Variable Block Adder (1C)

•

•

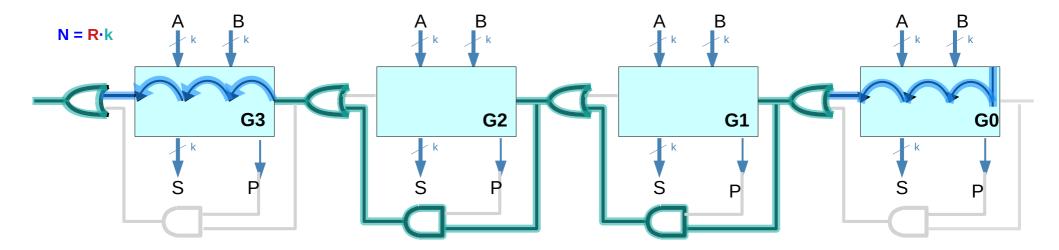
Copyright (c) 2024 - 2010 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Carry Skip Adder



Fixed block size = k bits

$$(k-1) \Delta_{rca} \qquad (R-2) \Delta_{SKIP} \qquad (k-1) \Delta_{rca} \qquad (k-1) t \qquad (k-1) t$$

Variable block size = x_i bits for the i-th group

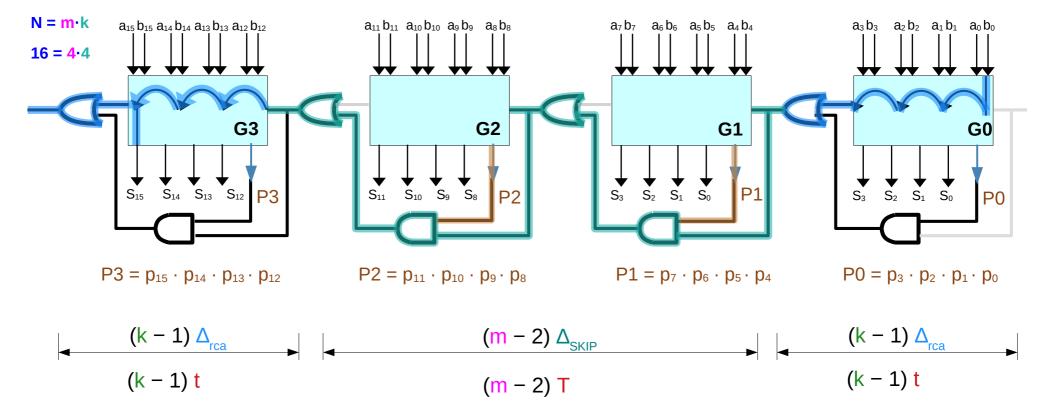
$$(x_i - 1) t$$

$$(m-2)T$$

$$(x_j - 1) t$$

t denote the time required for a carry signal to ripple across a bit T denote the time required for the signal to skip over a group of bits m denotes the optimal number of groups for an n-bit carry chain

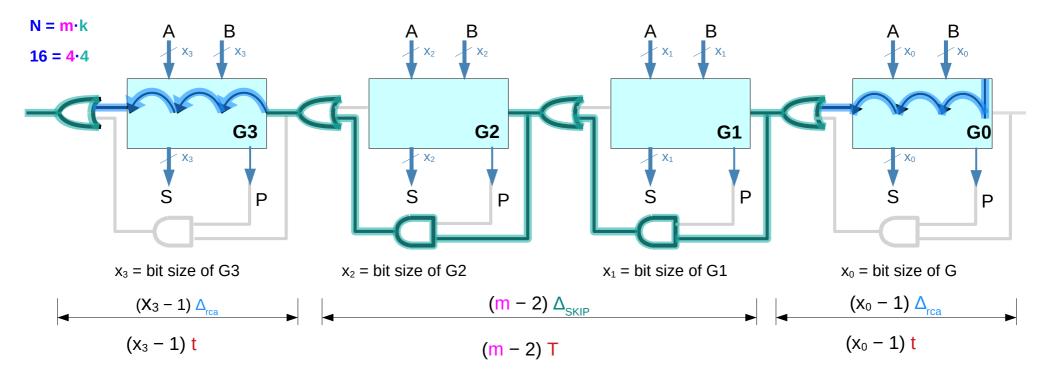
Carry Skip Adder – fixed block size



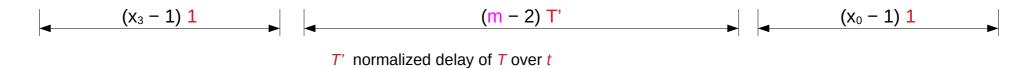
t denote the time required for a carry signal to ripple across a bit *T* denote the time required for the signal to skip over a group of bits *m* denotes the optimal number of groups for an n-bit carry chain

Fixed Block Size \Rightarrow delay(P3) = delay(P2) = delay(P1) = delay(P0) = Fixed Delay

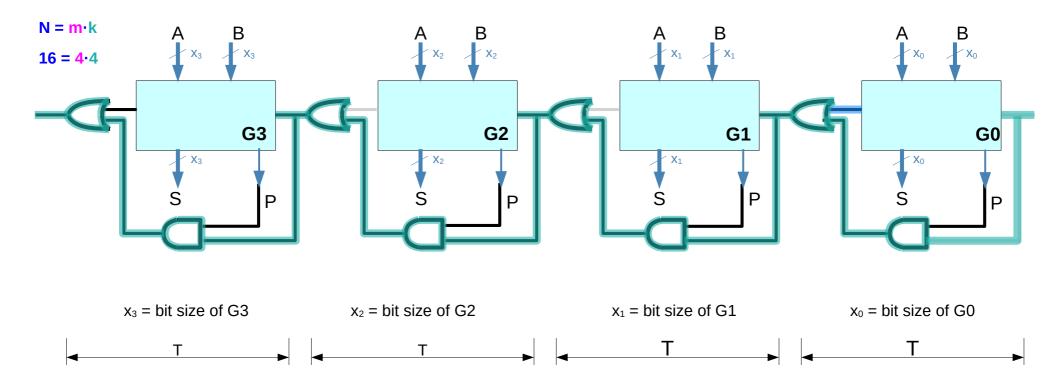
Carry Skip Adder – maximum carry delay (3)



t denote the time required for a carry signal to ripple across a bit *T* denote the time required for the signal to skip over a group of bits *m* denotes the optimal number of groups for an n-bit carry chain

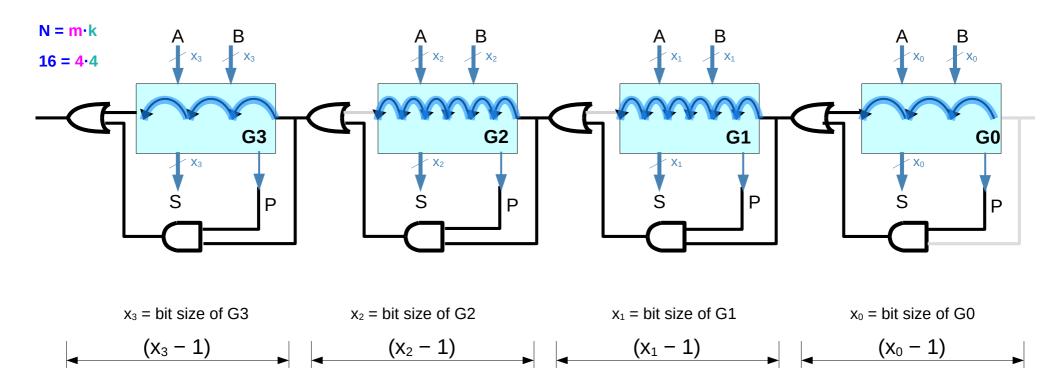


Carry Skip Adder – maximum carry delay (3)



