
1 Young Won Lim
6/12/20

Monad P3 : Primitive Types (1B)

2 Young Won Lim
6/12/20

 Copyright (c) 2016 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Primitive Types (1B) 3 Young Won Lim
6/12/20

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Primitive Types (1B) 4 Young Won Lim
6/12/20

Typical data type with a parameter

data Foo a = Foo { ...stuff here ...}

Suppose that a lot of uses of Foo take numeric types (Int, Double etc)

and you keep having to write code that unwraps these numbers,

adds or multiplies them, and then wraps them back up.

You can short-circuit this by writing the unwrap-and-wrap code once.

This function is traditionally called a "lift" because it looks like this:

liftFoo2 :: (a -> b -> c) -> Foo a -> Foo b -> Foo c

https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

Lifting (1)

a

b
c

Foo a

Foo b
Foo c

Primitive Types (1B) 5 Young Won Lim
6/12/20

liftFoo2 :: (a -> b -> c) -> Foo a -> Foo b -> Foo c

in other words you have a function

which takes a two-argument function

(such as the (+) operator) and

turns it into the equivalent function for Foos.

addFoo = liftFoo2 (+)

https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

Lifting (2)

+
a

b
c

addFoo
Foo a

Foo b
Foo c

Primitive Types (1B) 6 Young Won Lim
6/12/20

Haskell allows you to use a special value called undefined.

This is sometimes also refereed to as bottom, ⊥, or _|_

Member of all types

Prelude> i = undefined

Prelude> i + 1

-- error!

Prelude> l = [1,2,3,4,undefined]

Prelude> l !! 3

4

Prelude> l !! 4

-- error!

https://andre.tips/wmh/brief-note-undefined/

Bottom

As an argument to a function

Prelude> weird x = 3

Prelude> weird . sum $ [1..]

3

Prelude> weird undefined

3

Laziness

Prelude> head [1, undefined]

1

Prelude> head [undefined, 1]

-- error!

As a return value

Prelude> stupid = sum [1..]

Prelude> stupid

-- infinite loop

Primitive Types (1B) 7 Young Won Lim
6/12/20

In most implementations of lazy evaluation,

values are represented at runtime as pointers

to either their value,

or code for computing their value.

This extra level of indirection,

together with any extra tags

needed by the runtime,

is known as a box.

https://en.wikibooks.org/wiki/Haskell/Libraries/Arrays

Box

thunks

Boxed

a value that is
yet to be evaluated

pointer box

Primitive Types (1B) 8 Young Won Lim
6/12/20

the expressiveness of non-strict arrays comes at a price,

especially if the array elements are simple numbers (values).

Instead of direct storing those numeric elements,

non-strict arrays require a boxed representation

the elements are pointers to heap objects

containing the numeric values.

This additional indirection requires extra memory and

drastically reduces the efficiency of array access,

especially in tight loops.

https://www.tweag.io/posts/2017-09-27-array-package.html

Boxed representation

Primitive Types (1B) 9 Young Won Lim
6/12/20

> :k Int

Int :: *

> :k Int#

Int# :: #

Int# has a different kind than normal Haskell datatypes: #.

https://haskell-lang.org/tutorial/primitive-haskell

Boxed vs Unboxed Kinds

Primitive Types (1B) 10 Young Won Lim
6/12/20

values of boxed type are represented

by a pointer to a heap object

The representation of a Haskell Int is

a two-word heap object

An unboxed type is represented

by the value itself,

no pointers or heap allocation are involved.

unboxed types correspond to the “raw machine” types in C

Int# (long int)

Double# (double)

Addr# (void *)

Most types in GHC are boxed,

https://downloads.haskell.org/~ghc/5.04.1/docs/html/users_guide/primitives.html

Boxed vs Unboxed Types

Primitive Types (1B) 11 Young Won Lim
6/12/20

Boxed a pointer to a heap object.

Unboxed no pointer

Lifted bottom as an element.

Unlifted no extra values.

Algebraic one or more constructors,

Primitive a built-in type

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/type-type

Classifying types – Summary

thunks

Boxed

Undefined
Infinite loop
Exception

Bottom

Lifted

a value that is
yet to be evaluated

pointer box

lifted by bottom

Primitive Types (1B) 12 Young Won Lim
6/12/20

Boxed types

a value is represented by a pointer to a heap object.

Unboxed types

a type is unboxed iff its representation is other than a pointer.

https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/type-type

Classifying types – Boxed, Unboxed

Primitive Types (1B) 13 Young Won Lim
6/12/20

Lifted types

A type is lifted iff it has bottom as an element.

A value of a lifted type can be bottom.

it can be undefined, or perhaps a

computation that never finishes, or

one that throws an exception.

Unlifted types

do not have these potentially troublesome extra values.

https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/type-type

Classifying types – Lifted, Unlifted

Primitive Types (1B) 14 Young Won Lim
6/12/20

https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

(Un)Lifted and (Un)Boxed types

Lifted type

Boxed type

● bottom _|_

– pointer object

Unboxed type – no pointer Unlifted type

● bottom _|_

– no bottom

– pointers

Lifted type Boxed type Unboxed type Unlifted type

kind * kind #

Primitive Types (1B) 15 Young Won Lim
6/12/20

Unboxed types

cannot have thunks

since thunks are pointers to data

telling you how to produce the value

cannot exploit laziness

really just hold values.

they can be faster.

https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

Applications of Unboxed types

Primitive Types (1B) 16 Young Won Lim
6/12/20

Closures always have lifted types: i.e.

any let-bound identifier in Core must have a lifted type.

