Variable Block Adder (1B)

Copyright (c) 2023-2010 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Delay model

n : the number of bits in a carry skip adder
m : the number of groups into which the bits are divided
x_{1}, \ldots, x_{m} : the sizes of the groups beginning with the most significant bit

T : the time required for a carry signal to skip over a group of bits

To be precise we should write $T=T(x)$ to indicate that
T depends on the size x of the group over which the carry is skipped
However, T changes very slowly with x over the range of group sizes
So we assume that T is constant

For a given n, the following three step procedure gives
An optimal way of dividing an n bit adder into groups of bits

Variable Block

- total $n=32$ bits
- $m=9$ groups
- i-th group has x_{i} bits (size)
- constant skip delay $T=T\left(x_{i}\right)$

Maximum propagation time P

Lemma 1 When the bits of a carry skip adder

- n bits are grouped according to the scheme (i)-(iii),
- m groups the maximum propagation time of a carry signal is $m T$

The carry generated at the $2^{\text {nd }}$ bit position and terminating at the $(n-1)^{\text {th }}$ bit position clearly has propagation time $m T$.

We must show that any other carry signal has propagation time smaller than or equal to $m T$

Maximum propagation time P

Consider a carry signal originating in the i-th group and terminating in the j-th group $\quad i<j$.

Denote its propagation time by P.

$$
\begin{aligned}
& P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq m T \\
& \forall i, \forall j \quad 1 \leq i, j \leq m
\end{aligned}
$$

P: the propagation time of any delay

 path is less than or equal to $m T$generated in the i-th group terminated in the j-th group
delay of a carry [Gi, Gj] for all i, j
$P_{i, j} \leq m T$

- n bits
- m groups

$$
P=P_{i, j} \leq m T
$$

$$
\forall i, \forall j \quad 1 \leq i, j \leq m
$$

A carry signal from the $\mathbf{i}^{\text {th }}$ group to the $\mathrm{j}^{\text {th }}$ group

- n bits
- m groups

The propagation time of any delay path (three cases) $\leq m T$
a carry is generated in the i-th group and terminated in the j-th group $\mathrm{i}<\mathrm{j}$.

$$
\begin{aligned}
P & \leq\left(x_{i}-1\right) \cdot 1+(j-i-1) \cdot T+\left(x_{j}-1\right) \cdot 1 \\
& \leq m T
\end{aligned}
$$

$$
\Delta_{\mathrm{rca}}=1 \quad \Delta_{\mathrm{SKIP}}=\mathrm{T} \quad \Delta_{\mathrm{rca}}=1
$$

$$
\begin{array}{lll}
\text { ripple delay } & \text { skip delay } & \text { ripple delay }
\end{array}
$$

Three cases

- n bits
- m groups

The propagation time of any delay path is less than or equal to $m T$

$$
\begin{aligned}
P & \leq\left(x_{i}-1\right) \cdot 1+(j-i-1) \cdot T+\left(x_{j}-1\right) \cdot 1 \\
& \leq m T
\end{aligned}
$$

the bit size of the i-th group optimally chosen

$$
\begin{aligned}
& n=\sum_{i=1}^{m} x_{i} \\
& n \leq \sum_{i=1}^{m} y_{i}
\end{aligned}
$$

Propagation delay P example

$P \leq\left(x_{0}-1\right)+(4-1-1) T+\left(x_{3}-1\right) \leq m T$

$$
\begin{aligned}
\Delta_{\text {cad }}=1 & \text { ripple delay over a bit } \\
\Delta_{\text {SKIP }}=\mathrm{T} & \text { skip delay over a group }
\end{aligned}
$$

Minimum skip path delay $\boldsymbol{y}_{\boldsymbol{i}}$ of the $\boldsymbol{i}^{\text {th }}$ group

Minimum skip path delay $\boldsymbol{y}_{\boldsymbol{i}}$ of the $\boldsymbol{i}^{\text {th }}$ group

Ripple delay $\boldsymbol{x}_{\boldsymbol{i}}$ constraints of the $\boldsymbol{i}^{\text {th }}$ group

```
Xi}\quad\mp@subsup{\mathrm{ delay }}{\mathrm{ ripple }}{}\quad\mathrm{ ripple delay of a group
    delay1 skip skip delay over a group
    delay2 2kip
    delay }\mp@subsup{\mathrm{ ripple }}{}{\leq
    delay (ripple
y}=\operatorname{min}{1+iT,1+(m+1-i)T
    min {delay1 }\mp@subsup{1}{\mathrm{ skip}}{},\mathrm{ delay 2 2skip}
    minimum skip path delay
```

 \(0 \leq x_{i} \leq y_{i}, \quad i=1, \ldots, m\)
 beginning skip path delay ending skip path delay

mom
ripple delay
ripple delay \leq skip delay1 ripple delay \leq skip delay2
ripple delay $\leq \min \{$ skip delay1, skip delay2 \}