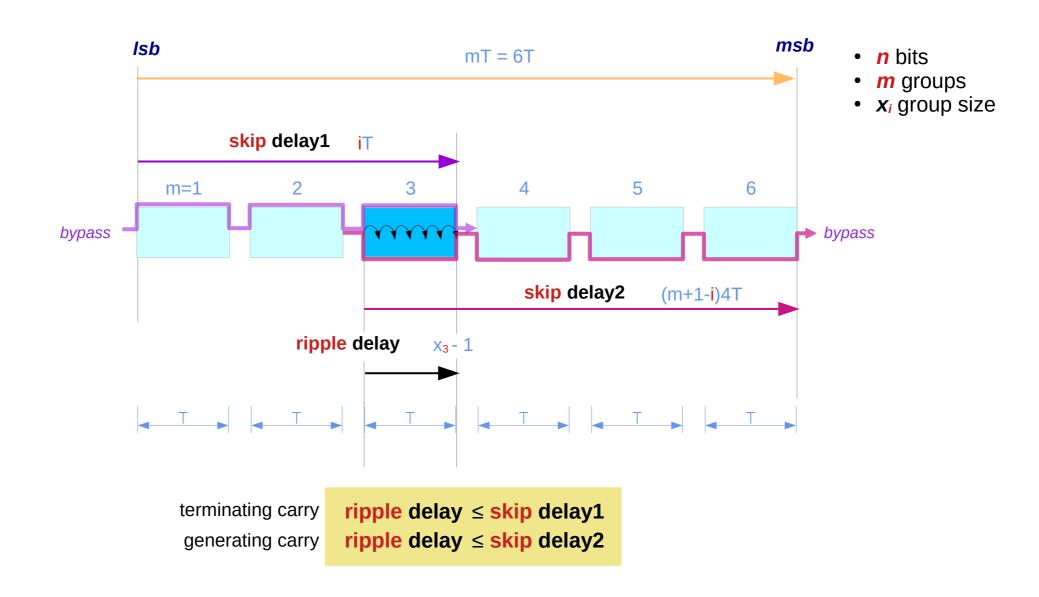
Carry Skip Delays

Carry Skip Adder – maximum carry delay (3)



Carry Ripple delays

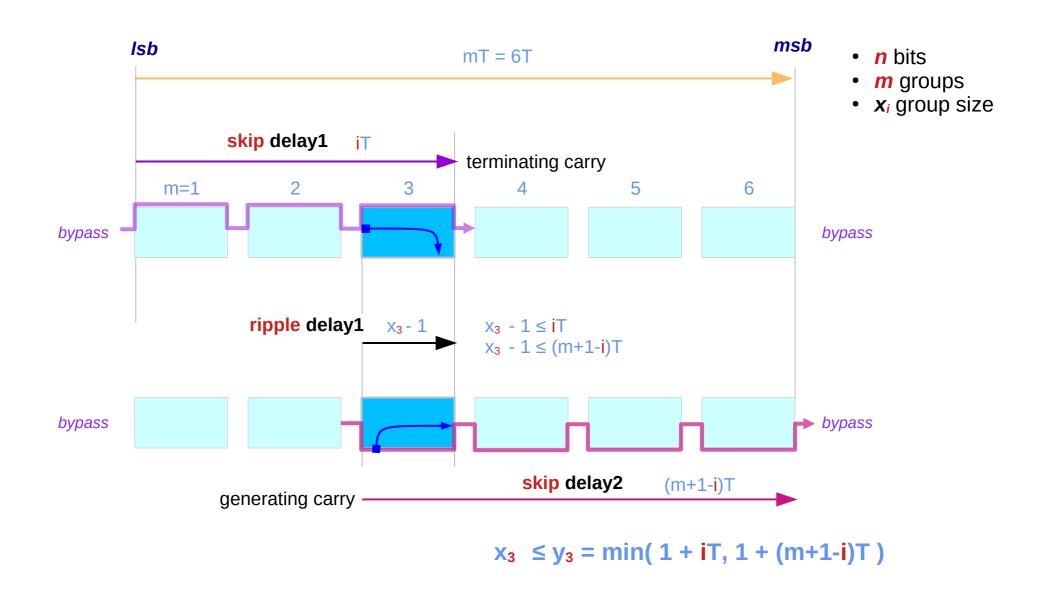
Minimum skip path delay y_i of the i^{th} group



Parallel Delay Paths



Minimum skip path delay y_i of the i^{th} group



Determining *m* group size

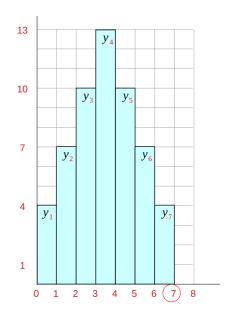
Method 1 – using a histogram

Let $\frac{m}{m}$ be the <u>smallest</u> positive integer such that

$$n \leq \sum_{i=1}^{m} y_i$$

$$m = 2$$
;
while $(y_1+\dots+y_m < n)$ $m = m+1$;

$$y_i = min\{1+iT, 1+(m+1-i)T\}, i = 1,...,m$$



Method 2 – using a *closed formula*

$$n \le m + \frac{1}{2}mT + \frac{1}{4}m^2T + (1 - (-1)^m)\frac{1}{8}T$$

$$y_{i} = \min\{1+iT, 1+(m+1-i)T\}, i = 1,...,m$$

$$m = \frac{1}{2}k(k+1)$$

$$y_{1} = \min\{1+1\cdot T, 1+(m-0)\cdot T\}$$

$$y_{2} = \min\{1+2\cdot T, 1+(m-1)\cdot T\}$$

$$y_{3} = \min\{1+3\cdot T, 1+(m-2)\cdot T\}$$

$$0 \le x_{2} \le 1 + 2\cdot T$$

$$y_{3} = \min\{1+3\cdot T, 1+(m-2)\cdot T\}$$

$$0 \le x_{3} \le 1 + 3\cdot T$$

$$y_{k+1} = \min\{1+k\cdot T, 1+k\cdot T\}$$

$$0 \le x_{k+1} \le 1 + k\cdot T$$

$$y_{m-1} = \min\{1+(m-2)\cdot T, 1+3\cdot T\}$$

$$y_{m-1} = \min\{1+(m-1)\cdot T, 1+2\cdot T\}$$

$$0 \le x_i \le y_i, i = 1, \dots, m$$

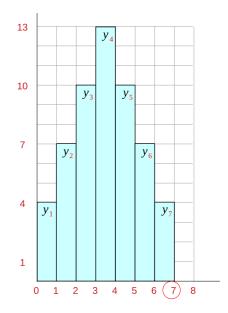
Determining *m* group size

Method 1 – using a histogram

$$n \leq \sum_{i=1}^{m} y_i$$

$$m = 2$$
;
while $(y_1+\dots+y_m < n)$ $m = m+1$;