Operationally, a lifted object is one that can be entered.

Only lifted types may be unified with a type variable.

Polymorphism does not play with unlifted types.

parametric type must be lifted.

Something like id 0 :: Int# does not work.

https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/type-type

Applications of lifted types

Primitive Types (1B) 17 Young Won Lim
6/12/20

Unlifted types do not have bottom as a value

This can be useful in a purely "semantic" level

(if you don't want those extra values) and

it can also facilitate more efficient implementations

by reducing costly indirections.

A GHC optimization called the worker-wrapper transformation

exploits this

https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

Applications of unlifted types

Primitive Types (1B) 18 Young Won Lim
6/12/20

Algebraic

a data type with one or more constructors,

whether declared with data or newtype.

An algebraic type is one that can be deconstructed

with a case expression.

Algebraic is NOT the same as lifted

because unboxed (and thus unlifted) tuples count as "algebraic".

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/type-type

Classifying types – Algebraic

Primitive Types (1B) 19 Young Won Lim
6/12/20

Primitive

a type is primitive iff it is a built-in type

that can't be expressed in Haskell.

Currently, all primitive types are unlifted,

but that's not necessarily the case.

(E.g. Int could be primitive.)

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/type-type

Classifying types – Primitive

Primitive Types (1B) 20 Young Won Lim
6/12/20

Primitive Boxed Lifted Algebraic

Int# Yes No No No

Array# Yes Yes No No

(# a, b #) Yes No No Yes

(a, b) No Yes Yes Yes

[a] No Yes Yes Yes

Some primitive types are unboxed, such as Int#,

whereas some are boxed but unlifted (such as Array#).

The only primitive types that we classify as algebraic

are the unboxed tuples.

Array# Boxed Unlifted pointer, no bottom

ByteArray# Unboxed Unlifted no pointer, no bottom

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/type-type

Type classification examples

Primitive types ≈

Unboxed types ≈

Unlifted types

Lifted type Boxed type

Unlifted type Unboxed type

Lifted type

Boxed type

● bottom _|_

– pointer object

Primitive Types (1B) 21 Young Won Lim
6/12/20

The Int# constructor is actually

just a normal data constructor in Haskell with a #

Int# is not a normal data type

In GHC.Prim, it's implementation is:

data Int#

● like everything else in GHC.Prim is really a lie.

● is provided by the implementation,

● is in fact a normal long int from C

https://haskell-lang.org/tutorial/primitive-haskell

Int# not normal data type

Int#

Normal data constructor

Not normal data type

Primitive Types (1B) 22 Young Won Lim
6/12/20

By convention, all unlifted types end with a #,

called the magic hash,

enabled by the MagicHash extension.

examples include Char# and Int#.

to distinguish unboxed operations – functions with #

(+#) :: Int# -> Int# -> Int#

(+#) = let x = x in x

You can even have

unboxed tuples (# a, b #)

unboxed sums (# a | b #)

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Magic hash

https://haskell-lang.org/tutorial/primitive-haskell

Primitive Types (1B) 23 Young Won Lim
6/12/20

The primitive operations (PrimOps) on primitive types

e.g., (+#) is addition on Int#s

the machine-addition

– usually one instruction.

the standard + operator and Int data type

are actually themselves defined in normal Haskell code,

which provides many benefits:

standard type class support, laziness, etc.

https://downloads.haskell.org/~ghc/5.04.1/docs/html/users_guide/primitives.html

Primitive Operations

Primitive Types (1B) 24 Young Won Lim
6/12/20

primops, short for primitive operations,

are core pieces of functionality provided by GHC itself.

They are the magical, elegant boundary

between "things we do in Haskell itself"

and "things which our implementation provides."

https://haskell-lang.org/tutorial/primitive-haskell

PrimOps

Primitive Types (1B) 25 Young Won Lim
6/12/20

Look at the implementation of other functions in GHC.Prim;

they're all defined as let x = x in x.

and# :: Word# -> Word# -> Word#

and# = let x = x in x

When GHC reaches a call to one of these primops,

it automatically replaces it with the real implementation,

- an assembly code, an LLVM code, or something else

dummy implementation to give Haddock documentation

GHC.Prim is processed by Haddock more or less

like any other module; but is effectively ignored by GHC itself.

https://haskell-lang.org/tutorial/primitive-haskell

Functions in primitive operations

 let x = x in x

Primitive Types (1B) 26 Young Won Lim
6/12/20

let x = z in y

change the variable x to the expression z

wherever x occurs in the expression y

Considered as the reduction rule for the application

of the lambda abstraction \x -> y to the term z

https://haskell-lang.org/tutorial/primitive-haskell

let x = z in y

x z

y y

x z

Primitive Types (1B) 27 Young Won Lim
6/12/20

let x = x in x

these data declarations/functions are

to provide access to the raw compiler internals.

