
Young Won Lim
8/20/23

Type Annotation (1A)



Young Won Lim
8/20/23

 Copyright (c)  2023 - 2015  Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com


Lambda Function 3 Young Won Lim
8/20/23

Type annotation (1)

In the programming language such as C or C++, 
the data type must be declared before using a variable

declare an integer in C.

int a;

then we know that the variable "a" is of type integer. 
then we would assign an integer to a.

a = 3;

the data type is not declared explicitly in Python

a = 3
print(type(a))

<class 'int'>

https://python-course.eu/python-tutorial/type-annotations.php



Lambda Function 4 Young Won Lim
8/20/23

Type annotation (2)

As a is assigned an integer, 
it belongs to the integer class itself, 
without us having to say beforehand

a = int() 

the type of a would change accordingly, 
when it is assigned values from other data types.

a = 'hello'
print(type(a))

<class 'str'>

a = 3.14
print(type(a))

<class 'float'>

If Python is capable of determining the types itself, 
why are even type annotations useful?

https://python-course.eu/python-tutorial/type-annotations.php



Lambda Function 5 Young Won Lim
8/20/23

Type annotation (3)

Why Type Annotations

● identify where the type errors stem from.
● By using an IDE, the type annotations would allow you 

to access the built-in functions easier. 
● When a variable is of no type, you cannot automatically access the built-in functions 
● syntax-highlighting as a warning before you even run your code.
● more readable & understandable code. 

https://python-course.eu/python-tutorial/type-annotations.php



Lambda Function 6 Young Won Lim
8/20/23

Type annotation (4)

How Type Annotations

Example 1

the ord() function takes a string as input 
and converts it into an integer by its the ASCII values 

def my_function(a:int,b:str)->int:
        return a + ord(b)

print(my_function(3,'a'))

100

‘a’ = 97 (0x61)

https://python-course.eu/python-tutorial/type-annotations.php



Lambda Function 7 Young Won Lim
8/20/23

Type annotation (5)

my_function() works perfectly, 
since b has to be of type string and 
‘a’ is of type string. 

print(my_function(3,5))

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
/tmp/ipykernel_19492/488431691.py in <module>
----> 1 print(my_function(3,5))

/tmp/ipykernel_19492/2046822703.py in my_function(a, b)
      1 def my_function(a:int,b:str)->int:
----> 2     return a + ord(b)

TypeError: ord() expected string of length 1, but int found

Here we receive a TypeError because we wrote an integer, 
and not a string for b. Since ord() needs a string to function, 
the code doesn't work.

https://python-course.eu/python-tutorial/type-annotations.php



Lambda Function 8 Young Won Lim
8/20/23

Type annotation (6)

print(my_function('a','a'))

OUTPUT:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
/tmp/ipykernel_19492/1936946746.py in <module>
----> 1 print(my_function('a','a'))

/tmp/ipykernel_19492/2046822703.py in my_function(a, b)
      1 def my_function(a:int,b:str)->int:
----> 2     return a + ord(b)

TypeError: can only concatenate str (not "int") to str

here we receive another TypeError 
because we wrote a string ’a’, and not an integer for a. 

qhile b  (‘a’) is sucessfully converted into an integer by the ord() function, 
it is yet not possible to concatenate strings and integers.

https://python-course.eu/python-tutorial/type-annotations.php

def my_function(a:int,b:str)->int:
        return a + ord(b)



Lambda Function 9 Young Won Lim
8/20/23

Type annotation (7)

print(my_function(4.2,'a'))

101.2

‘a’ = 97 (0x61)

Interestingly our function runs now, 
yet our argument a is of type float 
and not integer as we declared at the very beginning.

https://python-course.eu/python-tutorial/type-annotations.php

def my_function(a:int,b:str)->int:
        return a + ord(b)



Lambda Function 10 Young Won Lim
8/20/23

Type annotation (7)

Example 2:

how the functions can be given variables 
that can work without raising any errors. 
but still be very problematic.

def add_together(a:int,b:str)->int:
        return a + b 

def last_digit(a:int)->int:
        return a % 10

our_sum = add_together(38,57)
print(last_digit(our_sum))

5

https://python-course.eu/python-tutorial/type-annotations.php

def my_function(a:int,b:str)->int:
        return a + ord(b)



Lambda Function 11 Young Won Lim
8/20/23

Type annotation (8)

our_sum = add_together(38,57)
print(last_digit(our_sum))

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
/tmp/ipykernel_19492/576833914.py in <module>
----> 1 print(return_the_last_digit(our_sum))

/tmp/ipykernel_19492/1809188113.py in return_the_last_digit(a)
      1 def return_the_last_digit(a:int)->int:
----> 2     return a % 10

TypeError: not all arguments converted during string formatting

https://python-course.eu/python-tutorial/type-annotations.php



Lambda Function 12 Young Won Lim
8/20/23

Type annotation (9)

How can we run a TypeError check 
before we actually run the program?