$$y_i = min\{1+iT, 1+(m+1-i)T\}, i = 1,...,m$$



```
\begin{split} &m=2; \ T=3 \\ &y_1=\min \left\{1+T,\, 1+2T\right\}=1+T \\ &y_2=\min \left\{1+2T,\, 1+T\right\}=1+T \\ &=4 \end{split} &m=3; \ T=3 \\ &y_1=\min \left\{1+T,\, 1+3T\right\}=1+T \\ &=4 \end{split} &m=3; \ T=3 \\ &y_1=\min \left\{1+2T,\, 1+2T\right\}=1+2T \\ &=7 \\ &y_3=\min \left\{1+3T,\, 1+T\right\}=1+T \\ &=4 \end{split} &m=4; \ T=3 \\ &y_1=\min \left\{1+T,\, 1+4T\right\}=1+T \\ &=4 \end{aligned} &m=4; \ T=3 \\ &y_1=\min \left\{1+T,\, 1+4T\right\}=1+T \\ &=4 \end{aligned} &y_2=\min \left\{1+2T,\, 1+3T\right\}=1+2T \\ &=7 \\ &y_3=\min \left\{1+3T,\, 1+2T\right\}=1+2T \\ &=7 \end{aligned} &y_4=\min \left\{1+4T,\, 1+T\right\}=1+T \\ &=4 \end{split}
```

```
\begin{array}{lll} m=5; & T=3 \\ y_1=min \left\{1+T,\, 1+5T\right\} & = 1+T & = 4 \\ y_2=min \left\{1+2T,\, 1+4T\right\} & = 1+2T & = 7 \\ y_3=min \left\{1+3T,\, 1+3T\right\} & = 1+3T & = 10 \\ y_4=min \left\{1+4T,\, 1+2T\right\} & = 1+2T & = 7 \\ y_5=min \left\{1+5T,\, 1+T\right\} & = 1+T & = 4 \\ m=6; & T=3 \\ y_1=min \left\{1+T,\, 1+6T\right\} & = 1+T & = 4 \\ y_2=min \left\{1+2T,\, 1+5T\right\} & = 1+2T & = 7 \\ y_3=min \left\{1+3T,\, 1+4T\right\} & = 1+3T & = 10 \\ y_4=min \left\{1+4T,\, 1+3T\right\} & = 1+3T & = 10 \\ y_5=min \left\{1+5T,\, 1+2T\right\} & = 1+2T & = 7 \\ y_6=min \left\{1+6T,\, 1+T\right\} & = 1+T & = 4 \end{array}
```

```
\begin{array}{lll} m=7; & \textbf{T=3} \\ y_1=\min \left\{1+T, \ 1+7T\right\} & = 1+T=4 \\ y_2=\min \left\{1+2T, \ 1+6T\right\} & = 1+2T=7 \\ y_3=\min \left\{1+3T, \ 1+5T\right\} & = 1+3T=10 \\ y_4=\min \left\{1+4T, \ 1+4T\right\} & = 1+4T=13 \\ y_5=\min \left\{1+5T, \ 1+3T\right\} & = 1+3T=10 \\ y_6=\min \left\{1+6T, \ 1+2T\right\} & = 1+2T=7 \\ y_7=\min \left\{1+7T, \ 1+1T\right\} & = 1+T=4 \end{array}
```

Determining *m* group size

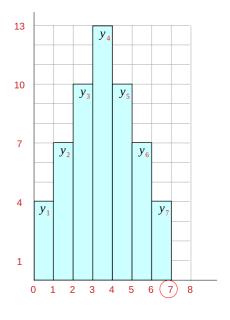
Method 1 – using a histogram

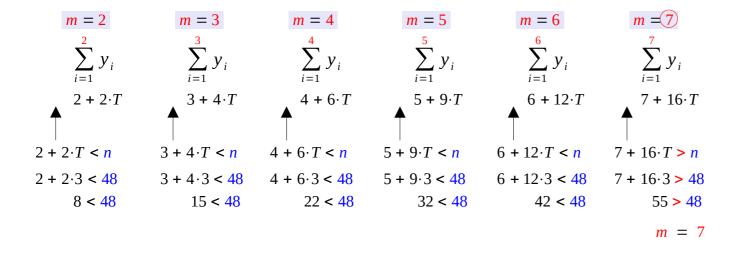
$$n \leq \sum_{i=1}^{m} y_i$$

$$m = 2;$$

while $(y_1 + \dots + y_m < n)$ $m = m+1;$

$$y_i = min\{1+iT,1+(m+1-i)T\}, i = 1,...,m$$





$$\begin{array}{c}
n = 48 \\
T = 3
\end{array}$$

$$m = 7$$

Determining x_i

construct a histogram whose i-th column has height y_i

so these y_i 's are <u>at least n unit squares</u> in the histogram, starting with the first row, shade in n of the squares, <u>row by row</u>

let x_i denote the number of shaded squares in column i of the histogram,

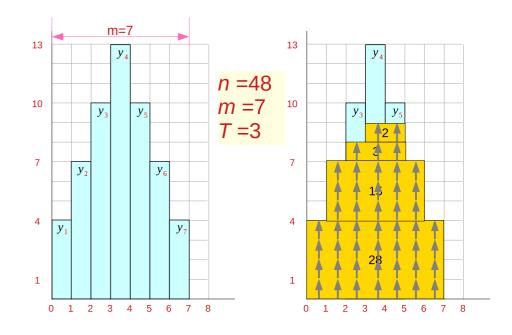
$$i = 1, ..., m$$

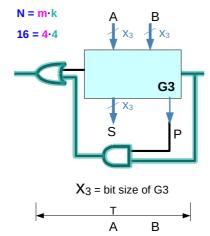
$$0 \leq x_i \leq y_i, \quad i=1,...,m$$

$$n = \sum_{i=1}^{m} x_i \leq \sum_{i=1}^{m} y_i$$

$$n = \sum_{i=1}^{7} x_i$$

 $n = 4+7+8+9+9+7+4=48 < 7+16\cdot 3=55$





m = 7;		T = 3
$x_1 = 4$	\leq	$y_1 = 4$
$x_2 = 7$	\leq	$y_2 = 7$
$x_3 = 8$	<	$y_3 = 10$
$x_4 = 9$	<	$y_4 = 13$
$x_5 = 9$	<	$y_5 = 10$
$x_6 = 7$	\leq	$y_6 = 7$
$x_7 = 4$	≤	$y_7 = 4$

Procedure

(I) Let m be the smallest positive integer such that

$$n \le m + \frac{1}{2}mT + \frac{1}{4}m^2T + (1 - (-1)^m)\frac{1}{8}T = \sum_{i=1}^m y_i$$
• $m = 7$ groups
• i -th group has x_i bits (size)
• constant skip delay $T = T(x)$

- total n = 48 bits
- m = 7 groups
- constant skip delay $T = T(x_i) = 3$

(II) Let

$$y_i = min\{1+iT, 1+(m+1-i)T\}, i = 1,...,m$$

and construct a histogram whose *i-th* column has height *y*, for example, for T=3, and n=48, we have m=7