GHC.Prim exists to export these primitives,

it doesn't actually implement them or anything

(eg its code isn't actually useful).

All of that is done in the compiler.

It's meant for code that needs to be extremely optimized.

https://haskell-lang.org/tutorial/primitive-haskell

let x = x in x

x x

x x

 let x = x in x

Primitive Types (1B) 28 Young Won Lim
6/12/20

Primitive (unlifted, unboxed) types

cannot be defined in Haskell, and thus

are built into the language and compiler.

Primitive types are always unlifted; that is,

bottom cannot be a value of a primitive type

We use the convention

that primitive types, values, and operations

have a # suffix.

https://downloads.haskell.org/~ghc/5.04.1/docs/html/users_guide/primitives.html

Primitive Types

Primitive Types (1B) 29 Young Won Lim
6/12/20

Primitive values are often represented by a simple bit-pattern,

such as Int#, Float#, Double#.

But Array# is not necessarily the case:

a primitive value might be represented

by a pointer to a heap-allocated object. …. (Boxed)

Examples include Array#, the type of primitive arrays.

Primitive Boxed Lifted Algebraic

Int# Yes No No No

Array# Yes Yes No No

(# a, b #) Yes No No Yes

https://downloads.haskell.org/~ghc/5.04.1/docs/html/users_guide/primitives.html

Primitive Values

Int#

Array#

(# a, b #)

Primitive

Boxed Arrays

Unboxed Tuples

Primitive types ≈

Unboxed types ≈

Unlifted types

Primitive Types (1B) 30 Young Won Lim
6/12/20

--boxed.hs
fac :: Int -> Int
fac 0 = 1
fac n = n * fac (n - 1)

main = print (fac 10)

--unboxed.hs
import GHC.Exts
fac :: Int# -> Int#
fac 0# = 1#
fac n = n *# fac (n -# 1#)

main = print (I# (fac 10#))

can’t compute fac(500) … overflow

https://moserei.de/2012/04/03/haskell-boxed-vs-unboxed.html

Primitive types are faster

$ ghc boxed.hs
$ ghc -XMagicHash unboxed.hs
$ time ./boxed
$ time ./unboxed

The language extension -XMagicHash allows
"#" as a postfix modifier to identifiers.

in GHC.Exts

data Int
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1].
The exact range by using minBound and maxBound

Constructors
I# Int# I#(500#)

500# :: Int#
I#(500#) :: Int

Primitive Types (1B) 31 Young Won Lim
6/12/20

cannot pass a primitive value to a polymorphic function or

cannot store a primitive value in a polymorphic data type.

cannot use a primitive value in a list type.

lists of primitive integers are not possible : [Int#]

polymorphic arguments and constructor fields

are assumed to be pointers:

Nevertheless, A numerically-intensive program

using unboxed types can go a lot faster

than its “standard” counterpart

https://downloads.haskell.org/~ghc/5.04.1/docs/html/users_guide/primitives.html

Restrictions on Primitive Types (1)

Primitive Types (1B) 32 Young Won Lim
6/12/20

polymorphic arguments and constructor fields

are assumed to be pointers:

If an unboxed integer is used in such fields

the garbage collector would attempt

to follow an unboxed integer, dereference

leading to unpredictable space leaks.

a seq operation on the polymorphic component may attempt

to dereference the pointer, with disastrous results.

Even worse, the unboxed value might be larger than a pointer

(Double# for instance).

https://downloads.haskell.org/~ghc/5.04.1/docs/html/users_guide/primitives.html

Restrictions on Primitive Types (2)

Primitive Types (1B) 33 Young Won Lim
6/12/20

A primitive array is heap-allocated

because it is too big a value to fit in a register,

and would be too expensive to copy around;

in a sense, it is accidental that it is represented by a pointer.

If a primitive value is represented by a pointer … Array#

then the pointer really does point to that value

– no unevaluated thunks, no indirections…

– nothing can be at the other end of the pointer

 but the primitive value.

https://downloads.haskell.org/~ghc/5.04.1/docs/html/users_guide/primitives.html

Primitive Arrays

Primitive

Boxed ..… using a pointer

Unlifted … no bottom

Array#

primitive values
Int#, Float#, Double#
primitive valuesprimitive values

Primitive Types (1B) 34 Young Won Lim
6/12/20

A primitive array is heap-allocated

type Array# obj

primitive arrays of (boxed) Haskell objects obj

Primitive

Boxed ..… use a pointer

Unlifted … no bottom

type ByteArray#

primitive arrays of bytes … similar to C arrays

Primitive

Unboxed .… no pointer

Unlifted …... no bottom

https://downloads.haskell.org/~ghc/5.04.1/docs/html/users_guide/primitives.html

Primitive Arrays – Array# obj and ByteArray# (1)

Primitive Types (1B) 35 Young Won Lim
6/12/20

A primitive array is heap-allocated

type Array# obj

primitive arrays of (boxed) Haskell objects obj

type ByteArray#

primitive arrays of bytes (no pointer)