Applying $\boldsymbol{x}_{\boldsymbol{i}}$ constraints to the propagation delay \boldsymbol{P} (1)

the i-th group : carry generating group
the j-th group : carry terminating group

$$
\begin{aligned}
& x_{i} \leq y_{i}=\min \{1+i T, 1+(m+1-i) T\} \\
& x_{j} \leq y_{j}=\min \{1+j T, 1+(m+1-j) T\}
\end{aligned}
$$

beginning	ending
skip path	skip path
delay	delay

Applying $\boldsymbol{x}_{\boldsymbol{i}}$ constraints to the propagation delay \boldsymbol{P} (2)

$$
P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq m T
$$

$$
\begin{aligned}
& x_{i} \leq \min \{1+i T, 1+(m+1-i) T\} \\
& x_{j} \leq \min \{1+j T, 1+(m+1-j) T\}
\end{aligned}
$$

Assume a carry signal is generated in the i-th group and terminated in the j-th, $\mathrm{i}<\mathrm{j}$.
P denotes propagation time

$$
P \leq \min \{1+i T, 1+(m+1-i) T\}+\min \{1+j T, 1+(m+1-j) T\}+(j-i-1) T-2
$$

Three cases of y_{i} and \boldsymbol{y}_{j}

Case 1: both groups are in the left half

$$
\begin{aligned}
& y_{i}=\min \{1+i T, 1+(m+1-i) T\}=1+i T \\
& y_{j}=\min \{1+j T, 1+(m+1-j) T\}=1+j T
\end{aligned}
$$

Case 2: one group in the left and the other in the right

$$
\begin{aligned}
& y_{i}=\min \{1+i T, 1+(m+1-i) T\}=1+i T \\
& y_{j}=\min \{1+j T, 1+(m+1-j) T\}=1+(m+1-j) T
\end{aligned}
$$

Case 3: both groups are in the right half

$$
\begin{aligned}
& y_{i}=\min \{1+i T, 1+(m+1-i) T\}=1+(m+1-i) T \\
& y_{j}=\min \{1+j T, 1+(m+1-j) T\}=1+(m+1-j) T
\end{aligned}
$$

Beginning Skip Paths
Ending Skip Paths

$$
\begin{array}{ll}
1+i T & 1+(m+1-i) T \\
1+j T & 1+(m+1-j) T
\end{array}
$$

Case 1

Case 1: both groups are in the left half

$$
\begin{aligned}
& \min \{1+i T, 1+(m+1-i) T\}=1+i T \\
& \min \{1+j T, 1+(m+1-j) T\}=1+j T
\end{aligned}
$$

\square
beginning skip path delay:

$$
\begin{aligned}
P \leq & \min \{1+i T, 1+(m+1-i) T\}+\min \{1+j T, 1+(m+1-j) T\}+(j-i-1) T-2 \\
= & 1+i T+1+j T+(j-i-1) T-2 \\
= & 2 j T-T \leq m T \\
& \min \{1+j T, 1+(m+1-j) T\}=1+j T \\
& 1+j T \leq 1+(m+1-j) T \longrightarrow 2 j T \leq(m+1) T \Rightarrow 2 j T-T \leq m T
\end{aligned}
$$

Case 2

Case 2: one group in the left and the other in the right

$$
\begin{aligned}
& \min \{1+i T, 1+(m+1-i) T\}=1+i T \\
& \min \{1+j T, 1+(m+1-j) T\}=1+(m+1-j) T
\end{aligned}
$$

beginning skip path delay: ending skip path delay

$$
\begin{aligned}
P & \leq \min \{1+i T, 1+(m+1-i) T\}+\min \{1+j T, 1+(m+1-j) T\}+(j-i-1) T-2 \\
& =1+i T+1+(m+1-j) T+(j-i-1) T-2=m T
\end{aligned}
$$

Case 3

Case 3: both groups are in the right half

$$
\begin{aligned}
& \min \{1+i T, 1+(m+1-i) T\}=1+(m+1-i) T \\
& \min \{1+j T, 1+(m+1-j) T\}=1+(m+1-j) T
\end{aligned}
$$

$$
\begin{aligned}
& P \leq \min \{1+i T, 1+(m+1-i) T\}+\min \{1+j T, 1+(m+1-j) T\}+(j-i-1) T-2 \\
& =1+(m+1-i) T+1+(m+1-j) T+(j-i-1) T-2 \\
& =2(m+1-i) T-T=2 m T-(2 i T-T)=m T \\
& \\
& 1+i T \geq 1+(m+1-i) T \longrightarrow 2 i T \geq(m+1) T \longrightarrow \quad 2 i T-T \geq m T \\
& \\
& \quad-(2 i T-T) \leq-m T
\end{aligned}
$$

Maximum delay of a carry signal

Lemma 2 Let D denote the maximum delay of a carry signal in a n bit carry skip adder with group sizes chosen optimally. Then

$$
(m-1) T \leq D \leq m T
$$

Since we have exhibited a division of the carry chain into groups In such a way that the maximum delay of a carry signal is $m T$ We clearly have $D \leq m T$

- n bits
- r groups

Maximum delay of a carry signal

- n bits
- rgroups

$$
D \leq m T
$$

Maximum delay of a carry signal

D : the maximum delay of a carry signal in a n bit carry skip adder of m groups with group sizes x_{i}^{\prime} s chosen optimally.

$$
(m-1) T \leq D \leq m T
$$

the carry chain is divided into m groups the maximum delay of a carry signal is $m T$
m groups $\quad \square \square \square \square \square \square{ }^{m T}$
m-1 groups $\square \square \square \square \square \square(m-1) T$