(III) It is easily verified that the area of the histogram in (II) is

$$\sum_{i=1}^{m} y_i = \left[m + \frac{1}{2} m T + \frac{1}{4} m^2 T + (1 - (-1)^m) \frac{1}{8} T \right] \ge n$$

so these are at least *n* unit squares in the histogram starting with the first row, shade in *n* of the squares, row by row Let x_i denote the number of shaded squares in column i of the histogram,

$$1 = \sum_{i=1}^{m} x_i \le \sum_{i=1}^{m} y_i$$

i = 1, ..., m

Maximum propagation time P

$$y_i = min\{1+iT, 1+(m+1-i)T\}, i = 1,...,m$$

the scheme (i), (ii), (iii) gives the max prop time *mT*

$$y_1 = min\{1+1\cdot T, 1+(m+1-1)T\} = 1+T$$

 $y_m = min\{1+m\cdot T, 1+(m+1-m)T\} = 1+T$

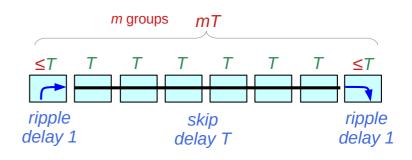
$$x_1 \le y_1 = 1 + T$$

$$x_{m} \leq y_{m} = 1 + T$$

$$\begin{array}{lll} x_1 \ -1 \le 1T & & x_1 \ -1 \le T \\ x_1 \ -1 \le (m+1-1)T & & x_1 \ -1 \le mT \end{array}$$

$$\begin{array}{lll} x_m - 1 \leq mT & & x_m - 1 \leq mT \\ x_m - 1 \leq (m+1-m)T & & x_m - 1 \leq T \end{array}$$

maximum propagation time



$$P_{max} = P_{1,m} \leq mT$$

$$P = P_{i,j} \leq mT$$

Maximum propagation time P

Lemma 1 When the bits of a carry skip adder are grouped according to the scheme (i)-(iii), the maximum propagation time of a carry signal is *mT*

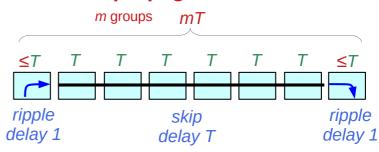
the scheme (i), (ii), (iii) gives the max prop time *mT*

The carry generated at the 2^{nd} bit position and terminating at the $(n-1)^{th}$ bit position clearly has propagation time mT.

We must show that *any other* carry signal has propagation time <u>smaller</u> than or equal to mT

propagation time of a carry signal $\leq mT$ the maximum propagation time = mT

maximum propagation time

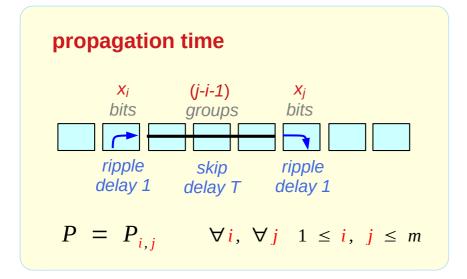


$$P_{max} = P_{1,m} \leq mT$$

Propagation Time P

the scheme (i), (ii), (iii) gives the max propagation time mT

propagation time of a carry signal $\leq mT$ the maximum propagation time = mT

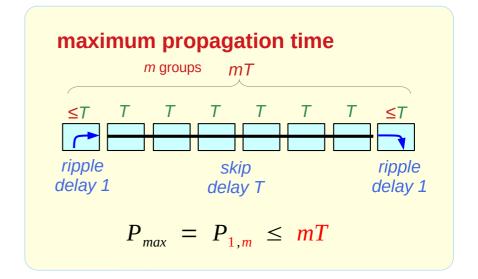


Oklobdzija: High-Speed VLSI arithmetic units: adders and multipliers

$$n \leq \sum_{i=1}^{m} y_i = \sum_{i=1}^{m} min\{1+iT, 1+(m+1-i)T\}$$

$$m = 2;$$

while $(y_1 + \dots + y_m < n)$ $m = m+1;$



Maximum delay and optimal group size

the maximum propagation time \propto the number of groups

 $D \propto m$

- when optimal group size = m the maximum delay $D_m = mT$
- when optimal group size = (m-1) the maximum delay $D_{m-1} = (m-1)T$
- when optimal group size = r the maximum delay $D_r = rT$
- larger number of groups → larger delays → not optimal

 when group size m is not optimal then there is an optimal group size = r

 the maximum delay with the group size m $D_m = mT$

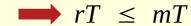
 the maximum delay with the group size r

 $D_r = rT$

• r must be smaller than m

 $r \leq m$

$$D_r \leq D_m$$



$$\rightarrow$$
 $r \leq m$

Maximum delay of a carry signal

Lemma 2 Let *D* denote the maximum delay of a carry signal in a *n* bit carry skip adder with group sizes chosen optimally. Then

• *r* groups

$$(m-1)T \leq D \leq mT$$

Since we have exhibited a <u>division</u> of the carry chain into groups In such a way that the <u>maximum delay</u> of a carry signal is mT We clearly have $D \leq mT$

the maximum delay = Dthe optimal group size = m

$$(m-1)T \leq D \leq mT$$

- *If* the number of division *m* is <u>not optimal</u>
 - → maximum delay over m groups : $D_m \le mT$
 - \rightarrow there is a number of division r
 - → maximum delay over r groups : $D_r \le rT < D_m \le mT$

Maximum delay of a carry signal

$$(m-1)T \leq D \leq mT$$

Assume there are **r** groups

then 2 cases : even r, odd r

for each of these 2 cases

prove
$$mT - D < T + 1$$

$$mT - D \leq T$$

then
$$(m-1)T \leq D$$

P: the propagation delay of any carry signal path $\leq mT$

upper bound

D: the max of P

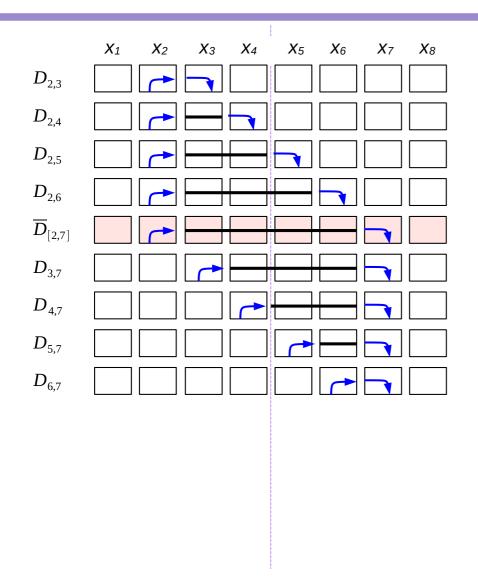
 $diff(mT, D) \leq T$

 $diff(mT, max P) \leq T$

lower bound

 $(m-1)T \leq D$

Maximum delays of carry signals (r = 2k)