Primitive Boxed Lifted Algebraic

Int# Yes No No No

ByteArray# Yes No No No

Array# Yes Yes No No

https://downloads.haskell.org/~ghc/5.04.1/docs/html/users_guide/primitives.html

Primitive Arrays – Array# obj and ByteArray# (2)

Primitive Types (1B) 36 Young Won Lim
6/12/20

A primitive array is heap-allocated

type Array# obj …. boxed Haskell objects obj

type ByteArray# …. unboxed bytes (no pointer)

Array# obj ByteArray#

Primitive Primitive

Boxed ..… use a pointer Unboxed ….. no pointer

Unlifted … no bottom Unlifted … no bottom

https://downloads.haskell.org/~ghc/5.04.1/docs/html/users_guide/primitives.html

Primitive Arrays – Array# obj and ByteArray# (3)

Primitive Types (1B) 37 Young Won Lim
6/12/20

GHC heap contains two kinds of objects

some are just byte sequences,

other contains pointers to other objects (so called "boxes").

These segregation allows to find chains of references

when performing garbage collection and update these pointers

when memory used by heap is compacted and

objects are moved to new places.

Internal (raw) GHC's type Array# represents

a sequence of object pointers (boxes).

The Array# type is used inside Array type

which represents boxed immutable arrays.

https://en.wikibooks.org/wiki/Haskell/Libraries/Arrays

Boxed Arrays

Therefore,

Unboxed Arrays ByteArray#

Boxed Arrays Array#

Array# : sequence of pointers (boxes)

Primitive Values

Primitive Types (1B) 38 Young Won Lim
6/12/20

Unboxed arrays (defined in Data.Array.Unboxed)

are more like arrays in C

they contain just the plain values

without the extra level of indirection, … no pointer (box)

for example, an array of 1024 values of type Int32

will use only 4 kb of memory.

● indexing of such arrays can be significantly faster.

● only of plain values having a fixed size

● must be evaluated when the array is evaluated

Unboxed arrays are represented by the ByteArray# type

https://en.wikibooks.org/wiki/Haskell/Libraries/Arrays. https://wiki.haskell.org/Arrays

Unboxed Arrays

Primitive Types (1B) 39 Young Won Lim
6/12/20

Array# is more primitive than a Haskell array

– an Array# is indexed only by Int#s, starting at zero.

– unboxed but is a heap allocated object

– unboxed but is represented by

a pointer to the array itself

 not to a thunk or to bottom

– the components of an Array# are themselves are boxed

the Haskell Array interface is implemented using Array#

The type Array# obj is

the type of primitive, unpointed arrays of values of type obj.

https://downloads.haskell.org/~ghc/5.04.1/docs/html/users_guide/primitives.html

Array#

Array# : sequence of pointers (boxes)

Points to value itself
No thunks no bottom
Unboxed elements

Boxed arrays
sequence of pointers

Primitive Types (1B) 40 Young Won Lim
6/12/20

Unboxed arrays are represented by the ByteArray# type.

It's just a plain memory area in the heap, like the C's array.

ByteArray# is unboxed but unlifted

There are two primitive operations

that creates a ByteArray# of specified size

newByteArray

newPinnedByteArray

https://en.wikibooks.org/wiki/Haskell/Libraries/Arrays

ByteArray#

Primitive Types (1B) 41 Young Won Lim
6/12/20

One primitive operation allocates memory in normal heap newByteArray

and so this byte array can be moved each time

when garbage collection occurs.

This prevents converting of ByteArray#

to plain memory pointer

that can be used in C procedures

although it's still possible to pass

current ByteArray# pointer

to "unsafe foreign" procedure

if it don't try to store this pointer somewhere

https://en.wikibooks.org/wiki/Haskell/Libraries/Arrays

ByteArray# – normal heap

Primitive Types (1B) 42 Young Won Lim
6/12/20

The second primitive operation newPinnedByteArray

allocates ByteArray# of specified size

in pinned heap area,

which contains objects with fixed place.

Such byte array will never be moved by garbage collection

so it's address can be used as plain Ptr and

shared with C world.

https://en.wikibooks.org/wiki/Haskell/Libraries/Arrays

ByteArray# – pinned heap area

Primitive Types (1B) 43 Young Won Lim
6/12/20

(# e_1, ..., e_n #)

e_1 .. e_n are expressions of any type (primitive or non-primitive).

Unboxed tuples are used for

functions that need to return multiple values,

but they avoid the heap allocation of

fully-fledged tuples (boxed real tuple)

when an unboxed tuple is returned,

the components are put directly

into registers or on the stack;

https://downloads.haskell.org/~ghc/7.0.1/docs/html/users_guide/primitives.html

Unboxed tuple – multiple return value

Primitive Types (1B) 44 Young Won Lim
6/12/20

the unboxed tuple itself

does not have a composite representation.

no tuples within tuples representation

Many of the primitive operations

return unboxed tuples.

In particular, the IO and ST monads

use unboxed tuples

to avoid unnecessary allocation

during sequences of operations.

https://downloads.haskell.org/~ghc/7.0.1/docs/html/users_guide/primitives.html

Unboxed tuple – no heap allocation

Primitive Types (1B) 45 Young Won Lim
6/12/20

newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))

The first primitive is the unboxed tuple, seen in code as (# x, y #).