- n bits
- m groups

$$
\begin{aligned}
& P=P_{i, j} \leq m T \\
& \forall i, \forall j \quad 1 \leq i, j \leq m
\end{aligned}
$$

$$
D=\max \left\{P_{i, j}\right\} \leq m T
$$

$$
\begin{array}{r}
D \leq m T \\
(m-1) T \leq D
\end{array}
$$

Maximum delay of a carry signal

$$
(m-1) T \leq D \leq m T
$$

Assume there are rgroups
then 2 cases : even r, odd r
for each of these 2 cases
prove $m T-D<T+1$
$m T-D \leq T$
then $(m-1) T \leq D$

P: the propagation delay of any carry signal path $\leq m T$
upper bound

D: the max of them
diff $(m T, D) \leq T$
diff $(m T, \max P) \leq T$
tight upper bound

Determining \boldsymbol{m}

Method 1 - using a histogram
Let m be the smallest positive integer such that

$$
\begin{gathered}
n \leq \sum_{i=1}^{m} y_{i} \quad 0 \leq x_{i} \leq y_{i}, \quad i=1, \ldots, m \\
y_{i}=\min \{1+i T, 1+(m+1-i) T\}, \quad i=1, \ldots, m
\end{gathered}
$$

Method 2 - using a closed formula
Let m be the smallest positive integer such that

$$
n \leq m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\left(1-(-1)^{m}\right) \frac{1}{8} T
$$

Determining $\mathbf{x}_{\mathbf{i}}$ for an even number of groups $\mathbf{r}=\mathbf{2 k}$

$$
r=2 k
$$

$$
P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq m T
$$

$$
\left(x_{i}-1\right)+\left(x_{j}-1\right)+(j-i-1) T
$$

- n bits • $r=m=2 k$ groups

The x_{i} 's can be computed iteratively as follows:
Initially take $x_{1}=x_{m}=0$
At each iteration, increase as many of the x_{i} 's as possible by one unit, without violating the constraints

$$
0 \leq x_{i} \leq y_{i}, \quad i=1, \ldots, m
$$

Thus, at some iteration, we have $\sum_{i=1}^{m} x_{i}=n \quad$ and the algorithm terminates
$x_{1}=4, x_{2}=7, x_{3}=10, x_{4}=11, x_{5}=11, x_{6}=10, x_{7}=7, x_{8}=4$

An example of $\mathbf{x}_{3} \leq \mathrm{y}_{3}$ example $(\mathbf{r}=\mathbf{2 k})$

$$
\begin{gathered}
y_{i}=\min \{1+i T, 1+(m+1-i) T\} \\
i=1, \ldots, m
\end{gathered}
$$

Maximum delays of carry signals ($\mathbf{r}=\mathbf{2 k}$)

The maximum delay of carry signals generated in the $1^{\text {st }}$ group or terminated in the $8^{\text {th }}$ group	\leq	D
The maximum delay of carry signals generated in the $2^{\text {nd }}$ group or terminated in the $7^{\text {th }}$ group	\leq	D
The maximum delay of carry signals generated in the $3^{\text {rd }}$ group or terminated in the $6^{\text {th }}$ group	\leq	D
The maximum delay of carry signals		
generated in the $4^{\text {th }}$ group or		
terminated in the $5^{\text {th }}$ group	\leq	D
All skip delay		

Max delay of all carry signals

Delays of carry signals [G1, G8] ($r=2 \cdot 4$)

Assume $T=3$
Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Verifying x_{i} constraints $(r=2.4)$

$x_{1}=4, x_{2}=7, x_{3}=10, x_{4}=11, x_{5}=11$,	$x_{6}=10, x_{7}=7$,	$x_{8}=4$
$x_{2} \leq 2 T+1$	$x_{2}=7$	≤ 7
$x_{3} \leq 3 T+1$	$x_{3}=10$	≤ 10
$x_{4} \leq 4 T+1$	$x_{4}=11$	≤ 13
$x_{5} \leq 4 T+1$	$x_{5}=11$	≤ 13
$x_{6} \leq 3 T+1$	$x_{6}=10$	≤ 10
$x_{7} \leq 2 T+1$	$x_{7}=7$	≤ 7
$x_{8}, x_{1} \leq 1 T+1$	$x_{8}, x_{1}=4$	≤ 4
$x_{2} \leq 2 T+1$	$x_{2}=7$	≤ 7
$x_{3} \leq 3 T+1$	$x_{3}=10$	≤ 10
$x_{4} \leq 4 T+1$	$x_{4}=11$	≤ 13
$x_{5} \leq 4 T+1$	$x_{5}=11$	≤ 13
$x_{6} \leq 3 T+1$	$x_{6}=10$	≤ 10
$x_{7} \leq 2 T+1$	$x_{7}=7$	≤ 7
$x_{i} \leq y_{i}=\min \{1+i T, 1+(m+1-i) T\}$		

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

Variable Block Adder (1B)

Loose upper bound ($\mathbf{r}=\mathbf{2 k}$)