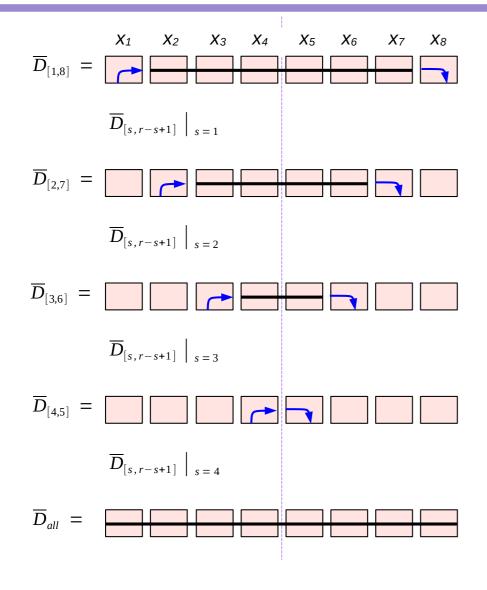
 $\overline{D}_{[2,7]}$ = the maximum delay of carry signals $\leq D$ generated in the i-th group and terminated in the j-th group such that $2 \leq i, j \leq 7$

$$\overline{D}_{[2,7]} = \max \left\{ \begin{bmatrix} D_{2,3}, & D_{2,4}, & D_{2,5}, & D_{2,6}, \\ & D_{2,7}, & \\ D_{3,7}, & D_{4,7}, & D_{5,7}, & D_{6,7} \end{bmatrix} \right\}$$

$$\overline{D}_{[2,7]} = \overline{D}_{[2,8-2+1]} = \overline{D}_{[s,8-s+1]}, s = 2$$

 $\overline{D}_{[s,r-s+1]}$ = the maximum delay of carry signals generated in the i-th group and terminated in the j-th group such that $s \le i, j \le r-s+1$

Maximum delays of carry signals (r = 2k)



Oklobdzija: High-Speed VLSI arithmetic units: adders and multipliers

$$\overline{D}_{[1,8]} =$$
The maximum delay of carry signals $\leq D$ generated in the i-th group or terminated in the j-th group such that $1 \leq i, j \leq 8$

$$\overline{D}_{[2,7]} =$$
The maximum delay of carry signals $\leq D$ generated in the i-th group or terminated in the j-th group such that $2 \leq i$, $j \leq 7$

$$\overline{D}_{[3,6]} =$$
 The maximum delay of carry signals $\leq D$ generated in the i-th group or terminated in the j-th group such that $3 \leq i, j \leq 6$

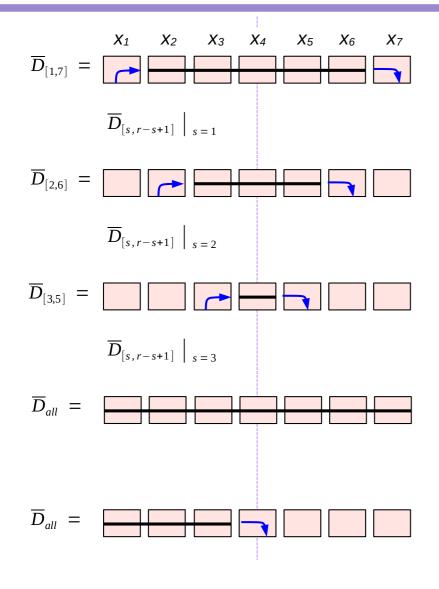
$$\overline{D}_{[4,5]} =$$
 The maximum delay of carry signals $\leq D$ generated in the i-th group or terminated in the j-th group such that $4 \leq i, j \leq 5$

$$\overline{D}_{all} = All \, skip \, delay$$

 $\leq D$

$$D = max\{\overline{D}_{[1,8]}, \overline{D}_{[2,7]}, \overline{D}_{[3,6]}, \overline{D}_{[4,5]}\}$$

Maximum delays of carry signals (r = 2k+1)



Oklobdzija: High-Speed VLSI arithmetic units: adders and multipliers

$$\overline{D}_{[1,7]} =$$
 The maximum delay of carry signals $\leq D$ generated in the i-th group or terminated in the j-th group such that $1 \leq i, j \leq 8$

$$\overline{D}_{[2,6]} =$$
The maximum delay of carry signals $\leq D$ generated in the i-th group or terminated in the j-th group such that $2 \leq i$, $j \leq 7$

$$\overline{D}_{[3,65]} =$$
The maximum delay of carry signals $\leq D$ generated in the i-th group or terminated in the j-th group such that $3 \leq i, j \leq 6$

$$\overline{D}_{all} = All \, \text{skip delay}$$

$$\widetilde{D}_{all}$$
 = Comparable to all skip delay

$$D = max\{\overline{D}_{[1,8]}, \overline{D}_{[2,7]}, \overline{D}_{[3,6]}, \overline{D}_{[4,5]}\}$$
 Max delay of all carry signals

 $\leq D$

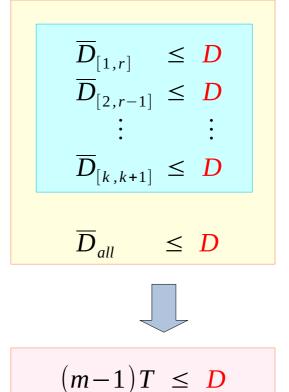
Maximum delays of carry signals (r = 2k)

$$D = \max_{s=1}^{r/2} \overline{D}_{[s,r-s+1]}$$

$$= \max_{s=1}^{k} \overline{D}_{[s,2k+1-s]}$$

$$= \max_{s=1}^{4} \overline{D}_{[s,9-s]}$$

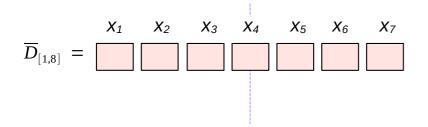
Max delay of all carry signals



Oklobdzija: High-Speed VLSI arithmetic units: adders and multipliers

Lower bound of D

Maximum delays of carry signals (r = 2k+1)