By installing mypy and running it 
before you run your code, 
you could avoid type errors. 

Mypy checks your annotations and 
ives a warning if a function is initialized 
with the wrong datatype.

Mypy

All in all, type annotations are very useful and 
it can save a lot of time for you and 
it can make your code readable 
or both yourself and the others.

https://python-course.eu/python-tutorial/type-annotations.php



Lambda Function 13 Young Won Lim
8/20/23

Type annotation (1-1)

This vague styling structure comes partially 
from Python being a dynamic typed language, 
meaning that types are associated 
with the variable's value at a point in time,
not the variable itself. 

This language attribute means 
that variables 
can take on any value at any point and 
are only type checked 

when an attribute or method is accessed.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 14 Young Won Lim
8/20/23

Type annotation (1-2)

Consider the following code. In Python, this is acceptable.

age = 21
print(age)  # 21
age = 'Twenty One'
print(age)  # Twenty One

In the code above, the value of age is first an int (integer), 
but then we change it to a str (string) later on. 

Every variable can represent 
any value at any point in the program. 

That is the power of dynamic typing! 

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 15 Young Won Lim
8/20/23

Type annotation (2)

Let's do the same thing in a statically typed language, like Java.

int age = 21;
System.out.print(age);
age = "Twenty One";
System.out.print(age);

We end up with the following error 
because we are trying to assign "Twenty One" (a String) 
to the variable age that was declared as an int.

Error: incompatible types: String cannot be converted to int

To work in a statically typed language, 
we would have to use two separate variables and 
use some assistive type-conversion method, 
such as the standard toString() method.

int ageNum = 21;
System.out.print(ageNum);
String ageStr = ageNum.toString();
System.out.print(ageStr);

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 16 Young Won Lim
8/20/23

Type annotation (3)

This conversion works, but I really like the flexibility of Python, 
and I don't want to sacrifice its positive attributes 
as a dynamic, readable, and beginner-friendly language 
just because types are difficult to reason about in most cases. 

With this said, I also enjoy the readability of statically typed languages 
for other programmers to know what type a specific variable should be! 

So, to get the best of both worlds, 
Python 3.5 introduced type annotations.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 17 Young Won Lim
8/20/23

Type annotation (4-1)

What Are Type Annotations?

Type Annotating is a new feature added in PEP 484 
that allows adding type hints to variables. 

They are used to inform someone reading the code 
what the type of a variable should be expected. 

This hinting brings a sense of statically typed control 
to the dynamically typed Python. 

This is accomplished by adding a given type declaration 
after initializing/declaring a variable or method.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 18 Young Won Lim
8/20/23

Type annotation (4-2)

Why & How to Use Type Annotations

A helpful feature of statically typed languages is 
that the value of a variable can always be known 
within a specific domain. 

For instance, we know string variables can only be strings, 
ints can only be ints, and so on. 

With dynamically typed languages, 
its basically anyone's guess 
as to what the value of a variable is or should be.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 19 Young Won Lim
8/20/23

Type annotation (5-1)

Annotating Variables

When annotating variables, it can be defined in the form

my_var: <type> = <value>

to create a variable named my_var 
of the given type with the given value.

adds the : int when we declare the variable 
to show that the variable age should be of type int.

age: int = 5
print(age)

# 5

I

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 20 Young Won Lim
8/20/23

Type annotation (5-2)

It is important to note that type annotations 
do not affect the program's runtime in any way. 

These hints are ignored by the interpreter and 
are solely used to increase the readability 
for other programmers and yourself. 

But again, these type hints are not enforced are runtime, 
so it is still up to the caller method / function / block 
to ensure proper types are used.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 21 Young Won Lim
8/20/23

Type annotation (6-1)

Annotating Functions & Methods

We can use the expected variable's type 
when writing and calling functions 
to ensure we are passing and using parameters correctly. 