1. State# RealWorld

2. a

a multiple value return syntax

But not actual real tuples and

can’t be put in variables as such.

Boxed real tuple incurs heap allocation

whenever an IO action is performed,

http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/

Unboxed tuple examples

Primitive Types (1B) 46 Young Won Lim
6/12/20

 Just like values / terms can be classified into types,

types can be classified into kinds.

The values "hello" and "world" are of type String.

The values True and False are of type Bool.

Similarly, the types String and Bool are

of kind *, pronounced “star”.

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Types and Kinds

*

terms

types

kinds

"hello" "world" True False

String Bool

Primitive Types (1B) 47 Young Won Lim
6/12/20

*, pronounced "star", is

the kind of all data types all lifted inhabited type

seen as nullary type constructors, and

also called proper types in this context.

this normally includes function types

https://en.wikipedia.org/wiki/Kind_(type_theory)

* kind

Inhabitable
Lifted type

Inhabitable
Unlifted type

bottom no bottom

kind * kind #

Primitive Types (1B) 48 Young Won Lim
6/12/20

:t or:type to check the type of a term

:k or :kind to check the kind of a type.

λ> :t True

True :: Bool
 Term :: Type

 (value)

λ> :k Bool

Bool :: *
 Type ;; Kind

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

:type and :kind

Primitive Types (1B) 49 Young Won Lim
6/12/20

Kinds are like types for types

lifted inhabitable types have the kind *

’c’ :: Char :: *

Just 1 :: Maybe Int :: *

Type constructors, on the other kind, contain the arrow symbol

Maybe :: * -> *

Either :: * -> * -> *

Unlifted types are of the # kind

’c’# :: Char # :: #

Haskell High Performance Programming,, Samuli Tomason, 2016

Kind encode type representation

Inhabitable
Lifted type

Inhabitable
Unlifted type

bottom no bottom

kind * kind #

Primitive Types (1B) 50 Young Won Lim
6/12/20

In standard Haskell, all inhabited types

(types that have at least 1 value) are of kind *

Int

Int -> String

[Int]

Maybe Int

Either Int Int

each of these types has at least one term

therefore all these types are of kind *

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Inhabited types

Primitive Types (1B) 51 Young Won Lim
6/12/20

Maybe and Either are uninhabited.

But they are type constructors

There is no term of type Maybe, not even the infinite loop!

λ> x = undefined :: Maybe

<interactive>:9:18: error

 • Expecting one more argument to ‘Maybe’

λ> f x = f x :: Maybe

<interactive>:10:14: error:

 • Expecting one more argument to ‘Maybe’

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Uninhabited types

Primitive Types (1B) 52 Young Won Lim
6/12/20

Just as expressions denote values,

type expressions are syntactic terms

that denote type values (or just types).

Examples of type expressions include

the atomic types

Integer (infinite-precision integers), Char (characters),

Integer->Integer (functions mapping Integer to Integer),

the structured types

[Integer] (homogeneous lists of integers) and

(Char,Integer) (character, integer pairs).

https://www.haskell.org/tutorial/goodies.html

Terms

Primitive Types (1B) 53 Young Won Lim
6/12/20

A type constructor takes one or more type arguments,

and produces a data type when enough arguments are supplied,

i.e. it supports partial application thanks to currying.

This is how Haskell achieves parametric types.

For instance, the type [] is a type constructor -

it takes a single argument to specify

the type of the elements of the list.

Hence, [Int], [Float] and even [[Int]] are

valid applications of the [] type constructor.

https://en.wikipedia.org/wiki/Kind_(type_theory)

Type Constructors with type arguments

Primitive Types (1B) 54 Young Won Lim
6/12/20

a nullary / unary type constructor (or simply a type).

has zero / one argument

data Bool = True | False

a nullary type constructor … Bool

two nullary data constructors … True and False

data Tree a = Tip | Node a (Tree a) (Tree a)

a unary type constructor … Tree

a nullary data constructors … Tip

a unary data constructors … Node

https://wiki.haskell.org/Constructor

Type Constructors and data constructors

Primitive Types (1B) 55 Young Won Lim
6/12/20

Data constructors

are first class values in Haskell and

actually have a type.

For instance, the type of the Left constructor

of the Either data type is:

data Either a b = Left a | Right b

Left :: a -> Either a b

As first class values, they may be

- passed to functions,

- held in a list,

- data elements of other algebraic data types, and so forth.

https://wiki.haskell.org/Constructor

Data constructors - first class values

Primitive Types (1B) 56 Young Won Lim
6/12/20

Data constructors are not types

they denote values.

Node a (Node a) (Node a)

It is illegal because the type is Tree, not Node.

data Tree a = Tip | Node a (Tree a) (Tree a)

https://wiki.haskell.org/Constructor

Data constructors – not types

Primitive Types (1B) 57 Young Won Lim
6/12/20

 ∗ -> ∗ is the kind of a unary type constructor,

e.g. of a list type constructor.