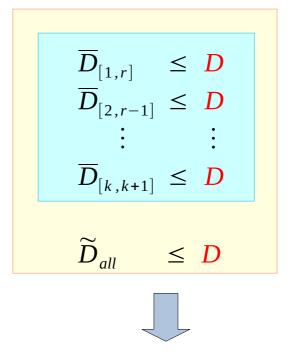


$$\mathbf{D} = \max_{s=1}^{floor(r/2)} \overline{D}_{[s,r-s+1]}$$

$$= \max_{s=1}^{k} \overline{D}_{[s,2k+2-s]}$$

$$= \max_{s=1}^{3} \overline{D}_{[s,8-s]}$$

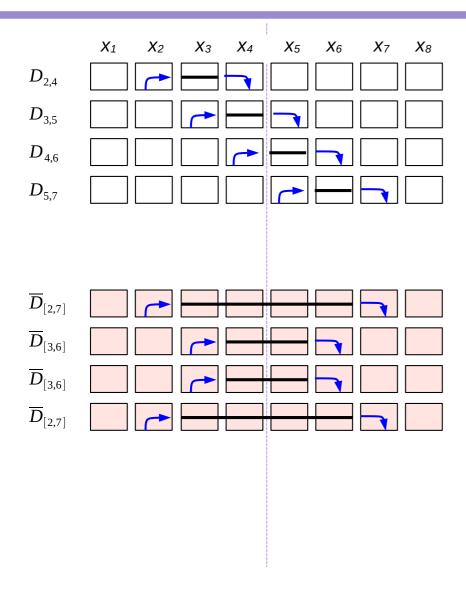
Max delay of all carry signals



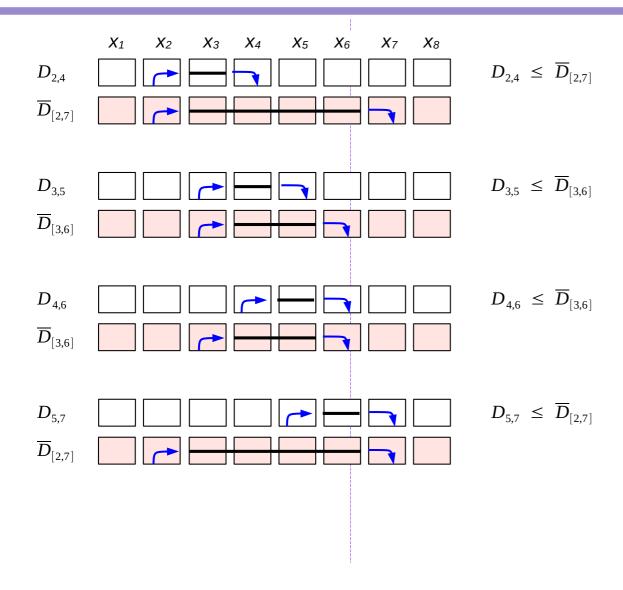
 $(m-1)T \leq D$

Lower bound of D

Example delays of carry signals (r = 2k) (1)



Example delays of carry signals (r = 2k) (2)



Optimal division into groups (1-1)

Theorem 1

The scheme 2(i) - 2(iii) given above for dividing the bits of a carry skip adder into groups is optimal for $2 \le T \le 7$

dividing the bits into groups by the scheme 2(i) - 2(iii) gives m groups

propagation time of a carry signal $\leq mT$ the maximum propagation time = mT

the maximum delay = Dthe optimal group size = m

$$(m-1)T \leq D \leq mT$$

Oklobdzija: High-Speed VLSI arithmetic units: adders and multipliers

(I) Let m be the smallest positive integer such that

$$n \le m + \frac{1}{2}mT + \frac{1}{4}m^2T + (1 - (-1)^m)\frac{1}{8}T$$

(II) Let
$$y_i = min\{1+iT, 1+(m+1-i)T\},\ i = 1,...,m$$

and construct a histogram whose *i-th* column has height *y*,

(III) the area of the histogram in (II) is

$$m + \frac{1}{2}mT + \frac{1}{4}m^2T + (1-(-1)^m)\frac{1}{8}T \ge n$$

so these are <u>at least n unit squares</u> in the histogram starting with the first row, shade in n of the squares, <u>row by row</u>
Let x_i denote the number of shaded squares in column i of the histogram,

$$i = 1, ..., m$$

Optimal division into groups (1-2)

Assume

(1C)

- the scheme by 2(i) 2(iii) (m groups) is not optimal
- let **D** be the maximum delay corresponding to an optimal division of the bits into groups
- there are *r* groups in the optimal division.

Since a carry in signal to the least significant bit group can skip over each group

we have rT < D < mT so r < m

if **m** is <u>not</u> optimal, <u>but</u> **r** is then $mT \ge rT$ (smaller delay rT) thus $m \ge r$ (smaller r exists)

Oklobdzija: High-Speed VLSI arithmetic units: adders and multipliers

m groups

- not optimal division
- -D = maximum delay
- -mT skip delay

r groups

- optimal division
- rT skip delay

skip delay rT < D < mT

 $r \leq m$

D = max delay is assumed To be greater than all skip delay **rT** of the optimal division

Optimal division into groups (1-2)

If the optimal division gives *m* groups

$$m$$
 groups mT (m-1) groups mT

Normally, by 2(i) - 2(iii) (m groups) is optimal and its maximum delay D is less than all skip delay mT

$$D \leq mT$$

To prove this, first, negate that

- m is not by the optimal division, but r is
- D is greater than all skip delay of the optimal division

$$D \leq mT$$

$$(m-1)T \leq D$$

- when optimal group size = m the maximum delay $D_m \le mT$
- when optimal group size = (m-1)the maximum delay $D_{m-1} \le (m-1)T$

D = maximum delay

$$rT \le D \le mT$$

$$r \le m$$
 \longrightarrow $r < (m-1)$

Optimal division into groups (1-2)

```
rT \le D \le mT so r \le m
```

Optimal division : r groups $D' \leq all \ skip \ delay \ rT \ (r \ groups)$

Non-optimal division : m groups $D \le all \ skip \ delay \ mT \ (m \ groups)$ too many partitions m $r \le m$

Assume max delay D is greater than all skip delay rT of the optimal division

if m is <u>not</u> optimal, <u>but</u> r is then $mT \ge rT$ (smaller delay rT) thus $m \ge r$ (smaller r exists)

D is max delay for m groups D' is max delay for r groups then $D' \le rT \le D \le mT$

Oklobdzija: High-Speed VLSI arithmetic units: adders and multipliers

D = maximum delay $rT \le D \le mT$ $r \le m \longrightarrow r < (m-1)$

Optimal division into groups (2)

we have $rT \le D \le mT$ so $r \le m$

If
$$r = m$$

then $D = mT$ \longrightarrow $D = rT$ $rT = D$
If $r = m-1$, $(r < m)$
 $D \ge (m-1)T$ \longrightarrow $D \ge (m-1)T = rT$ $rT \le D$
if $r < m-1$, $(r < m)$ $r = m-2$, $m-3$, $m-3$, ...
 $D \ge (m-1)T$ \longrightarrow $D \ge (m-1)T > rT$ $rT < D$

Optimal division into groups (3)

we have $rT \le D \le mT$ so $r \le m$

If r = m then D = mT and the **theorem** holds by **lemma** 1

When the bits of a carry skip adder are grouped according to the scheme (i)-(iii), the maximum propagation time of a carry signal is mT

 $(m-1)T \le D \le mT$

Oklobdzija: High-Speed VLSI arithmetic units: adders and multipliers

Lemma 1 When the bits of a carry skip adder are grouped according to the scheme (i)-(iii), the maximum propagation time of a carry signal is mT

Theorem 1 The scheme 2(i) - 2(iii) given above for dividing the bits of a carry skip adder into groups is optimal for $2 \le T \le 7$

(5)
$$r=2k$$
 $X = 4-T^2$

$$mT-D \le T + \frac{-8(T/n)+4}{\sqrt{4(T/n)+8(T/n^2)} + \sqrt{4(T/n)+4/n^2}}$$

$$r=2k+1 \qquad X = 4$$

$$mT-D \le T + \frac{(T-2)^2/n}{\sqrt{4(T/n)+4(T/n^2)} + \sqrt{4(T/n)+(T/n)^2+4/n^2}}$$

m groups – not optimal division *r* groups – optimal division

D = maximum delay

 $rT \le D \le mT$

 $r \leq m$

Optimal division into groups (3)

```
If r = m-1, (r < m)

m and r have different parities and

it follows from (5)

that mT - D \le T for 2 \le T \le 7
```

so that $D \ge (m-1)T$ since r = m-1, $D \ge (m-1)T = rT$ $rT \le D$

This means that a signal which skips over each of the r groups (rT) has delay less than the maximum D.

