A Sudoku Solver — Expanding (4A)

* Richard Bird Implementation

Young Won Lim
2/20/17

Copyright (c) 2016 - 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

Young Won Lim
2/20/17

mailto:youngwlim@hotmail.com

Based on

Thinking Functionally with Haskell, R. Bird

https://wiki.haskell.org/Sudoku
http://cdsoft.fr/haskell/sudoku.html
https://gist.github.com/wvandyk/3638996

http://www.cse.chalmers.se/edu/year/2015/course/TDA555/lab3.html

Bird’S SUdOkU 3 Young Won Lim
Expanding (4A) 2/20/17

https://wiki.haskell.org/Sudoku
http://cdsoft.fr/haskell/sudoku.html
https://gist.github.com/wvandyk/3638996
http://www.cse.chalmers.se/edu/year/2015/course/TDA555/lab3.html

- and ++, and concat

. cons an element onto a list
a ->[a] ->[a]

1:[2,3,4] ==>[1, 2, 3, 4]

++ concatenates two lists
[a] -> [a] -> [a]

[1] ++ [2, 3, 4] ==>[1, 2, 3, 4]

concat : concatenate a list of lists

[[a]]->[a]

concat[[1, 2], [3,4,5]]==>11, 2, 3, 4, 5]

http://stackoverflow.com/questions/1817865/haskell-and-differences

Bird’S SUdOkU 4 Young Won Lim
Expanding (4A) 2/20/17

any

any :: (a -> Bool) -> [a] -> Bool
anyp=or.mapp

or :: [Bool] -> Bool
or [] = False
or (x:xs) = x || or xs

Bird’s Sudoku

’ 5 Young Won Lim
Expanding (4A)

2/20/17

span

span :: (a -> Bool) -> [a] -> ([a], [a])
span p []=([]. [1)
span p (x:xs) = if p x then (Xx:ys, zS)
else ([], x:xs)
where (ys, zS) = span p xs

span (< 3)[1,2,3,4,1,2,3,4] == (|1,2],|3,4,1,2,3,4])
span (< 9) [1,2,3]==(/1,2,2],[])
span (< 0) [1,2,3] == ([],[1,2,3])

Bird’S S_UdOkU 6 Young Won Lim
Expanding (4A) 2/20/17

break

break :: (a -> Bool) -> [a] -> ([a], [a])
break p = span (hot . p)

break even [1,3,7,6,2,3,5] == ([1,3,7], [6,2,3,5])

Bird’s SUdOkU 7 Young Won Lim
Expanding (4A) 2/20/17

single

single :: [a] -> Bool
single[]=True

single _ = False

or . map

(rowl, cs:row?2) = break (not . single) row
(rowsl, row:rows2) = break (any (not . single)) rows

= break (or . map (not . single)) rows

Bird’s Sudoku

’ 8 Young Won Lim
Expanding (4A)

2/20/17

Matrix Choices Example

(rowl, cs:row2) = break (not . single) row

[ty re) s 4, 91 el 7L I8l [91 1
(ret, e v, rel s, 4, 3 [2], [1]
[[47], ['1..97, [1°..9°], ['1"..’9°], ['1°..’9°], ['1'..’97], ['1..'97], [57], ['6]] 1,
[[1..9, ['1.09], ['1..97], ['1..97, [[1..'97], ['97], ['4], [1..97], [1"..9']],
[[1..97, ['1..97], ['1..97], ['4], ['1..97, ['2], ['1.°9],[1.97, [1..97],
[[1..9, ['1..9], ['1..97], ['1'.."97, ['8], ['1..97], ['1..9°], ['97], ['3] 1,
[[1..97, ['1..97], ['47], 1.9, ['1.9'], [57], [T, [[1..9], ['1"..97] |,
[[1..97, ['1..97], ['57], ['3'], [1..97], ['1..9], [1°..97], ['2..’97], ['1"..’9']],
[[1..97, ['1..97], ['67], [‘17], ['1..97, ['1"..°9°], ['97], [1..09], ['1..9] 1]

Matrix Choices = [Row Choices] [[Choices |] [[Digit] 1]