 ∗ -> -> ∗ ∗ is the kind of a binary type constructor (via currying),

e.g. of a pair type constructor, and also

that of a function type constructor

(not to be confused with the result of its application,

which itself is a function type, thus of kind ∗

(->) -> ∗ ∗ ∗ is the kind of a higher-order type operator

from unary type constructors to proper types.

https://en.wikipedia.org/wiki/Kind_(type_theory)

Type constructors and Kinds

Primitive Types (1B) 58 Young Won Lim
6/12/20

Haskell's kind system has just two rules:

 ∗ pronounced "type" is the kind of all lifted data types.

 k1 -> k2 is the kind of a unary type constructor,

which takes a type of kind k1 and

produces a type of kind k2

https://en.wikipedia.org/wiki/Kind_(type_theory)

Kind examples (1)

Primitive Types (1B) 59 Young Won Lim
6/12/20

[] is a type of kind -> ∗ ∗ .

Because Int has kind ∗ ,

applying type constructor [] to it

results in [Int], of kind ∗ .

The 2-tuple constructor (,) has kind -> -> ∗ ∗ ∗ ,

the 3-tuple constructor (, ,) has kind -> -> -> ∗ ∗ ∗ ∗ and so on.

https://en.wikipedia.org/wiki/Kind_(type_theory)

Kind examples (2)

Primitive Types (1B) 60 Young Won Lim
6/12/20

An inhabited type

a type which has values.

a so called proper types in Haskell)

For instance, ignoring type classes

4 is a value of type Int,

[1, 2, 3] is a value of type [Int] (list of Ints).

all inhabited lifted types are of kind *

Int and [Int] have kind ∗

any function type has kind ∗

for instance Int -> Bool or even Int -> Int -> Bool.

https://en.wikipedia.org/wiki/Kind_(type_theory)

Inhabited types with kind *

Primitive Types (1B) 61 Young Won Lim
6/12/20

all inhabited lifted types are of kind *

* is the kind of all inhabited boxed (or lifted) types.

However, in GHC’s version of Haskell,

there are also some inhabited types

that are not of kind *

unboxed / unlifted / primitive types

are of kind #

Q these are defined in the GHC.Prim module

from the ghc-prim package.

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Inhabited types with kind #

Inhabitable
Lifted type

Inhabitable
Unlifted type

bottom no bottom

Primitive ≈

Unboxed ≈

Unlifted types

kind * kind #

Primitive Types (1B) 62 Young Won Lim
6/12/20

So ByteArray#, the type of raw blocks of memory, is

boxed because it is represented as a pointer, unboxed

but unlifted because bottom is not an element.

> undefined :: ByteArray#

Error: Kind incompatibility when matching types:

 a0 :: *

 ByteArray# :: #

Therefore it appears that the old User's Guide definition is

more accurate than the GHC Commentary one:

* is the kind of lifted types.

(And, conversely, # is the kind of unlifted types.)

https://stackoverflow.com/questions/27095011/what-exactly-is-the-kind-in-haskell

* kind and # kind

Unboxed Arrays ByteArray#

Boxed Arrays Array#

Primitive Types (1B) 63 Young Won Lim
6/12/20

Each unlifted type has a kind

that describes its runtime representation.

Is this a pointer to something in the heap?

Is it a signed/unsigned word-sized value?

The compiler then uses that type’s kind

to decide which machine code it needs to produce -

this is called “kind-directed compilation”.

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Kind and runtime representation

Primitive Types (1B) 64 Young Won Lim
6/12/20

GHC maintains a property that

the kind of all inhabited types tells us

the runtime representation of values of that type.

(as distinct from type constructors or type-level data)

Inhabited types – instance

kind tells the runtime representation

of values of that type

http://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-Exts.html#t:MutVar-35-

Runtime representation of values

Primitive Types (1B) 65 Young Won Lim
6/12/20

Starting with GHC8, types and kinds have been unified.

a single indexed type of types

data TYPE a :: RuntimeRep -> *

data TYPE (a :: RuntimeRep) :: RuntimeRep -> Type

 a single type a kind

indexed by a

 * -> *

Haskell High Performance Programming,, Samuli Tomason, 2016

Unified types and kinds

Primitive Types (1B) 66 Young Won Lim
6/12/20

Recently, the kind * is often referred to as Type

(do not confuse with TYPE r).

these are synonyms for now,

and the plan is to gradually phase out * in favour of Type.

data TYPE a :: RuntimeRep -> *

data TYPE (a :: RuntimeRep) :: RuntimeRep -> Type

here, all inhabited types are of kind *

not just inhabited lifted types

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

The kind * - the synonym Type

Old usage

Kind *

for all lifted inhabitable types

Kind #

for all unlifted inhabitable types

Recent usage

Kind * or Type

for all inhabitable types

either lifted or unlifted

Primitive Types (1B) 67 Young Won Lim
6/12/20

TYPE IntRep has the kind of unlifted integers,

TYPE FloatRep has the kind of unlifted floats, etc.

TYPE LiftedRep has the kind for all lifted types -

in fact, the * kind is nothing more than a synonym for TYPE LiftedRep

TYPE r enables us to abstract

not only over all unlifted types,

but also over lifted ones.

