## Vector Calculus Identities (H.1)

## 20160426

Copyright (c) 2015 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Based on
https://en.wikipedia.org/wiki/Dyadics

## Gradient of a vector [ edit]

See also: covariant derivative
Since the total derivative of a vector field is a linear mapping from vectors to vectors, it is a tensor quantity.

In rectangular coordinates, the gradient of a vector field $\mathbf{f}=\left(f_{1}, f_{2}, f_{3}\right)$ is defined by

$$
\nabla \mathbf{f}=g^{j k} \frac{\partial f^{i}}{\partial x_{j}} \mathbf{e}_{i} \mathbf{e}_{k}
$$

where the Einstein summation notation is used and the product of the vectors $\mathbf{e}_{i}, \mathbf{e}_{k}$ is a dyadic tensor of type $(2,0)$, or the Jacobian matrix

$$
\frac{\partial f_{i}}{\partial x_{j}}=\frac{\partial\left(f_{1}, f_{2}, f_{3}\right)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}
$$

In curvilinear coordinates, or more generally on a curved manifold, the gradient involves Christoffel symbols:

$$
\nabla \mathbf{f}=g^{j k}\left(\frac{\partial f^{i}}{\partial x_{j}}+\Gamma_{j l}^{i} f^{l}\right) \mathbf{e}_{i} \mathbf{e}_{k}
$$

where $g^{j k}$ are the components of the metric tensor and the $\mathbf{e}_{i}$ are the coordinate vectors.
Expressed more invariantly, the gradient of a vector field $\mathbf{f}$ can be defined by the Levi-Civita connection and metric tensor:[1]

$$
\nabla^{a} \mathbf{f}^{b}=g^{a c} \nabla_{c} \mathbf{f}^{b}
$$

where $\nabla_{c}$ is the connection.

Sacobian Matrix

$$
\begin{aligned}
\vec{f}=\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right) & \left.\begin{array}{rl}
J=\frac{d \vec{f}}{d \vec{x}} & =\left[\begin{array}{lll}
\frac{d \vec{f}}{d x_{1}} & \frac{d \vec{f}}{d x_{2}} & \frac{d \vec{f}}{d x_{3}}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\frac{d f_{1}}{d x_{1}} & \frac{d f_{1}}{d x_{2}} & \frac{d f_{1}}{d x_{3}} \\
\frac{d f_{2}}{d x_{1}} & \frac{d f_{2}}{d x_{2}} & \frac{d f_{2}}{d x_{3}} \\
\frac{d f_{3}}{d x_{1}} & \frac{d f_{3}}{d x_{2}} & \frac{d f_{3}}{d x_{3}}
\end{array}\right] \\
J_{i}^{j}=\frac{\partial f_{i}}{\partial x_{j}} & i \rightarrow\left[\begin{array}{cc}
j & \downarrow \\
\square
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
J_{i}^{j}=\frac{\partial f_{i}}{\partial x_{j}} & i=2
\end{aligned} \quad \rightarrow\left[\begin{array}{lll}
\frac{d f_{2}}{d x_{1}} & \frac{d f_{2}}{d x_{2}} & \frac{d f_{2}}{d x_{3}} \\
\frac{d f_{3}}{d x_{1}} & \frac{d f_{3}}{d x_{2}} & \frac{d f_{3}}{d x_{3}}
\end{array}\right]
$$

https://en.wikipedia.org/wiki/Vector_calculus_identities

$$
\begin{aligned}
\nabla \cdot(\mathbf{A} \times \mathbf{B}) & =(\nabla \times \mathbf{A}) \cdot \mathbf{B}-\mathbf{A} \cdot(\nabla \times \mathbf{B}) \\
\nabla \times(\mathbf{A} \times \mathbf{B}) & =\mathbf{A}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{A})+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B} \\
& =(\nabla \cdot \mathbf{B}+\mathbf{B} \cdot \nabla) \mathbf{A}-(\nabla \cdot \mathbf{A}+\mathbf{A} \cdot \nabla) \mathbf{B} \\
& =\nabla \cdot\left(\mathbf{B A}^{\mathrm{T}}\right)-\nabla \cdot\left(\mathbf{A B}^{\mathrm{T}}\right) \\
& =\nabla \cdot\left(\mathbf{B A}^{\mathrm{T}}-\mathbf{A} \mathbf{B}^{\mathrm{T}}\right)
\end{aligned}
$$