If we pass a str when the function expects an int, 
then it most likely will not work in the way we expected.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 22 Young Won Lim
8/20/23

Type annotation (6-2)

Consider the following code below:

def mystery_combine(a, b, times):
        return (a + b) * times

We know what that function is doing, 

we do not know what a, b, or times are supposed to be? 

we can call the mystery_combine 
with different types of arguments.

print(mystery_combine(2, 3, 4))
# 20

print(mystery_combine('Hello ', 'World! ', 4)) 
# Hello World! Hello World! Hello World! Hello World!

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 23 Young Won Lim
8/20/23

Type annotation (7)

# Our original function
def mystery_combine(a, b, times):
        return (a + b) * times

print(mystery_combine(2, 3, 4))
# 20

print(mystery_combine('Hello ', 'World! ', 4))
# Hello World! Hello World! Hello World! Hello World!

what we pass the function, 
two totally different results. 

With integers we get some nice PEMDAS math, 
but when we pass strings to the function, 
we can see that the first two arguments are concatenated, 
and that resulting string is multiplied times times.

Using type annotations, we can clear up 
the purpose of this code

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 24 Young Won Lim
8/20/23

Type annotation (8-1)

def mystery_combine(a, b, times):
        return (a + b) * times

def mystery_combine(a:str, b:str, times:int)->str:
        return (a + b) * times

We have added : str, : str, and : int 
to the function's parameters 
to show what types they should be. 

make clearer to read, reveal the purpose 

We also added the -> str to show 
that this function will return a str. 

Using -> <type>, we can more easily show 
the return value types of any function or method, 
to avoid confusion by future developers!

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 25 Young Won Lim
8/20/23

Type annotation (8-2)

def mystery_combine(a, b, times):
        return (a + b) * times

def mystery_combine(a:str, b:str, times:int)->str:
        return (a + b) * times

Again, we can still call our code in the first, incorrect way, 
but hopefully with a good review, 
a programmer will see that they are using the function 
in a way it was not intended. 

print(mystery_combine(2, 3, 4))
# 20

print(mystery_combine('Hello ', 'World! ', 4))
# Hello World! Hello World! Hello World! Hello World!

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 26 Young Won Lim
8/20/23

Type annotation (8-3)

Type annotations and hints are incredibly useful 
for teams and multi-developer Python applications. 
It removes most of the guesswork from reading code!

We can extend this one step further 
to handle default argument values. 

We have adapted mystery_combine below 
to use 2 as the default argument value of the times parameter. 

This default value gets placed after the type hint.

def mystery_combine(a, b, times):
        return (a + b) * times

def mystery_combine(a:str, b:str, times:int)->str:
        return (a + b) * times

def mystery_combine(a:str, b:str, times:int = 2)->str:
        return (a + b) * times

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 27 Young Won Lim
8/20/23

Type annotation (9)

Type Hints with Methods

Type hints work very similarly with methods, 
although it's pretty common
to leave off the type hint for self, 
since that is implied to be 
an instance of the containing class itself.

class WordBuilder:

    suffix = 'World'

    def mystery_combine(self, a: str, times: int) -> str:
        return (a, self.suffix) * times

very similar to the previous function-based example, 
except we have dropped the b parameter 
for a suffix attribute that is on the WordBuilder class. 
Note that we don't need to explicitly add : str to the suffix definition 
because most code editors will look at the default value for the expected type.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 28 Young Won Lim
8/20/23

Type annotation (10)

Available Types

The previous section handles many basic use cases of type annotations, but nothing is ever just basic, 
so let's break down some more complex cases and show the common types.
Basic Types

The most basic way to annotate objects is with the class types themselves. You can provide anything 
that satisfies a type in Python.

# Built-in class examples
an_int: int = 3
a_float: float = 1.23
a_str: str = 'Hello'
a_bool: bool = False
a_list: list = [1, 2, 3]
a_set: set = set([1, 2, 3])  # or {1, 2, 3}
a_dict: dict = {'a': 1, 'b': 2}

# Works with defined classes as well
class SomeClass:
    pass

instance: SomeClass = SomeClass()

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 29 Young Won Lim
8/20/23

Type annotation (11)

Complex Types

Use the typing module for anything more than a primitive in Python. It describes types to hint any 
variable of any type more detailed. It comes preloaded with type annotations such as Dict, Tuple, List, 
Set, and more! In the example above, we have a list-hinted variable, but nothing defines what should 
be in that list. The typing containers provided by the typing module allow us to specify the desired types 
more correctly.