Maximum delays using x_{i} constraints $(r=2 \cdot 4)$

$x_{1}=4, x_{2}=7, x_{3}=10, x_{4}=11, x_{5}=11, x_{6}=10, x_{7}=7, x_{8}=4$
$x_{1}+x_{2} \leq 1 T+1+0 T+2 T+1=3 T+2$
$x_{1}+T+x_{3} \leq 1 T+1+1 T+3 T+1=5 T+2$
$x_{1}+2 T+x_{4} \leq 1 T+1+2 T+4 T+1=7 T+2$
$x_{1}+3 T+x_{5} \leq 1 T+1+3 T+4 T+1=8 T+2$
$x_{1}+4 T+x_{6} \leq 1 T+1+4 T+3 T+1=8 T+2$
$x_{1}+5 T+x_{7} \leq 1 T+1+5 T+2 T+1=8 T+2$
$x_{1}+6 T+x_{8} \leq 1 T+1+6 T+1 T+1=8 T+2$
$x_{2}+5 T+x_{8} \leq 2 T+1+5 T+1 T+1=8 T+2$
$x_{3}+4 T+x_{8} \leq 3 T+1+4 T+1 T+1=8 T+2$
$x_{4}+3 T+x_{8} \leq 4 T+1+3 T+1 T+1=8 T+2$
$x_{5}+2 T+x_{8} \leq 4 T+1+2 T+1 T+1=7 T+2$
$x_{6}+T+x_{8} \leq 3 T+1+1 T+1 T+1$
$x_{7}+x_{8} \leq 5 T+2$
Max delay $\leq 2 T+1+0 T+1 T+1=3 T+2$

$\mathbf{r}=\mathbf{2 k}$ groups (1) generated and terminated group

Let $x_{1}, x_{2}, \ldots, x_{r}$ denote the optimal group sizes corresponding to the maximum delay D.

Given the maximum delay D , the optimal group sizes are $x_{1}, x_{2,}, \ldots, x_{r}$
the number of groups $=r$
assume that $r=2 k$ is even.

By considering carries
generated in grouip
terminated in group $r-i+1$
$i=1, \ldots, k$

- n bits
- $r=2 k$ groups

$$
\text { prove }(m-1) T \leq D
$$

Starting group i

∇	termin	group r-i+1	$r=2 k$
1,	$2 k$	$=r-(1-1)$,	$i=1$
2,	$2 k-1$	$=r-(2-1)$,	$i=2$
k,	$k+1$	$=r-(k-1)$,	$i=k$

$r=2 k$ groups $(2)(j-i-1)=2(k-i)$

$$
r=2 k
$$

$P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq r T$

- n bits
- rgroups

$$
\begin{aligned}
& (j-i-1)=r-2=2(k-1) \\
& (j-i-1)=r-4=2(k-2) \\
& (j-i-1)=r-6=2(k-3) \\
& (j-i-1)=r-2 k=2(k-k)
\end{aligned}
$$

$\mathbf{r}=\mathbf{2 k}$ groups (3) propagation time P , max delay D

$r=2 k$
$P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq r T$
Consider a carry signal originating in the i-th group
terminating in the j-th group $\mathrm{i}<\mathrm{j}$.
Denote its propagation time by P .

$$
\begin{aligned}
\left(x_{1}-1\right)+(r-2) T+\left(x_{r}-1\right) & \leq D \\
\left(x_{2}-1\right)+(r-4) T+\left(x_{r-1}-1\right) & \leq D \\
\left(x_{3}-1\right)+(r-6) T+\left(x_{r-2}-1\right) & \leq D \\
\left(x_{k}-1\right)+(r-2 k) T+\left(x_{k+1}-1\right) & \leq D \\
r T & \leq D
\end{aligned}
$$

- n bits
- rgroups

Let D denote the maximum delay of a carry signal (max of all P) in a n bit carry skip adder with group sizes chosen optimally.

$\mathbf{r}=\mathbf{2 k}$ groups (4) max delay constraints

$$
\begin{aligned}
& r=2 k \\
& P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq r T \\
& \\
& \begin{aligned}
\left(x_{1}-1\right)+(r-2) T+\left(x_{r}-1\right) & \leq D \\
\left(x_{2}-1\right)+(r-4) T+\left(x_{r-1}-1\right) & \leq D \\
\left(x_{3}-1\right)+(r-6) T+\left(x_{r-2}-1\right) & \leq D \\
\left(x_{k}-1\right)+(r-2 k) T+\left(x_{k+1}-1\right) & \leq D \\
r T & \leq D
\end{aligned}
\end{aligned}
$$

- n bits
- rgroups

$$
\begin{gathered}
\left(x_{1}-1\right)+(2 k-2 \cdot 1) T+\left(x_{2 k+1-1}-1\right) \leq D \\
\left(x_{2}-1\right)+(2 k-2 \cdot 2) T+\left(x_{2 k+1-2}-1\right) \leq D \\
\left(x_{3}-1\right)+(2 k-2 \cdot 3) T+\left(x_{2 k+1-3}-1\right) \leq D \\
\left(x_{k}-1\right)+(2 k-2 \cdot k) T+\left(x_{2 k+1-k}-1\right) \leq D \\
2 k T \leq D
\end{gathered}
$$

