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- and ++, and concat

. cons an element onto a list
a ->[a] ->[a]

1:[2,3,4] ==>[1, 2, 3, 4]

++ concatenates two lists
[a] -> [a] -> [a]

[1] ++ [2, 3, 4] ==>[1, 2, 3, 4]

concat : concatenate a list of lists

[[a] ]->[a]

concat[[1, 2], [3,4,5]]==>11, 2, 3, 4, 5]

http://stackoverflow.com/questions/1817865/haskell-and-differences
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any

any :: (a -> Bool) -> [a] -> Bool
anyp=or.mapp

or :: [Bool] -> Bool
or [] = False
or (x:xs) = x || or xs
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span

span :: (a -> Bool) -> [a] -> ([a], [a])
span p []=([]. [1)
span p (x:xs) = if p x then (Xx:ys, zS)
else ([], x:xs)
where (ys, zS) = span p xs

span (< 3)[1,2,3,4,1,2,3,4] == (|1,2],|3,4,1,2,3,4])
span (< 9) [1,2,3]==(/1,2,2],[])
span (< 0) [1,2,3] == ([],[1,2,3])
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break

break :: (a -> Bool) -> [a] -> ([a], [a])
break p = span (hot . p)

break even [1,3,7,6,2,3,5] == ([1,3,7], [6,2,3,5])
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single

single :: [a] -> Bool
single[ ]=True

single _ = False

or . map

(rowl, cs:row?2) = break (not . single) row
(rowsl, row:rows2) = break (any (not . single)) rows

= break (or . map (not . single)) rows
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Matrix Choices Example

(rowl, cs:row2) = break (not . single) row

[ty re) s 4, 91 el 7L I8l [91 1
(ret, e v, rel s, 4, 3 [2], [1]
[ [47], ['1..97, [1°..9°], ['1"..’9°], ['1°..’9°], ['1'..’97], ['1..'97], [57],  ['6]] 1,
[[1..9, ['1.09], ['1..97], ['1..97, [[1..'97], ['97],  ['4], [1..97], [1"..9'] ],
[[1..97, ['1..97], ['1..97], ['4], ['1..97, ['2], ['1.°9],[1.97, [1..97 ],
[[1..9, ['1..9], ['1..97], ['1'.."97, ['8], ['1..97], ['1..9°], ['97], ['3] 1,
[[1..97, ['1..97], ['47], 1.9, ['1.9'], [57], [T, [[1..9], ['1"..97] |,
[[1..97, ['1..97], ['57], ['3'], [1..97], ['1..9], [1°..97], ['2..’97], ['1"..’9'] ],
[[1..97, ['1..97], ['67], [‘17], ['1..97, ['1"..°9°], ['97], [1..09], ['1..9] 1]

Matrix Choices = [Row Choices] [[ Choices |] [ [Digit] 1]
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Matrix Choices Example

(rowl, cs:row2) = break (not . single) row

[ 1,
[ rows1 ],
[ faw 1,
[ 1,
[ 1,
[ rows2 1,
[ 1,
[ 1,
[ ]]
Matrix Choices = [Row Choices] [[ Choices ]] [[ [Digit] 1]
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Matrix Choices Example

(rowl, cs:row2) = break (not . single) row

L[ ],
[ rows1 ],
[ ['4], [1..97, ['1..97, ['1..)9°], ['1’..’97], [1°..97], ['1'..9°], ['5’], [67] 1,
[ ],
[ 1,
| Frows?2 1,
[ 1,
[ 1,
[ 1]

[['4], ['1..97, [1..9°], ['1"..’9°], ['1"..’9’], ['1"..9°], ['1..9], ['5], ['67] 1,

rowl CS row2
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expand

map cp

[[[1.9[1.09], [4],  [1.'91,[1.'91,[5], [7], [1./9], [‘1'..'9'E == (EE) (===
[[1.09], [1.097, [1.)9], [1..97, [1..9], [9, [4], [1..97] [1.'97], | |, ] eee coe
(131 6] (191, (1.9 (9] [1. ][9] (1.9].(8] ] Hﬂ” ”g” ”gu
8| U7)_ (20 (4] [1.9],[6]  [1.'9] [1.9] [1.19] [1.9]]
g [[1.097], ['1.097, ['1..97], ['41], [1.'90, 27, [1.797,[1.797, [1..97], . . .
| [[1.9)[1.91[1.9] [1.9][8] [1.9[1.91[9) [3] expand .. Matrix Choices -> [G”d]
© [['47], [1.097, [1.09], [1..097], [1.797], [1..97], [1..9], ['B7],  [6] >]
[[1.9], [1.9],[5], [3],  [1.9][1.9],[1./9], [1./9], [1./9]], expand = cp . map cp
v [[1.97], [1..97, ['6], [117, [1.797, ['1..'97, ['97, [1.797, [1.7971] _
cp . map cp = [[[a]] ] -> [[[a]] ]
Matrix Choices [Grid]
expand
Matrix [Digit] [Matrix Digit]
expand = concat . map expand . expandl
expandl :: Matrix [Digit] -> [Matrix [Digit]]
expandl rows = [rowsl ++ [rowl ++ [c]:row2] ++ rows2 | ¢ <- CS]
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Single-Cell Expansion