Haskell Overview 9 Young vgc;zno|7|1n71

Matrix Choices Example

(rowl, cs:row2) = break (not . single) row

[1,
[rows1],
[faw 1,
[1,
[1,
[rows2 1,
[1,
[1,
[]]
Matrix Choices = [Row Choices] [[Choices]] [[[Digit] 1]
Haskell Overview 1 O Young Vg(/)golfln;

Matrix Choices Example

(rowl, cs:row2) = break (not . single) row

L[],
[rows1],
[['4], [1..97, ['1..97, ['1..)9°], ['1’..’97], [1°..97], ['1'..9°], ['5’], [67] 1,
[],
[1,
| Frows?2 1,
[1,
[1,
[1]

[['4], ['1..97, [1..9°], ['1"..’9°], ['1"..’9’], ['1"..9°], ['1..9], ['5], ['67] 1,

rowl CS row2

Haskell Overview 1 1 Young Vg(/)golfln;

expand

map cp

[[[1.9[1.09], [4], [1.'91,[1.'91,[5], [7], [1./9], [‘1'..'9'E == (EE) (===
[[1.09], [1.097, [1.)9], [1..97, [1..9], [9, [4], [1..97] [1.'97], | |,] eee coe
(131 6] (191, (1.9 (9] [1.][9] (1.9].(8]] Hﬂ” ”g” ”gu
8| U7)_ (20 (4] [1.9],[6] [1.'9] [1.9] [1.19] [1.9]]
g [[1.097], ['1.097, ['1..97], ['41], [1.'90, 27, [1.797,[1.797, [1..97], . . .
| [[1.9)[1.91[1.9] [1.9][8] [1.9[1.91[9) [3] expand .. Matrix Choices -> [G”d]
© [['47], [1.097, [1.09], [1..097], [1.797], [1..97], [1..9], ['B7], [6] >]
[[1.9], [1.9],[5], [3], [1.9][1.9],[1./9], [1./9], [1./9]], expand = cp . map cp
v [[1.97], [1..97, ['6], [117, [1.797, ['1..'97, ['97, [1.797, [1.7971] _
cp . map cp = [[[a]]] -> [[[a]]]
Matrix Choices [Grid]
expand
Matrix [Digit] [Matrix Digit]
expand = concat . map expand . expandl
expandl :: Matrix [Digit] -> [Matrix [Digit]]
expandl rows = [rowsl ++ [rowl ++ [c]:row2] ++ rows2 | ¢ <- CS]
Bird’s S_udoku 12 Young Won Lim
Expanding (4A) 2/20/17

Single-Cell Expansion

single :: [a] -> Bool
single [] =True
single = False

expandl :: Matrix [Digit] -> [Matrix [Digit]]

expandl rows

= [rows1l ++ [rowl ++[c].row2] ++ rows2 | ¢ <- cs]
where
(rowsl, row:rows2) = break (any (not . single)) rows
(rowl, cs:row2) = break (not .single) row

break (any (not . single)) rows = [rows, []]

Bird’s Sudoku

Young Won Lim
Expanding (4A) 13

2/20/17

Single-Cell Expansion

expandl : Matrix [Digit] -> [Matrix [Digit]]
expand = concat . map expand . expandl

rows = rowsl ++ [row] ++ rows2
row = rowl ++ [cs] ++ row?2

expandl :: Matrix [Digit] -> [Matrix [Digit]]
expandl rows
= [rows1l ++ [rowl ++ [c]:row2] ++ rows2 | ¢ <- cS]

Bird’s Sudoku

Young Won Lim
Expanding (4A) 14

2/20/17

Single-Cell Expansion

break :: (a -> Bool) -> [a] -> ([a], [a])
break p = span (not . p)

break even [1,3,7,6,2,3,5]
==> ([1,3,7], [6,2,3,5])

any :: (a -> Bool) -> [a] -> Bool
anyp=or.mapp

or :: [Bool] -> Bool
or [] = False
or (X:xs) = x || or xs

Bird’S SUdOkU 1 5 Young Won Lim
Expanding (4A) 2/20/17

Single-Cell Expansion

single :: [a] -> Bool
single [] = True
single = False

expandl :: Matrix [Digit] -> [Matrix [Digit]]

expandl rows

= [rows1l ++ [rowl ++[c].row2] ++ rows2 | ¢ <- cs]
where
(rowsl, row:rows2) = break (any (not . single)) rows
(rowl, cs:row2) = break (not .single) row

break (any (not . single)) rows = [rows, []]