$r=2 k$ groups (5) sum of all the inequalities

$$
r=2 k
$$

$P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq r T$

$$
\begin{array}{ll}
\left(x_{1}-1\right)+2(k-1) T+\left(x_{2 k}-1\right) \leq D & i=1 \\
\left(x_{2}-1\right)+2(k-2) T+\left(x_{2 k-1}-1\right) \leq D & i=2 \\
\left(x_{3}-1\right)+2(k-3) T+\left(x_{2 k-2}-1\right) \leq D & i=3
\end{array}
$$

$$
\left(x_{k}-1\right)+2(k-k) T+\left(x_{k+1}-1\right) \leq D \quad i=k
$$

$$
r T \quad \leq D
$$

$$
n-2 k+(k+1) r T-k(k+1) T \leq(k+1) D
$$

- n bits
- rgroups

$$
\begin{aligned}
& \sum_{i=1}^{r} x_{i}=n \\
& \sum_{i=1}^{k} i=\frac{k(k+1)}{2} \\
& 2 k=r
\end{aligned}
$$

$\mathbf{r}=\mathbf{2 k}$ groups (6) arithmetic and geometric means

$$
\begin{aligned}
& r=2 k \\
& \quad n-2 k+(k+1) r T-k(k+1) T \leq(k+1) D
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n-2 k}{k+1}+r T-k T \leq D \\
& \frac{n-2 k}{k+1}+2 k T-k T \leq D \\
& \frac{n-2(k+1)+2}{k+1}+k T \leq D \\
& \frac{n+2}{k+1}+(k+1) T-(T+2) \leq D \\
& 2 \sqrt{(n+2) T}-(T+2) \leq D \\
& \sqrt{4 n T+8 T}-(T+2) \leq D
\end{aligned}
$$

$$
\begin{array}{r}
\text { arith mean } \geq \text { geo mean } \\
\frac{n+2}{k+1}+(k+1) T \geq 2 \cdot \sqrt{\frac{n+2}{k+1} \cdot(k+1) T} \\
\frac{n+2}{k+1}+(k+1) T \geq 2 \sqrt{(n+2) T} \\
\text { min when } \quad \frac{n+2}{k+1}=(k+1) T \\
\frac{n+2}{T}=(k+1)^{2} \\
(k+1)=\sqrt{\frac{n+2}{T}}
\end{array}
$$

Determining $\mathbf{x}_{\mathbf{i}}$ for an odd number of groups $\mathbf{r}=\mathbf{2 k + 1}$

$$
r=2 k+1
$$

$$
P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq m T
$$

$$
\left(x_{i}-1\right)+\left(x_{j}-1\right)+(j-i-1) T
$$

- n bits $\quad r=m=2 k+1$ groups

The x_{i} 's can be computed iteratively as follows:
Initially take $x_{1}=x_{m}=0$
At each iteration, increase as many of the x_{i} 's as possible by one unit, without violating the constraints

$$
0 \leq x_{i} \leq y_{i}, \quad i=1, \ldots, m
$$

Thus, at some iteration, we have $\sum_{i=1}^{m} x_{i}=n \quad$ and
the algorithm terminates

$$
x_{1}=4, x_{2}=7, x_{3}=8, x_{4}=9, x_{5}=9, x_{6}=7, x_{7}=4
$$

An example of $\mathbf{x}_{\mathbf{3}} \leq \mathrm{y}_{3}$ example $(\mathbf{r} \mathbf{=} \mathbf{2 k + 1})$

$$
\begin{gathered}
y_{i}=\min \{1+i T, 1+(m+1-i) T\} \\
i=1, \ldots, m
\end{gathered}
$$

All skip delay constraints $(\mathbf{r}=\mathbf{2 k} \mathbf{+ 1})$

$$
r=2 k+1
$$

Maximum delays of carry signals $(\mathbf{r}=\mathbf{2 k + 1})$

Oklobdzija: High-Speed VLSI arithmetic units : adders and multipliers

The maximum delay of carry signals generated in the $1^{\text {st }}$ group or terminated in the $7^{\text {th }}$ group	\leq	D
The maximum delay of carry signals generated in the $2^{\text {nd }}$ group or terminated in the $6^{\text {th }}$ group	\leq	D
The maximum delay of carry signals generated in the $3^{\text {rd }}$ group or terminated in the $5^{\text {th }}$ group	\leq	D
All skip delay	\leq	D
Comparable to all skip delay	\leq	D
Use this delay to find the lower bound of D		ay of gnals

Delays of carry signals [G1, G7] ($r=2 \cdot 3+1$)

$$
\begin{aligned}
& x_{1}=4, x_{2}=7, x_{3}=8, x_{4}=9, x_{5}=9, x_{6}=7, x_{7}=4 \\
& x_{1}+x_{2}=4+7=11 \\
& x_{1}+T+x_{3}=4+T+8=12+T=15 \\
& x_{1}+2 T+x_{4}=4+2 T+9=13+2 T=19 \\
& x_{1}+3 T+x_{5}=4+3 T+9=13+3 T=21 \\
& x_{1}+4 T+x_{6}=4+4 T+7=11+4 T=23 \\
& x_{1}+5 T+x_{7}=4+5 T+4=8+5 * 3=23 \\
& x_{2}+4 T+x_{7}=7+4 T+4=11+4 T=23 \\
& x_{3}+3 T+x_{7}=8+3 T+4=12+3 T=21 \\
& x_{4}+2 T+x_{7}=9+2 T+4=13+2 T=19 \\
& x_{5}+T+x_{7}=9+T+4=13+T=16 \\
& x_{6}+x_{7}=11
\end{aligned}
$$