- The scalar triple product is invariant under a circular shift of its three operands (a, b, c):

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})
$$

- Swapping the positions of the operators without re-ordering the operands leaves the triple product unchanged. This follows from the preceding property and the commutative property of the dot product.
$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
- Swapping any two of the three operands negates the triple product.

This follows from the circular-shift property and the anticommutativity of the cross product.
$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=-\mathbf{a} \cdot(\mathbf{c} \times \mathbf{b})$
$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=-\mathbf{b} \cdot(\mathbf{a} \times \mathbf{c})$
$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=-\mathbf{c} \cdot(\mathbf{b} \times \mathbf{a})$

- The scalar triple product can also be understood as the determinant of the $3 \times 3$ matrix (thus also its inverse) having the three vectors either as its rows or its columns (a matrix has the same determinant as its transpose):
$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\operatorname{det}\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$.
- If the scalar triple product is equal to zero, then the three vectors $\mathbf{a}, \mathbf{b}$, and $\mathbf{c}$ are coplanar, since the "parallelepiped" defined by them would be flat and have no volume.
- If any two vectors in the triple scalar product are equal, then its value is zero:

$$
\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{a})=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{b})=\mathbf{a} \cdot(\mathbf{a} \times \mathbf{a})=0
$$

- Moreover,

$$
[\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})] \mathbf{a}=(\mathbf{a} \times \mathbf{b}) \times(\mathbf{a} \times \mathbf{c})
$$

- The simple product of two triple products (or the square of a triple product), may be expanded in terms of dot products: ${ }^{[1]}$

$$
((\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c})((\mathbf{d} \times \mathbf{e}) \cdot \mathbf{f})=\operatorname{det}\left[\left(\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c}
\end{array}\right) \cdot\left(\begin{array}{lll}
\mathbf{d} & \mathbf{e} & \mathbf{f}
\end{array}\right)\right]=\operatorname{det}[
$$

The vector triple product is defined as the cross product of one vector with the cross product of the other two. The following relationship holds:

$$
f \mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b}) .
$$

This is known as triple product expansion, or Lagrange's formula, ${ }^{[2][3]}$ although the latter name is also used for several other formulae. Its right hand side can be remembered by using the mnemonic "BAC - CAB", provided one keeps in mind which vectors are dotted together. A proof is provided below.

Since the cross product is anticommutative, this formula may also be written (up to permutation of the letters) as:
$*$
$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=-\mathbf{c} \times$
(a $\times$
b) $=-(\mathbf{c}$
b) $\mathbf{a}+(\mathbf{c} \cdot \mathbf{a}) \mathbf{b}$

From Lagrange's formula it follows that the vector triple product satisfies:

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})+\mathbf{b} \times(\mathbf{c} \times \mathbf{a})+\mathbf{c} \times(\mathbf{a} \times \mathbf{b})=0
$$

which is the Jacobi identity for the cross product. Another useful formula follows:

$$
(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=\mathbf{a} \times(\mathbf{b} \times \mathbf{c})-\mathbf{b} \times(\mathbf{a} \times \mathbf{c})
$$

These formulas are very useful in simplifying vector calculations in physics. A related identity regarding gradients and useful in vector calculus is Lagrange's formula of vector cross-product identity: ${ }^{[4]}$

$$
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{f})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{f})-(\boldsymbol{\nabla} \cdot \boldsymbol{\nabla}) \mathbf{f}
$$

$$
(a \times b) \times c=a \times(b \times c)-b \times(a \times c)
$$



$$
\vec{a} \times(\vec{b} \times \vec{c}) \quad \vec{b} \times(\vec{c} \times \vec{a}) \quad \vec{c} \times(\vec{a} \times \vec{b})
$$