 $rT \le D \le mT$

m is <u>not</u> optimal division *r* is optimal division

Oklobdzija: High-Speed VLSI arithmetic units: adders and multipliers

Lemma 1 When the bits of a carry skip adder are grouped according to the scheme (i)-(iii), the maximum propagation time of a carry signal is mT

Theorem 1 The scheme 2(i) - 2(iii) given above for dividing the bits of a carry skip adder into groups is optimal for $2 \le T \le 7$

$$(5) \quad r=2k \qquad \qquad X = 4 - T^2$$

$$mT-D \le T + \frac{-8(T/n)+4}{\sqrt{4(T/n)+8(T/n^2)} + \sqrt{4(T/n)+4/n^2}}$$

$$r=2k+1 \qquad X=4$$

$$mT-D \le T + \frac{(T-2)^2/n}{\sqrt{4(T/n)+4(T/n^2)} + \sqrt{4(T/n)+(T/n)^2+4/n^2}}$$

m groups – not optimal division *r* groups – optimal division

D = maximum delay

 $rT \le D \le mT$

 $r \leq m$

Optimal division into groups (4)

```
Similarly,
if r < m-1, (r < m)
(m-1)T \le D
since r < m-1,
rT < (m-1)T \le D
```

so that a signal which skips over each group has delay rT < D.

```
rT < D \le mT
```

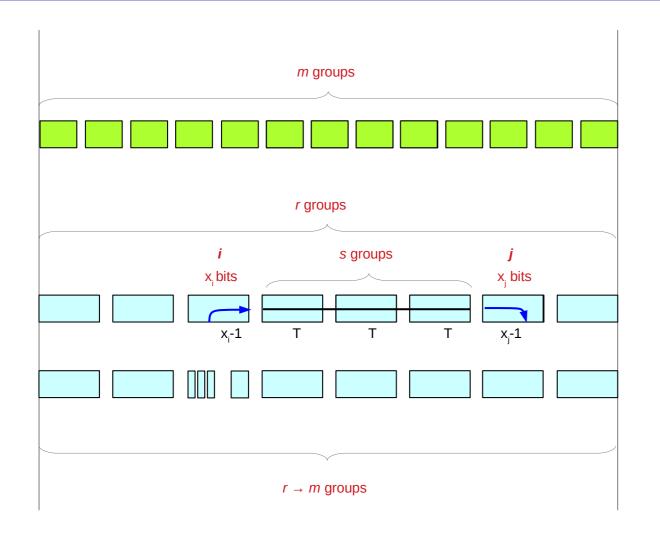
m is <u>not</u> optimal division *r* is optimal division

m groups – not optimal division *r* groups – optimal division

D = maximum delay

 $rT \le D \le mT$

 $r \leq m$



m groups – not optimal division *r* groups – optimal division

D = maximum delay

 $rT \le D \le mT$

 $r \leq m$

if **m** is <u>not</u> optimal, <u>but</u> **r** is

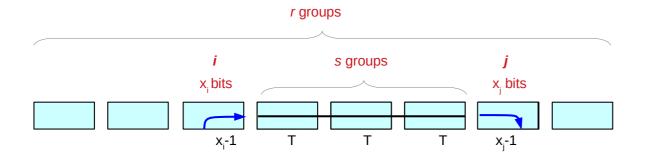
$$(((r +1) +1) +1) \dots \longrightarrow m$$
 contradiction! r must be m

It follows that a signal with delay D

must <u>start</u> in a group *i*, <u>ripple</u> to the <u>end</u> of group *i*,

then skip over s < r groups and

either <u>terminate</u>, or <u>ripple</u> through the first few bits of a group j > i.



r groups – optimal division

m groups – not optimal division

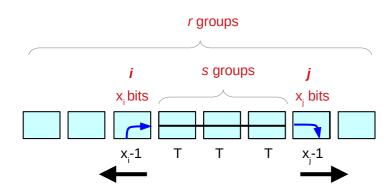
D = maximum delay

 $rT \le D \le mT$

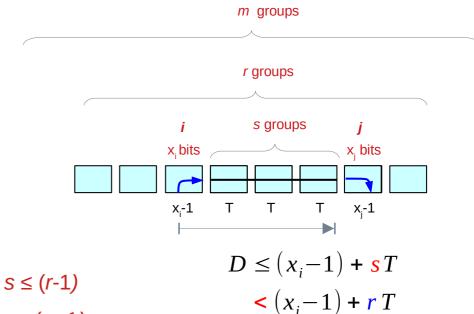
 $r \le m$

Let x_i and x_j denote the lengths of the *i-th* and *j-th* groups respectively.

Assume that i is chosen as <u>small</u> as possible and j as <u>large</u> as possible. (longer path)



A signal <u>originating</u> in group i, <u>rippling</u> to the end of this group i and then skipping over the next s group has delay $(x_i - 1) + sT$



$$D \le (x_i - 1) + sT$$

$$\le (x_i - 1) + (r - 1)T$$

$$\le (x_i - 1) + (m - 2)T.$$

$$s < r \text{ groups} \implies s \le (r - 1)$$

$$r < m \text{ groups} \implies r \le (m - 1)$$

$$(x_i-1) + mT.$$

if **m** is <u>not</u> optimal, <u>but</u> **r** is

$$s < r < m$$

 $s \le (r-1) < (m-1)$
 $s \le (r-1) \le (m-2)$

$$D \le (x_i - 1) + sT$$

$$\le (x_i - 1) + (r - 1)T$$

$$\le (x_i - 1) + (m - 2)T$$

$$(m-1)T \le D$$

 $D \le (x_i-1) + (m-2)T$

$$(m-1)T \le D \le (x_i-1) + (m-2)T$$

$$(m-1)T \le (x_i-1) + (m-2)T$$

$$T \le (x_i - 1)$$

$$T + 1 \le x_i$$

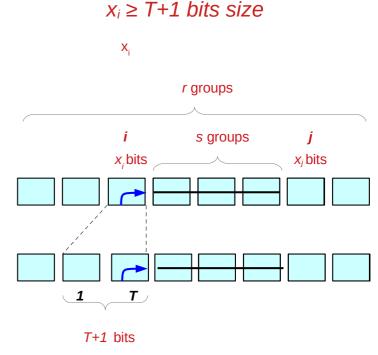
Since $D \ge (m-1)T$ this implies that $x_i \ge T+1$

Divide group i into two groups such that the group containing the msb has size T.

Since the *i*-th group is the first group in which a signal having maximum delay can <u>originate</u>,

this subdivision does <u>not</u> <u>increase</u> the delay of any carry signal of maximum delay

However, it increases the <u>number</u> of groups by 1



$$\begin{split} D &\leq (x_i - 1) + sT & (m - 1)T < D \\ &\leq (x_i - 1) + (r - 1)T & D < (x_i - 1) + (m - 2)T \\ &\leq (x_i - 1) + (m - 2)T. & x_i \geq (T + 1) \end{split}$$

Suppose now that a carry signal <u>originates</u> in a group i, <u>ripples</u> to its end, <u>skips</u> over $s \le r-2$ groups and <u>finally ripples</u> through the first few bits of a group j and <u>terminates</u>.