Assume $T=3$

Verifying x_{i} constraints $(r=2 \cdot 3+1)$

$x_{1}=4, x_{2}=7, x_{3}=8, x_{4}=9, x_{5}=9$,	$x_{6}=7, x_{7}=4$	
$x_{2} \leq 2 T+1$	$x_{2}=7$	≤ 7
$x_{3} \leq 3 T+1$	$x_{3}=8$	≤ 10
$x_{4} \leq 4 T+1$	$x_{4}=9$	≤ 13
$x_{5} \leq 3 T+1$	$x_{5}=9$	≤ 13
$x_{6} \leq 2 T+1$	$x_{6}=7$	≤ 7
$x_{7}, x_{1} \leq 1 T+1$	$x_{7}, x_{1}=4 \leq 4$	
$x_{2} \leq 2 T+1$	$x_{2}=7$	≤ 7
$x_{3} \leq 3 T+1$	$x_{3}=8$	≤ 10
$x_{4} \leq 4 T+1$	$x_{4}=9$	≤ 13
$x_{5} \leq 3 T+1$	$x_{5}=9$	≤ 10
$x_{6} \leq 2 T+1$	$x_{6}=7$	≤ 7

$$
x_{i} \leq y_{i}=\min \{1+i T, 1+(m+1-i) T\}
$$

Loose upper bound

Maximum delays using x_{i} constraints $(r=2 \cdot 3+1)$

$x_{1}=4, x_{2}=7, x_{3}=8, x_{4}=9, x_{5}=9, x_{6}=7, x_{7}=4$
$x_{1}+x_{2} \leq 1 T+1+0 T+2 T+1=3 T+2$
$x_{1}+T+x_{3} \leq 1 T+1+1 T+3 T+1=5 T+2$
$x_{1}+2 T+x_{4} \leq 1 T+1+2 T+4 T+1=7 T+2$
$x_{1}+3 T+x_{5} \leq 1 T+1+3 T+4 T+1=8 T+2$
$x_{1}+4 T+x_{6} \leq 1 T+1+4 T+3 T+1=8 T+2$
$x_{1}+5 T+x_{7} \leq 1 T+1+5 T+2 T+1=8 T+2$
$x_{2}+4 T+x_{7} \leq 3 T+1+4 T+1 T+1=8 T+2$
$x_{3}+3 T+x_{7} \leq 4 T+1+3 T+1 T+1=8 T+2$
$x_{4}+2 T+x_{7} \leq 4 T+1+2 T+1 T+1=7 T+2$
$x_{5}+T+x_{7} \leq 3 T+1+1 T+1 T+1$

Assume $T=3$

$\mathbf{r}=\mathbf{2 k + 1}$ groups (1) generated and terminated group

Let $x_{1}, x_{2}, \ldots, x_{r}$ denote the optimal group sizes corresponding to the maximum delay D.

Given the maximum delay D , the optimal group sizes are $x_{1}, x_{2}, \ldots, x_{r}$
the number of groups $=r$

- n bits
- $r=2 k$ groups

$$
\text { prove }(m-1) T \leq D
$$

Starting group i

∇	terminatin	ing group r-i+1	$r=2 k+1$
1,	$2 k+1$	$=r-(1-1)$,	$i=1$
2,	$2 k$	$=r-(2-1)$,	$i=2$
k,	$k+2$	$=r-(k-1)$,	$i=k$
	k+1		

$r=\mathbf{2 k + 1}$ groups $(2)(j-i-1)=\mathbf{2 (k - i})$

$$
r=2 k+1
$$

$$
P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq m T
$$

- n bits
- rgroups

$$
\begin{aligned}
& 3 T+x_{4} \leq 1+7 T \quad x_{4} \leq 1+4 T \\
& 3 T+x_{4}<7 T<D
\end{aligned}
$$

$\mathbf{r}=\mathbf{2 k + 1}$ groups (3) propagation time P , max delay D

$$
r=2 k+1
$$

- n bits
- r groups
$P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq r T$
Consider a carry signal originating in the i-th group
terminating in the j-th group $\mathrm{i}<\mathrm{j}$.
Denote its propagation time by P .

$$
\begin{aligned}
\left(x_{1}-1\right)+(r-2) T+\left(x_{r}-1\right) & \leq D \\
\left(x_{2}-1\right)+(r-4) T+\left(x_{r-1}-1\right) & \leq D \\
\left(x_{3}-1\right)+(r-6) T+\left(x_{r-2}-1\right) & \leq D \\
\left(x_{k}-1\right)+(r-2 k) T+\left(x_{r-k+1}-1\right) & \leq D \\
k T+\left(x_{k+1}-1\right) & \leq D
\end{aligned}
$$

Let D denote the maximum delay of a carry signal (max of all P) in a n bit carry skip adder with group sizes chosen optimally.