$a(c \cdot b)$


$$
-c(a \cdot b)
$$

$$
-a(b \cdot c)
$$

$$
-b(c \cdot a)
$$

$$
\begin{array}{ccc}
\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a}) & +\vec{c} \times(\vec{a} \times \vec{b})=0 \\
11 & \text { II } & =0 \\
b(a \cdot c) & c(b \cdot a) & a(c \cdot b) \\
-c(a \cdot b) & -a(b \cdot c) & -b(c \cdot a)
\end{array}
$$





$$
\vec{a} \times(\vec{b} \times \vec{c}) \quad \vec{b} \times(\vec{c} \times \vec{a}) \quad \vec{c} \times(\vec{a} \times \vec{b})
$$

$\begin{array}{lll}a \text { (b) } c & b \text { (c) } a & c \text { (a) } b \\ a & b & b \\ c & c & c\end{array}$

$$
\begin{array}{ccc}
b(a \cdot c) & c(b \cdot a) & a(c \cdot b) \\
-c(a \cdot b) & -a(b \cdot c) & -b(c \cdot a)
\end{array}
$$

$$
\begin{aligned}
& \frac{\vec{a} \times(\vec{b} \times \vec{c})}{11}+\frac{\vec{b} \times(\vec{c} \times \vec{a})}{11}+\frac{\vec{c} \times(\vec{a} \times \vec{b})}{11}=0 \\
& \begin{array}{|c|}
\hline b(a \cdot c) \\
-c(a \cdot b)
\end{array} \begin{array}{r}
c(b \cdot a) \\
-a(b \cdot c)
\end{array} \quad \begin{array}{r}
a(c \cdot b) \\
-b(c \cdot a)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& -\vec{a} \times(\vec{b} \times \vec{c})-\vec{b} \times(\vec{c} \times \vec{a})=\begin{array}{r}
11 \\
11 \\
-\begin{array}{r}
b(a \cdot c) \\
-c(a \cdot b)
\end{array}-\begin{array}{r}
c(b \cdot a) \\
-a(b \cdot c)
\end{array} \\
-b(c \cdot b) \\
-b(c \cdot a)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\nabla \times(\mathbf{A} \times \mathbf{B}) & =\mathbf{A}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{A})+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B} \\
& =(\nabla \cdot \mathbf{B}+\mathbf{B} \cdot \nabla) \mathbf{A}-(\nabla \cdot \mathbf{A}+\mathbf{A} \cdot \nabla) \mathbf{B} \\
& =\nabla \cdot\left(\mathbf{B A}^{\mathrm{T}}\right)-\nabla \cdot\left(\mathbf{A B}^{\mathrm{T}}\right) \\
& =\nabla \cdot\left(\mathbf{B A}^{\mathrm{T}}-\mathbf{A B}^{\mathrm{T}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=\mathbf{a} \times(\mathbf{b} \times \mathbf{c})-\mathbf{b} \times(\mathbf{a} \times \mathbf{c}) \\
& (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=-\mathbf{c} \times(\mathbf{a} \times \mathbf{b})=-(\mathbf{c} \cdot \mathbf{b}) \mathbf{a}+(\mathbf{c} \cdot \mathbf{a}) \mathbf{b} \\
& \nabla \times(\mathbf{A} \times \mathbf{B})=\mathbf{A}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{A})+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B} \\
& =(\nabla \cdot \mathbf{B}+\mathbf{B} \cdot \nabla) \mathbf{A}-(\nabla \cdot \mathbf{A}+\mathbf{A} \cdot \nabla) \mathbf{B} \\
& =\nabla \cdot\left(\mathbf{B A}^{\mathbf{T}}\right)-\nabla \cdot\left(\mathbf{A B}^{\mathrm{T}}\right) \\
& =\nabla \cdot\left(\mathbf{B A}^{\mathrm{T}}-\mathbf{A B}^{\mathrm{T}}\right) \\
& \nabla \times(A \times B)=\nabla \times(A \times B)+\nabla \times(A \times B) \\
& \nabla \times(A \times B)=A(\nabla \cdot B)-B(\nabla \cdot A) \\
& =(B \cdot \nabla) A-B(\nabla \cdot A) \\
& \nabla \times(A \times B)=A(\nabla \cdot B)-B(\nabla \cdot A) \\
& (B \cdot \nabla) A-(A \cdot \nabla) B \\
& \nabla \times(A \times B)=A(\nabla \cdot B)-B(\nabla \cdot A) \\
& +(B \cdot \nabla) A-(A \cdot \nabla) B
\end{aligned}
$$