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Kind TYPE r

Primitive Types (1B) 68 Young Won Lim
6/12/20

True :: Bool :t True to check the type of a term

Bool :: * :k Bool to check the kind of a type.

data TYPE (a :: RuntimeRep) :: RuntimeRep -> Type

type Type = TYPE LiftedRep

The kind of types with lifted values. For example

Int :: Type

Int :: TYPE LiftedRep

https://hackage.haskell.org/package/ghc-prim-0.6.1/docs/GHC-Types.html#v:LiftedRep

Kind TYPE LiftedRep

type :: kind
term :: type

Primitive Types (1B) 69 Young Won Lim
6/12/20

Here are some examples:

Kinds TYPE IntRep TYPE WordRep TYPE (TupleRep ‘[IntRep, WordRep])

Types Int# Word# Char# (# Int#, Char# #)

Terms 3# 4## ’a’# (# 3#, ‘a’# #)

 TupleRep [RuntimeRep] -- ^ An unboxed tuple of the given reps

 IntRep -- ^ signed, word-sized value

 WordRep -- ^ unsigned, word-sized value

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Inhabited types with kind TYPE r

Primitive Types (1B) 70 Young Won Lim
6/12/20

This datatype encodes the choice of runtime value.

Note that TYPE is parameterised by RuntimeRep;

data TYPE a :: RuntimeRep -> *

data TYPE (a :: RuntimeRep) :: RuntimeRep -> Type

type Type = TYPE LiftedRep

this is precisely what we mean by the fact

that a type's kind encodes the runtime representation.

A type synonym is a new name for an existing type.

type MyChar = Char

http://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-Exts.html#t:MutVar-35-

RuntimeRep – TYPE

Primitive Types (1B) 71 Young Won Lim
6/12/20

The single data type Type is used to represent

● types (possibly of higher kind);

e.g. [Int], Maybe

● kinds (which classify types and coercions);

e.g. (* -> *), T :=: [Int].

● sorts (which classify types);

e.g. TY, CO

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/type-type

The data type Type

Primitive Types (1B) 72 Young Won Lim
6/12/20

Haskell has a very powerful and expressive

static type system.

The Haskell kind system has been extended

to overcome an unsatisfactorily inexpressiveness

in programming at the type level,

https://gitlab.haskell.org/ghc/ghc/-/wikis/kind-system

Kind Rationale

Note: As of June 2013, this page is rather out of date. This page is currently a WIP ..

Primitive Types (1B) 73 Young Won Lim
6/12/20

● Data constructors Type constructors

● Type signatures Kind signatures

● High Order Functions Higher Kinded Types

● Other kinds except *

● Unboxed / Unlifted types

● Constraints

● Datatype Promotion

● GHC.TypeList

● Kind polymorphism

● Levity polymorphism

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Tools for programming in type level

Primitive Types (1B) 74 Young Won Lim
6/12/20

VecRep VecCount VecElem a SIMD vector type

TupleRep [RuntimeRep] An unboxed tuple of the given reps

SumRep [RuntimeRep] An unboxed sum of the given reps

LiftedRep lifted; represented by a pointer

UnliftedRep unlifted; represented by a pointer

IntRep signed, word-sized value

WordRep unsigned, word-sized value

Int64Rep signed, 64-bit value (on 32-bit only)

Word64Rep unsigned, 64-bit value (on 32-bit only)

AddrRep A pointer, but not to a Haskell value

FloatRep a 32-bit floating point number

DoubleRep a 64-bit floating point numbe

http://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-Exts.html#t:MutVar-35-

RuntimeRep – constructors

Primitive Types (1B) 75 Young Won Lim
6/12/20

the kind TYPE r

this kind is parameterised over r :: RuntimeRep,

RuntimeRep

describes a type’s runtime representation

 can be one of the following:

data RuntimeRep = VecRep VecCount VecElem -- a SIMD vector type

 | TupleRep [RuntimeRep] -- An unboxed tuple of the given reps

 | SumRep [RuntimeRep] -- An unboxed sum of the given reps

 | LiftedRep -- lifted; represented by a pointer

 | UnliftedRep -- unlifted; represented by a pointer

 | IntRep -- signed, word-sized value

 | WordRep -- unsigned, word-sized value

 | Int64Rep -- signed, 64-bit value (on 32-bit only)

 | Word64Rep -- unsigned, 64-bit value (on 32-bit only)

 | AddrRep -- A pointer, but /not/ to a Haskell value

 | FloatRep -- a 32-bit floating point number

 | DoubleRep -- a 64-bit floating point number

https://diogocastro.com/blog/2018/10/17/haskells-kind-system-a-primer/

Kind TYPE r

Primitive Types (1B) 76 Young Won Lim
6/12/20

data Array# (a :: Type) :: Type -> TYPE UnliftedRep

data ByteArray# :: TYPE UnliftedRep

data Char# :: TYPE WordRep

data Double# :: TYPE DoubleRep

data Float# :: TYPE FloatRep

data Int# :: TYPE IntRep

data Int32# :: TYPE IntRep

data Int64# :: TYPE Int64Rep

data TYPE (a :: RuntimeRep) :: RuntimeRep -> Type

http://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-Exts.html#t:MutVar-35-

RuntimeRep – boxed values

Primitive Types (1B) 77 Young Won Lim
6/12/20

A closure, the opposite of a combinator,

is a function that makes use of free variables in its definition.