$\mathbf{r}=\mathbf{2 k + 1}$ groups (4) max delay constraints

$$
r=2 k
$$

$$
P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq m T
$$

- n bits
- rgroups

$$
\begin{aligned}
\left(x_{1}-1\right)+(r-2) T+\left(x_{r}-1\right) & \leq D \\
\left(x_{2}-1\right)+(r-4) T+\left(x_{r-1}-1\right) & \leq D \\
\left(x_{3}-1\right)+(r-6) T+\left(x_{r-2}-1\right) & \leq D \\
\left(x_{k}-1\right)+(r-2 k) T+\left(x_{k+1}-1\right) & \leq D \\
r T & \leq D
\end{aligned}
$$

$$
\begin{gathered}
\left(x_{1}-1\right)+(2 k-2 \cdot 1) T+\left(x_{2 k+1-1}-1\right) \leq D \\
\left(x_{2}-1\right)+(2 k-2 \cdot 2) T+\left(x_{2 k+1-2}-1\right) \leq D \\
\left(x_{3}-1\right)+(2 k-2 \cdot 3) T+\left(x_{2 k+1-3}-1\right)
\end{gathered} \leq D .
$$

$\mathbf{r}=\mathbf{2 k + 1}$ groups (5) sum of all the inequalities

$$
r=2 k+1
$$

$P \leq\left(x_{i}-1\right)+(j-i-1) T+\left(x_{j}-1\right) \leq m T$

$$
\begin{array}{r}
\left(x_{1}-1\right)+2(k-1) T+T+\left(x_{2 k+1}-1\right) \leq D \\
\left(x_{2}-1\right)+2(k-2) T+T+\left(x_{2 k}-1\right) \leq D \\
\left(x_{3}-1\right)+2(k-3) T+T+\left(x_{2 k-1}-1\right) \leq D \\
\left(x_{k}-1\right)+2(k-k) T+T+\left(x_{k+2}-1\right) \leq D \\
k T+\left(x_{k+1}-1\right) \leq D
\end{array}
$$

$$
n-2 k-1+(r+1) k T-k(k+1) T \leq(k+1) D
$$

$\mathbf{r}=\mathbf{2 k + 1}$ groups (6) arithmetic and geometric means

$$
\begin{aligned}
r= & 2 k+1 \\
& n-2 k-1+(r+1) k T-k(k+1) T \leq(k+1) D \\
& \frac{n-2 k-1}{(k+1)}+\frac{(r+1) k T}{(k+1)}-k T \leq D \\
& \frac{n-2 k-1}{(k+1)}+\frac{(2(k+1)) k T}{(k+1)}-k T \leq D \\
& \frac{n-2 k-1}{(k+1)}+k T \leq D \\
& \frac{n-2(k+1)+1}{(k+1)}+(k+1) T-T \leq D \\
& \frac{(n+1)}{(k+1)}+(k+1) T-(T+2) \leq D \\
& 2 \cdot \sqrt{(n+1) T}-(T+2) \leq D \\
& \sqrt{4 n T+4 T}-(T+2) \leq D
\end{aligned}
$$

Closed formula for $\mathbf{y}_{1}+\mathbf{y}_{\mathbf{2}}+\ldots+\mathbf{y}_{\mathbf{m}}$

$$
\sum_{i=1}^{m} y_{i}=m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\left(1-(-1)^{m}\right) \frac{1}{8} T
$$

$$
\begin{array}{ll}
\sum_{i=1}^{m} y_{i}=m+\frac{1}{2} m T+\frac{1}{4} m^{2} T & (\text { even } m) \\
\sum_{i=1}^{m} y_{i}=m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\frac{1}{4} T & (\text { odd } m)
\end{array}
$$

$$
y_{i}=\min \{1+i T, 1+(m+1-i) T\}, \quad i=1, \ldots, m
$$

$$
\begin{array}{lr}
y_{1}=1+1 \cdot T & y_{m}=1+1 \cdot T \\
y_{2}=1+2 \cdot T & y_{m-1}=1+2 \cdot T \\
y_{3}=1+3 \cdot T & y_{m-2}=1+3 \cdot T
\end{array}
$$

When $\boldsymbol{m}=\mathbf{2 k}$, find a closed formula for $\boldsymbol{\Sigma} \boldsymbol{y}_{\boldsymbol{i}}$ (1)

$$
\begin{aligned}
& m=2 k \\
& y_{i}=\min \{1+i T, \quad 1+(m+1-i) T\}, \quad i=1, \ldots, m \\
& \text { m } \frac{1}{2} \cdot k(k+1) \\
& \frac{m}{2}=k
\end{aligned}
$$

$$
0 \leq x_{i} \leq y_{i}, i=1, \ldots, m
$$

When $\boldsymbol{m}=\mathbf{2 k}$, find a closed formula for $\boldsymbol{\Sigma} \boldsymbol{y}_{\boldsymbol{i}}$ (2)

$$
\begin{array}{rl}
1+2+\cdots+k=\frac{1}{2} k(k+1) & \frac{n(a+l)}{2} \\
m+2 \cdot \frac{1}{2} k(k+1) T & m=2 k \\
& =m+k(k+1) T \\
& =m+\frac{m}{2}\left(\frac{m}{2}+1\right) T \\
& =m+\frac{m}{2} T+\frac{m^{2}}{4} T
\end{array}
$$

$$
\begin{aligned}
& \text { even } m: m+\frac{1}{2} m T+\frac{1}{4} m^{2} T \\
& \text { odd } m: m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\frac{1}{4} T
\end{aligned}
$$