Bird’S SUdOkU 16 Young Won Lim
Expanding (4A) 2/20/17

Single-Cell Expansion

expandl :: Matrix [Digit] -> [Matrix [Digit]]
expandl rows
= [rows1 ++ [rowl ++ [c]::row2] ++ rows2 | ¢ <- ¢S]
where
(rowsl, row:rows2) = break (any samllest) rows
(rowl, cs:row2) = break smallest row
smallest cs = length cs ==

n = minimum (counts rows)

counts = filter (/= 1) . map length . concat

Bird’s Sudoku

: 1 7 Young Won Lim
Expanding (4A) 2/20/17

Single-Cell Expansion

complete :: Matrix [Digit] -> Bool
complete = all (all single)

safe ;. Matrix [Digit] -> Bool
safe m = all ok (rows cm) &&
all ok (cols cm) &&
all ok (boxs cm) &&
ok row = nodups [x | [X] <- row]

Bird’S SUdOkU 1 8 Young Won Lim
Expanding (4A) 2/20/17

Single-Cell Expansion

extract :: Matrix [Digit] -> Grid
extract = map (map head)

filter valid (expand m) = [extract m]

filter valid . expand
= filter valid . concat . map expand . expandl

filter p . concat = concat . map (filter p)
concat . map (filter p . expand) .expandl

concat . map (filter p . expand . prune) . expandl

Bird’S SUdOkU 19 Young Won Lim
Expanding (4A) 2/20/17

Single-Cell Expansion

search = concat . map search . expandl . prune

solve = search . choices

search cm

| not (safe pm) =]

| complete pm = [extract pm]

| otherwise = concat (map search (expandl pm))
where pm = prune cm

Bird’S SUdOkU 2 O Young Won Lim
Expanding (4A) 2/20/17

Single-Cell Expansion

solve = filter valid . expand . prune . choices
many :: (eqa)=>(a->a)->a->a

many f x = if x ==y then x else many fy
wherey = f x

solve = filter valid . expand . many prune . choices

Bird’S SUdOkU 2 1 Young Won Lim
Expanding (4A) 2/20/17

Single-Cell Expansion

expandl :: Matrix Choices -> [Matrix Choices]
expandl rows =
[rowsl ++ [rowl ++ [c]:row2] ++ rows2 | ¢ <- CS]

where

(rowsl,row:rows2) = break (any smallest) rows
(rowl,cs:row2) = break smallest row

smallest cs = length cs ==

n = minimum (counts rows)

counts = filter (/=1) . map length . concat

Bird’s Sudoku

Young Won Lim
Expanding (4A) 22

2/20/17

Single-Cell Expansion

> solve2 :: Grid -> [Grid]
> solve2 = search . choices

> search :: Matrix Choices -> [Grid]

> search cm

> |not (safe pm) =]

> |complete pm = [map (map head) pm]

> |otherwise = (concat. map search . expandl) pm
> where pm = prune cm

> complete :: Matrix Choices -> Bool
> complete = all (all single)

> single [] = True
> single = False

Bird’s Sudoku

Young Won Lim
Expanding (4A) 23

2/20/17

Single-Cell Expansion

> solve2 :: Grid -> [Grid]
> solve2 = search . choices

> search :: Matrix Choices -> [Grid]

> search cm

> |not (safe pm) =]

> |complete pm = [map (map head) pm]

> |otherwise = (concat. map search . expandl) pm
> where pm = prune cm

> complete :: Matrix Choices -> Bool
> complete = all (all single)

> single [] = True
> single = False

Bird’s Sudoku

Young Won Lim
Expanding (4A) 24

2/20/17

Single-Cell Expansion

> safe :: Matrix Choices -> Bool
> safe cm = all ok (rows cm) &&
> all ok (cols cm) &&

> all ok (boxs cm)

> ok row = nodups [d | [d] <- row]

Bird’S SUdOkU 2 5 Young Won Lim
Expanding (4A) 2/20/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

Young Won Lim
2/20/17

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