Then you can expand your type hints into use cases like the example below.

from typing import Sequence

def print_names(names: Sequence[str]) -> None:
    for student in names:
        print(student)

This will tell the reader that names should be a Sequence of strs, such as a list, set, or tuple of strings.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 30 Young Won Lim
8/20/23

Type annotation (12)

Dictionaries work in a similar fashion.

from typing import Dict

def print_name_and_grade(grades: Dict[str, float]) -> None:
    for student, grade in grades.items():
        print(student, grade)

The Dict[str, float] type hint tells us that grades should be a dictionary where the keys are strings and 
the values are floats.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 31 Young Won Lim
8/20/23

Type annotation (13)

Type Aliases

If you want to work with custom type names, you can use type aliases. For example, let's say you are 
working with a group of \[x, y\] points as Tuples, then we could use an alias to map the Tuple type to a 
Point type.

from typing import List, Tuple

# Declare a point type annotation using a tuple of ints of [x, y]
Point = Tuple[int, int]

# Create a function designed to take in a list of Points
def print_points(points: List[Point]):
    for point in points:
        print("X:", point[0], "  Y:", point[1])

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 32 Young Won Lim
8/20/23

Type annotation (14)

Multiple Return Values

If your function returns multiple values as a tuple, wrap the expected output as a typing.Tuple[<type 1>, 
<type 2>, ...]

from typing import Tuple

def get_api_response() -> Tuple[int, int]:
    successes, errors = ... # Some API call
    return successes, errors

The code above returns a tuple of the number of successes and errors from the API call, where both 
values are integers. By using Tuple[int, int], we are indicating to a developer reading this that the 
function does return multiple int values.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 33 Young Won Lim
8/20/23

Type annotation (15)

Multiple Possible Return Types

If your function has a value that can take on a different number of forms, you can use the 
typing.Optional or typing.Union types.

Use Optional when the value will be be either of the given type or None, exclusively.

from typing import Optional

def try_to_print(some_num: Optional[int]):
    if some_num:
        print(some_num)
    else:
        print('Value was None!')

The above code indicates that some_num can either be of type int or None.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 34 Young Won Lim
8/20/23

Type annotation (16)

Use Union when the value can take on more specific types.

from typing import Union

def print_grade(grade: Union[int, str]):
    if isinstance(grade, str):
        print(grade + ' percent')
    else:
        print(str(grade) + '%')

The above code indicates that grade can either be of type int or str. This is helpful in our example of 
printing grades so that we can print either 98% or Ninety Eight Percent, with no unexpected 
consequences.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 35 Young Won Lim
8/20/23

Type annotation (17)

Working with Dataclasses

Dataclasses are a convenience class that provide automatically generated __init__ and __repr__ 
methods to an appropriate class. It reduces the amount of boilerplate code needed to create new 
classes that take in multiple keyword arguments to their constructor. These dataclasses use type hints 
and class-level attribute definitions to determine what keyword arguments and associated values can 
be passed to __init__ and printed by __repr__.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 36 Young Won Lim
8/20/23

Type annotation (18)

The following code is directly from the dataclasses documentation. It defines an InventoryItem that has 
three attributes defined on it, all using type hints; a name, unit_price, and quantity_on_hand .

from dataclasses import dataclass

@dataclass
class InventoryItem:
    """Class for keeping track of an item in inventory."""
    name: str
    unit_price: float
    quantity_on_hand: int = 0

    def total_cost(self) -> float:
        return self.unit_price * self.quantity_on_hand

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Lambda Function 37 Young Won Lim
8/20/23

Type annotation (19)

Using the type hints and @dataclass decorator, new InventoryItems can be created with the following 
code, and the dataclass will take care of mapping the keyword arguments to attributes.

common_item = InventoryItem(name='My Item', unit_price=2.99, quantity_on_hand=60)
other_item = InventoryItem(name='My Item', unit_price=2.99)  # uses default value of 10 quantity

An important note to @dataclasses is that any class attribute defined with a default value must be 
declared after any attributes without a default value. This means quantity_on_hand has to be declared 
after name and unit_price. This can get interesting when working with dataclasses that extend from a 
parent dataclass, so be careful, but the Python interpreter should catch these issues for you.

https://dev.to/dan_starner/using-pythons-type-annotations-4cfe



Young Won Lim
8/20/23

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4]  C Language Express, I. K. Chun


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

