# Logic Background (1A)

Copyright (c) 2014 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is based on 6.825:

Techniques in Artificial Intelligence - courses - MIT

https://courses.csail.mit.edu/6.825/

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

### Proposition: etymology

From Old French, from Latin propositio ("a proposing, design, theme, case").

#### The content of an assertion

that may be taken as being **true** or **false** and is considered abstractly without reference to the linguistic sentence that constitutes the assertion.

### Predicate: etymology

From Middle French predicate (French prédicat), from post-classical Late Latin praedicatum ("thing said of a subject"), a noun use of the neuter past participle of praedicare ("proclaim")

From Latin predicātus, perfect passive participle of praedicō, from prae + dicō ("declare, proclaim"), from dicō ("say, tell").

# **Proposition**

In Aristotelian logic a proposition is a particular kind of sentence, one which affirms or denies a **predicate** of a subject.

In formal logic a proposition is considered as <a href="https://objects.com/objects">objects</a> of a formal language.

A formal language begins with different types of symbols.

### **Predicate**

(grammar) The part of the sentence (or clause) which states something about the <u>subject</u> or the <u>object</u> of the sentence.

The dog barked very loudly subject predicate

(logic) A term of a statement,
where the statement may be true or false
depending on whether the thing referred to
by the values of the statement's variables
has the property signified by that (predicative) term.

## **Propositional Logic**

#### **Propositional logic** includes only

- operators and
- propositional constants

as symbols in its language.

#### The propositions in this language are

- propositional constants considered atomic propositions
- composite propositions
   recursive application of operators to propositions

## **Predicate Logic**

#### Predicate logic include

- variables,
- operators,
- predicate and
- function symbols, and
- quantifiers

as symbols in their languages.

# Logic

#### **A Formal Language**

**Syntax** – legal expressions

**Semantics** – the meaning of legal expressions

**Proof System** – a way of manipulating syntactic expressions

to get another syntactic expressions

Multiple Percepts → Conclusions

Current State, Operators → Next State Properties

# **Propositional Logic**

**Sentences** (WFFs : Well Formed Formulas)

T and F are sentences

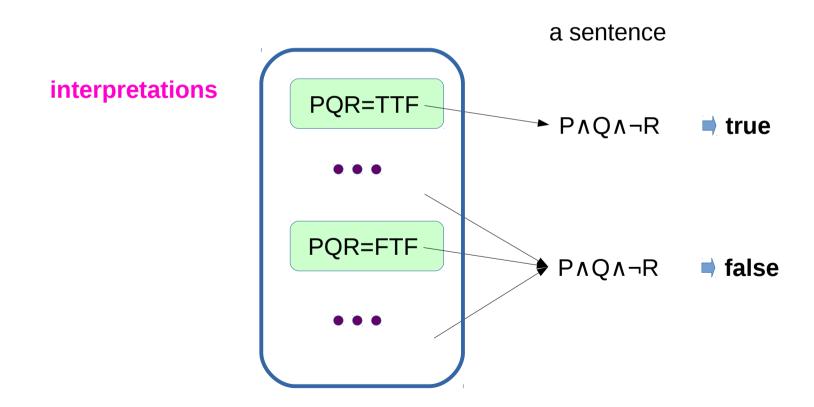
Propositional variables are sentences (A, B, C, ...)

If A and B are sentences, the followings are also sentences

(A),  $\neg A$ ,  $A \land B$ ,  $A \lor B$ ,  $A \rightarrow B$ ,  $A \leftrightarrow B$ 

### **Precedence of Connectives**

```
¬ highest
Λ
∨
→
Howest
```


AVB
$$\Lambda$$
C = AV(B $\Lambda$ C)  
A $\Lambda$ B  $\rightarrow$  CVD = (A $\Lambda$ B)  $\rightarrow$  (CVD)  
A  $\rightarrow$  BVC  $\leftrightarrow$ D = (A  $\rightarrow$  (BVC))  $\leftrightarrow$ D

### **Semantics**

Meaning of a sentence : true or false

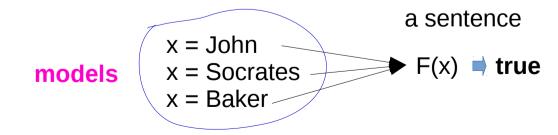
Interpretation: an assignment of true or false

to the propositional variables



### Models

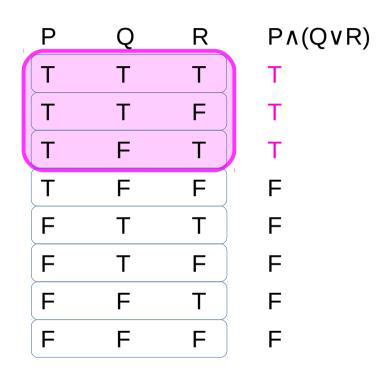
#### Semantics:

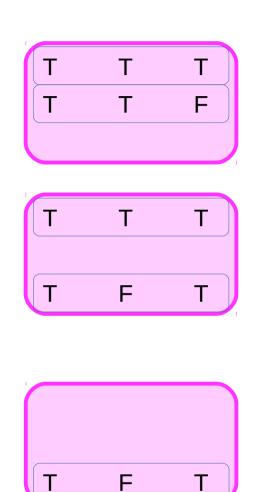

The relationship between sentences and interpretations

There are some set of interpretations that makes a sentence **true** 

→ models

An interpretation is a **model** of a sentence if the **sentence** is **true** in that interpretation

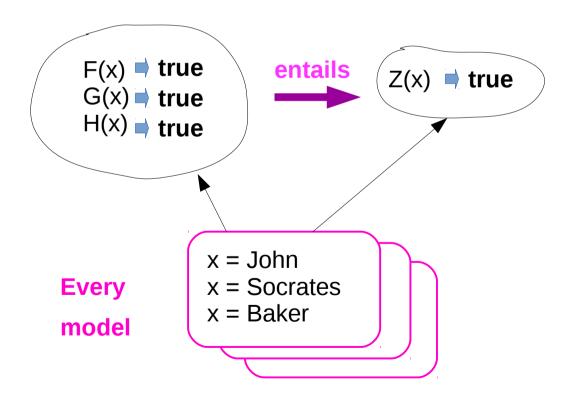

An interpretation i is a model of a sentence  $\varphi$  iff  $\models_{i} \varphi$ 




# Models and Interpretations

#### models

8 interpretations






### Entailment

An interpretation i is a model of a sentence  $\varphi$  iff  $\models \varphi$ 

A set of sentences KB entails a sentence  $\phi$  iff every model of KB is also a model of  $\phi$ 



#### References

| [1] | en.wikipedia.org                                                                    |
|-----|-------------------------------------------------------------------------------------|
| [2] | en.wiktionary.org                                                                   |
| [3] | U. Endriss, "Lecture Notes : Introduction to Prolog Programming"                    |
| [4] | http://www.learnprolognow.org/ Learn Prolog Now!                                    |
| [5] | http://www.csupomona.edu/~jrfisher/www/prolog_tutorial                              |
| [6] | www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html                           |
| [7] | www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html                        |
| [8] | http://ilppp.cs.lth.se/, P. Nugues,`An Intro to Lang Processing with Perl and Prolo |