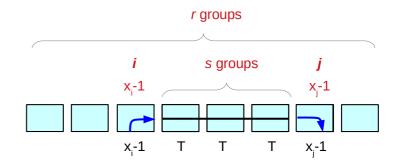
We then have

$$D \le (x_i - 1) + sT + (x_j - 1)$$

$$\le x_i + x_j - 2 + (m - 3)T$$

So that either $x_i \ge T+1$ or $x_i \ge T+1$

$$s < r$$
 groups $s < r$ groups $s \le (r-1)$ groups $s \le (r-2)$ groups $r < m$ groups $r \le (m-1)$ groups $r \le (m-2)$ groups

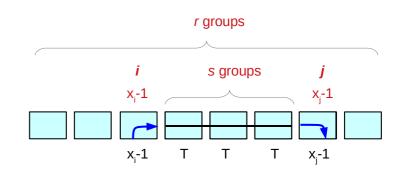


$$s < r < m$$

$$s \le (r-1) < (m-1)$$

$$s \le (r-1) \le (m-2)$$

$$s \le (r-2) \le (m-3)$$



$$D \leq (x_{i}-1) + sT + (x_{j}-1)$$

$$\leq x_{i} + x_{j} - 2 + (r-2)T$$

$$\leq x_{i} + x_{j} - 2 + (m-3)T$$

$$(m-1)T < D$$
 $D < (x_i-1) + (m-2)T \iff x_i \ge (T+1)$
 $D < (x_j-1) + (m-2)T \iff x_j \ge (T+1)$

So that either $x_i \ge T+1$ or $x_j \ge T+1$

Oklobdzija: High-Speed VLSI arithmetic units: adders and multipliers

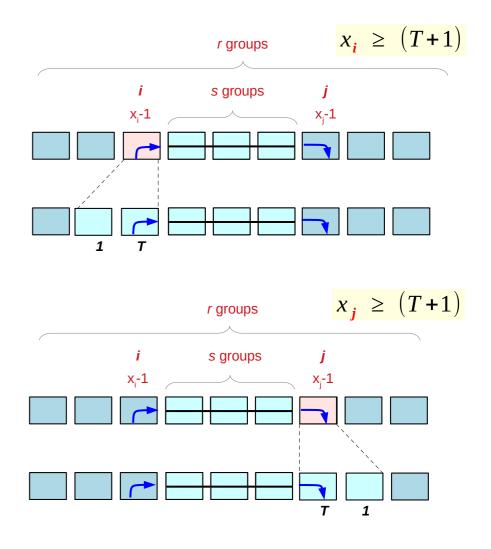
 $s \leq (r-2)$

So that either $x_i \ge T+1$ or $x_j \ge T+1$

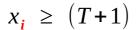
This means that we can subdivide one of the groups i, j without increasing D not both of them

Continuing in this way, we can always increase the number r of group in an optimal division of a carry chain by 1 without increasing D if r < m

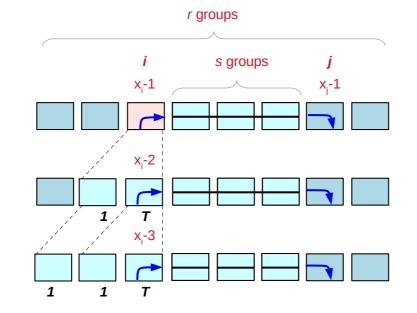
This means that we can arrive at an optimal division of the carry chain into m groups.



$$x_i \geq (T+1) > (T+2) \cdots$$



$$x_i \geq (T+2)$$



$$D \le (x_i - 1) + sT$$

$$\le (x_i - 1) + (r - 1)T$$

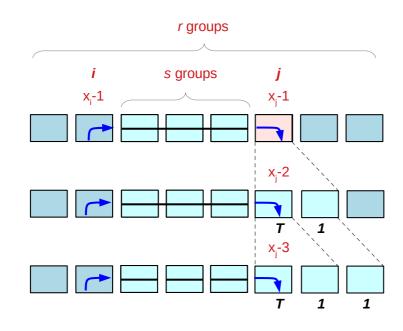
$$\le (x_i - 1) + (m - 2)T$$

$$(m-1)T \le D \le (x_i-1) + (m-2)T$$

if m is <u>not</u> optimal, <u>but</u> r is

$$(((r +1) +1) +1) \dots \longrightarrow m$$

contradiction! m must be r



if m is <u>not</u> optimal, <u>but</u> r is

$$(((r +1) +1) +1) \dots \longrightarrow m$$
contradiction! m must be r

$$x_i \geq (T+1) > (T+2) \cdots$$

$$x_i \geq (T+1)$$

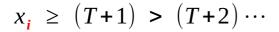
$$x_j \geq (T+2)$$

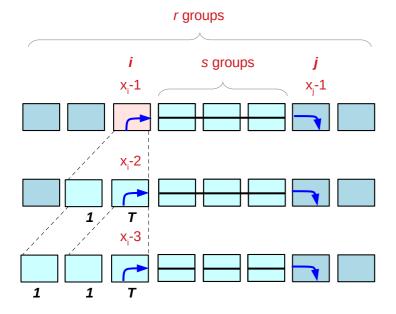
$$D \le (x_i - 1) + sT$$

$$\le (x_i - 1) + (r - 1)T$$

$$\le (x_i - 1) + (m - 2)T$$

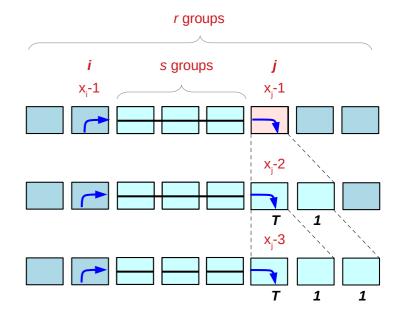
$$(m-1)T \le D \le (x_i-1) + (m-2)T$$





if m is <u>not</u> optimal, <u>but</u> r is $(((r +1) +1) +1) ... \longrightarrow m$ contradiction! m must be r

$$x_j \geq (T+1) > (T+2) \cdots$$



if
$$m$$
 is not optimal, but r is
$$(((r +1) +1) +1) ... \longrightarrow m$$
contradiction! m must be r

Normally, by 2(i) - 2(iii) (m groups) is optimal and its maximum delay D is less than all skip delay mT

 $D \leq mT$

To prove this, first, negate that

- m is not by the optimal division, but r is
- D is greater than all skip delay of the optimal division

Assume

- the scheme by 2(i) 2(iii)
 (*m* groups) is not optimal
- let D be the maximum delay corresponding to an optimal division
- there are **r** groups in the optimal division.

$$(...(((r+1)+1)+1) ... +1) \rightarrow m : optimal$$

if **m** is <u>not</u> optimal, <u>but</u> **r** is

$$(((r +1) +1) +1) \dots \longrightarrow m$$

contradiction! m must be r

We must then have $D \ge mT$ which, together with **Lemma 2**, Implies D = mT

This completes the proof of the theorem

m groups – not optimal division *r* groups – optimal division

D = maximum delay

 $rT \le D \le mT$

 $r \leq m$

Oklobdzija: High-Speed VLSI arithmetic units: adders and multipliers

Lemma 2

Let *D* denote the maximum delay of a carry signal in a *n* bit carry skip adder with group sizes chosen optimally.

$$(m-1)T \leq D \leq mT$$

Theorem 1

The scheme 2(i) - 2(iii) given above for dividing the bits of a carry skip adder into groups is optimal for $2 \le T \le 7$