nugues,`An Intro to Lang Processing with Perl and Prolog