single :: [a] -> Bool
single [ ] =True
single = False

expandl :: Matrix [Digit] -> [Matrix [Digit]]

expandl rows

= [rows1l ++ [rowl ++[c].row2] ++ rows2 | ¢ <- cs]
where
(rowsl, row:rows2) = break (any (not . single)) rows
(rowl, cs:row2) = break (not .single) row

break (any (not . single)) rows = [rows, []]
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Single-Cell Expansion

expandl : Matrix [Digit] -> [Matrix [Digit]]
expand = concat . map expand . expandl

rows = rowsl ++ [row] ++ rows2
row = rowl ++ [cs] ++ row?2

expandl :: Matrix [Digit] -> [Matrix [Digit]]
expandl rows
= [rows1l ++ [rowl ++ [c]:row2] ++ rows2 | ¢ <- cS]
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Single-Cell Expansion

break :: (a -> Bool) -> [a] -> ([a], [a])
break p = span (not . p)

break even [1,3,7,6,2,3,5]
==> ([1,3,7], [6,2,3,5])

any :: (a -> Bool) -> [a] -> Bool
anyp=or.mapp

or :: [Bool] -> Bool
or [] = False
or (X:xs) = x || or xs
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Single-Cell Expansion

single :: [a] -> Bool
single [ ] = True
single = False

expandl :: Matrix [Digit] -> [Matrix [Digit]]

expandl rows

= [rows1l ++ [rowl ++[c].row2] ++ rows2 | ¢ <- cs]
where
(rowsl, row:rows2) = break (any (not . single)) rows
(rowl, cs:row2) = break (not .single) row

break (any (not . single)) rows = [rows, []]
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Single-Cell Expansion

expandl :: Matrix [Digit] -> [Matrix [Digit]]
expandl rows
= [rows1 ++ [rowl ++ [c]::row2] ++ rows2 | ¢ <- ¢S]
where
(rowsl, row:rows2) = break (any samllest) rows
(rowl, cs:row2) = break smallest row
smallest cs = length cs ==

n = minimum (counts rows)

counts = filter (/= 1) . map length . concat
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Single-Cell Expansion

complete :: Matrix [Digit] -> Bool
complete = all (all single)

safe ;. Matrix [Digit] -> Bool
safe m = all ok (rows cm) &&
all ok (cols cm) &&
all ok (boxs cm) &&
ok row = nodups [x | [X] <- row]
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Single-Cell Expansion

extract :: Matrix [Digit] -> Grid
extract = map (map head)

filter valid (expand m) = [extract m]

filter valid . expand
= filter valid . concat . map expand . expandl

filter p . concat = concat . map (filter p)
concat . map (filter p . expand) .expandl

concat . map (filter p . expand . prune) . expandl
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Single-Cell Expansion

search = concat . map search . expandl . prune

solve = search . choices

search cm

| not (safe pm) =]

| complete pm = [extract pm]

| otherwise = concat (map search (expandl pm))
where pm = prune cm
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Single-Cell Expansion

solve = filter valid . expand . prune . choices
many :: (eqa)=>(a->a)->a->a

many f x = if x ==y then x else many fy
wherey = f x

solve = filter valid . expand . many prune . choices
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Single-Cell Expansion

expandl :: Matrix Choices -> [Matrix Choices]
expandl rows =
[rowsl ++ [rowl ++ [c]:row2] ++ rows2 | ¢ <- CS]

where

(rowsl,row:rows2) = break (any smallest) rows
(rowl,cs:row2) = break smallest row

smallest cs = length cs ==

n = minimum (counts rows)

counts = filter (/=1) . map length . concat
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Single-Cell Expansion

> solve2 :: Grid -> [Grid]
> solve2 = search . choices

> search :: Matrix Choices -> [Grid]

> search cm

> |not (safe pm) =]

> |complete pm = [map (map head) pm]

> |otherwise = (concat. map search . expandl) pm
> where pm = prune cm

> complete :: Matrix Choices -> Bool
> complete = all (all single)

> single [ ] = True
> single = False
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Single-Cell Expansion

> solve2 :: Grid -> [Grid]
> solve2 = search . choices

> search :: Matrix Choices -> [Grid]

> search cm

> |not (safe pm) =]

> |complete pm = [map (map head) pm]

> |otherwise = (concat. map search . expandl) pm
> where pm = prune cm

> complete :: Matrix Choices -> Bool
> complete = all (all single)

> single [ ] = True
> single = False
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Single-Cell Expansion

> safe :: Matrix Choices -> Bool
> safe cm = all ok (rows cm) &&
> all ok (cols cm) &&

> all ok (boxs cm)

> ok row = nodups [d | [d] <- row]
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