It 'closes' around some portion of its environment. for example

f x = (\y -> x + y)

f returns a closure, because the variable x,

which is bound outside of the lambda abstraction

is used inside its definition.

An interesting side note: the context in which x was bound

shouldn't even exist anymore, and wouldn't,

had the lambda abstraction not closed around x.

https://stackoverflow.com/questions/39985296/what-are-lifted-and-unlifted-product-types-in-haskell

Closure (1)

Primitive Types (1B) 78 Young Won Lim
6/12/20

 mkAdder :: Int -> (Int -> Int)

 mkAdder y = \x -> x + y

mkAdder takes an Int as an argument, and

returns a function (Int -> Int) as a result.

the returned function \x -> x + y

has a free variable (y) which refers to its environment.

calling mkAdder with a particular argument (say, 3),

returns a closure, containing the function \x -> x + y

together with the environment (y = 3).

https://mail.haskell.org/pipermail/beginners/2009-July/002067.html

Closure (2)

Primitive Types (1B) 79 Young Won Lim
6/12/20

mkAdder is really just (+), written in a funny way!

So this isn't a contrived example;

closures are quite fundamental in Haskell.

https://mail.haskell.org/pipermail/beginners/2009-July/002067.html

Closure (3)

Primitive Types (1B) 80 Young Won Lim
6/12/20

There are two distinct meanings of the word "combinator"

The first is a narrow, technical meaning, namely:

A function or definition with no free variables.

A "function with no free variables" is a pure lambda-expression

that refers only to its arguments, like

 \a -> a

 \a -> \b -> a

 \f -> \a -> \b -> f b a

and so on. The study of such things is called combinatory logic.

https://wiki.haskell.org/Combinator

Combinator (1)

Primitive Types (1B) 81 Young Won Lim
6/12/20

The second meaning of "combinator" is a more informal sense

referring to the combinator pattern,

a style of organizing libraries centered around

the idea of combining things.

This is the meaning of "combinator"

which is more frequently encountered in the Haskell community.

Usually there is some type T, some functions

for constructing "primitive" values of type T, and

some "combinators" which can combine values of type T

in various ways to build up more complex values of type T.

https://wiki.haskell.org/Combinator

Combinator (1)

Primitive Types (1B) 82 Young Won Lim
6/12/20

A let binding is very similar to a where binding.

A where binding is a syntactic construct that binds variables

at the end of a function and the whole function

(or a whole pattern-matching subpart)

can see these variables, including all the guards

A let binding binds variables anywhere and is an expression itself,

but its scope is tied to where the let expression appears.

So if it’s defined within a guard, its scope is local and

it will not be available for another guard.

But it can also take global scope over all pattern-matching clauses

of a function definition if it is defined at that level.

https://chercher.tech/haskell/let-bindings

Let binding

Primitive Types (1B) 83 Young Won Lim
6/12/20

A case expression must have at least one alternative

and each alternative must have at least one body.

Each body must have the same type,

and the type of the whole expression is that type.

aaa x = case x of

 1 -> "A"

 2 -> "B"

 3 -> "C"

Input: aaa 3

Output: "C"

http://zvon.org/other/haskell/Outputsyntax/caseQexpressions_reference.html

Case expression

Primitive Types (1B) 84 Young Won Lim
6/12/20

A value is polymorphic if there is more than one type it can have.

Polymorphism is widespread in Haskell and

is a key feature of its type system.

Parametric polymorphism refers to

when the type of a value contains one or more (unconstrained)

type variables, so that the value may adopt any type

that results from substituting those variables with concrete types.

Ad-hoc polymorphism refers to

when a value is able to adopt any one of several types

because it, or a value it uses, has been given a separate definition

for each of those types.

https://wiki.haskell.org/Polymorphism

Polymorphism

Primitive Types (1B) 85 Young Won Lim
6/12/20

the function id :: a -> a

- contains an unconstrained type variable a

the empty list [] :: [a] belongs to every list type

the polymorphic function map :: (a -> b) -> [a] -> [b]

 may operate on any function type.

if a type variable appears multiple times,

it must take the same type everywhere it appears,

the result type of id must be the same as the argument type,

the input and output types of the function given to map

must match up with the list types.

https://wiki.haskell.org/Polymorphism

Parametric Polymorphism

id :: a -> a

Char -> Char

Integer -> Integer

(Bool -> Maybe Bool) ->

(Bool -> Maybe Bool)

Primitive Types (1B) 86 Young Won Lim
6/12/20

For example, the + operator essentially

does something entirely different

when applied to floating-point values as compared to

when applied to integer values

Most languages support at least some ad-hoc polymorphism,

if a type can be compared for equality

then an instance declaration of the Eq class is given

if the behaviour of the == operator on the given type is specified,

all sorts of functions defined using that operator can be accessed

checking if a value of the type is present in a list, or

looking up a corresponding value in a list of pairs.

https://wiki.haskell.org/Polymorphism

Ad-hoc Polymorphism

Primitive Types (1B) 87 Young Won Lim
6/12/20

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87