Directional Derivatives

$$
\begin{aligned}
B \cdot \nabla & =\left\langle B_{x}, B_{y}, B_{z}\right\rangle\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \\
& =B_{x} \frac{\partial}{\partial x}+B_{y} \frac{\partial}{\partial y}+B_{z} \frac{\partial}{\partial z} \\
& \neq \frac{\partial B_{x}}{\partial x}+\frac{\partial B_{z}}{\partial y}+\frac{\partial B_{z}}{\partial z} \\
(B \cdot \nabla) f & =\left\langle B_{x}, B_{y}, B_{z}\right\rangle \cdot\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle f \\
& =B_{x} \frac{\partial f}{\partial x}+B_{y} \frac{\partial f}{\partial f}+B_{z} \frac{\partial f}{\partial z} \\
& =B \cdot(\nabla f) \quad f_{\text {grad }}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{u}=\langle a, b, c\rangle \\
& D_{\vec{u}} f(x, y, z)=a \cdot f_{x}(x, y, z)+b \cdot f_{y}(x, y, z)+c \cdot f_{z}(x, y, z) \\
&=\left\langle f_{x}, f_{y}, f_{z}\right\rangle \cdot\langle a, b, c\rangle
\end{aligned}
$$

$$
\begin{aligned}
B \cdot \nabla & =B x, B y, B z \\
& =B x \frac{\partial}{\partial x}+B y \frac{\partial}{\partial y}+B z \frac{\partial}{\partial z} \\
& \neq \frac{\partial B x}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B z}{\partial z} \\
\nabla \square & =\frac{\partial \square}{\partial x} \vec{l}+\frac{\partial \square}{\partial y} \vec{\jmath}+\frac{\partial \square}{\partial z} \vec{k}
\end{aligned}
$$

(OP) $B \cdot \nabla=(B x \vec{\imath}+B y \vec{\jmath}+B z \vec{k}) \cdot\left(\frac{\partial \square}{\partial x} \vec{\imath}+\frac{\partial \square}{\partial y} \vec{\jmath}+\frac{\partial \square}{\partial z} \vec{k}\right)$

$$
=B_{x} \frac{\partial \square}{\partial x}+B_{y} \frac{\partial \square}{\partial y}+B_{z} z \frac{\partial \square}{\partial z}
$$

Scalan $\nabla \cdot B=\left(\frac{\partial \square}{\partial x} \vec{\imath}+\frac{\partial \square}{\partial y} \vec{\jmath}+\frac{\partial \square}{\partial z} \vec{k}\right) \cdot(B x \vec{\imath}+B y \vec{\jmath}+B z \vec{k})$

$$
=\frac{\partial B x}{\partial x}+\frac{\partial \beta y}{\partial y}+\frac{\partial B z}{\partial z}
$$

Dot Del operator
(OP) $B \cdot \nabla=B_{x} \frac{\partial \square}{\partial x}+B y \frac{\partial \square}{\partial y}+B z \frac{\partial \square}{\partial z}$

Scalar $\nabla \cdot B=\frac{\partial B x}{\partial x}+\frac{\partial \beta y}{\partial y}+\frac{\partial B z}{\partial z}$

$$
\begin{aligned}
& B \cdot \nabla \neq \nabla \cdot B \\
& B \cdot \nabla=\dot{\nabla} \cdot B
\end{aligned}
$$

dot del