When $\boldsymbol{m}=\mathbf{2 k + 1}$, find a closed formula for $\boldsymbol{\Sigma} \boldsymbol{y}_{\boldsymbol{i}}$

$$
\begin{aligned}
& m=2 k+1 \quad y_{i}=\min \{1+i T, \quad 1+(m+1-i) T\}, i=1, \ldots, m \quad m \quad \frac{1}{2} \cdot k(k+1) \\
& m+1=2 k+2 \quad y_{1}=1+\min \{1 \cdot T, \quad(m-0) \cdot T\}_{\|}^{1} \quad 0 \leq x_{1} \leq 1+1 \cdot T \\
& \frac{m+1}{2}=k+1 \\
& \begin{array}{llll}
y_{2}=1+\min \{2 \cdot T, & (m-1) \cdot T\} & 0 \leq x_{2} & \leq 1+2 \cdot T \\
y_{3}=1+\min \{3 \cdot T, & (m-2) \cdot T\} & 0 \leq x_{3} & \leq 1+3 \cdot T
\end{array} \\
& y_{k}=1+\min _{2}\{(k) \cdot T, \quad(k+3) \cdot T\} \quad 0 \leq x_{k} \leq 1+k \cdot T \\
& y_{k+1}=1+\min \{(k+1) \cdot T,(k+2) \cdot T\} \quad 0 \leq x_{k+1} \leq 1+(k+1) \cdot T(k+1) \\
& y_{k+2}=1+\min \left\{(k+2 \cdot T,(k+1) \cdot T\} \quad 0 \leq x_{k+2} \leq 1+k \cdot T\right. \\
& y_{m-2}=1+\min \{(m-2) \cdot T, \quad 3 \cdot T\} \quad 0 \leq x_{m-2} \leq 1+3 \cdot T \\
& y_{m-1}=1+\min \{(m-1) \cdot T, \quad 2 \cdot T\} \quad\left\|\quad 0 \leq x_{m-1} \leq 1+\right\| 2 \cdot T \\
& y_{m-0}=1+\min ^{2}((m-0) \cdot T,-1 \cdot T\} \quad 0 \leq x_{m-0} \leq 1+1 \cdot T
\end{aligned}
$$

$$
0 \leq x_{i} \leq y_{i}, i=1, \ldots, m
$$

When $\mathbf{m}=\mathbf{2 k} \mathbf{+ 1}$, find a closed formula for $\boldsymbol{\Sigma} \boldsymbol{y}_{\boldsymbol{i}}$ (2)

$$
\begin{array}{rlrl}
1 & +2+\cdots+k=\frac{1}{2} k(k+1) & \frac{n(a+l)}{2} \\
& m+2 \cdot \frac{1}{2} k(k+1) T+(k+1) T & m=2 k+1 \\
& =m+k(k+1) T+(k+1) T & m+1=2 k+2 \\
& =m+(k+1)^{2} T & \frac{m+1}{2}=k+1 \\
& =m+\left(\frac{m+1}{2}\right)^{2} T & \\
& =m+\frac{m^{2}}{4} T+\frac{m}{2} T+\frac{1}{4} T &
\end{array}
$$

$$
\begin{aligned}
& \text { even } m: m+\frac{1}{2} m T+\frac{1}{4} m^{2} T \\
& \text { odd } m: m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\frac{1}{4} T
\end{aligned}
$$

Combining two cases (odd \& even r) (1-1)

$$
\begin{array}{ll}
r=2 k \\
r=2 k+1 & \sqrt{4 n T+8 T}-(T+2) \leq D \\
& \sqrt{4 n T+4 T}-(T+2) \leq D \\
& \sqrt{4 n T+4 T}-(T+2) \leq \sqrt{4 n T+8 T}-(T+2) \\
& \sqrt{4 n T+4 T}-(T+2) \leq D
\end{array}
$$

Combining two cases (odd \& even r) (1-2)

We will not produce an upper bound on $m T$.

Since m is the smallest positive integer satisfying

$$
\sum_{i=1}^{m-1} y_{i}<n \leq \sum_{i=1}^{m} y_{i}
$$

$$
\sum_{i=1}^{m} y_{i}=m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\left(1-(-1)^{m}\right) \frac{1}{8} T
$$

$$
(m-1)+\frac{1}{2}(m-1) T+\frac{1}{4}(m-1)^{2} T+\left(1-(-1)^{m-1}\right) \frac{T}{8}<n
$$

$$
n \leq m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\left(1-(-1)^{m}\right) \frac{1}{8} T
$$

Combining two cases (odd \& even r) (2-1)

$$
\begin{array}{ll}
(m-1)+\frac{1}{2}(m-1) T+\frac{1}{4}(m-1)^{2} T+\left(1-(-1)^{m-1}\right) \frac{T}{8}<n & \sum_{i=1}^{m-1} y_{i}<n \\
(m-1)+\frac{1}{2}(m-1) T+\frac{1}{4}(m-1)^{2} T+\left(1-(-1)^{m-1}\right) \frac{T}{8}+1 \leq n & \sum_{i=1}^{m-1} y_{i}+1 \leq n \\
(m)+\frac{1}{2}(m T-T)+\frac{1}{4}\left(m^{2} T-2 m T+T\right)+\left(1-(-1)^{m-1}\right) \frac{T}{8} \leq n \\
m-\frac{1}{4} T+\frac{1}{4} m^{2} T+\left(1-(-1)^{m-1}\right) \frac{T}{8} \leq n \\
\frac{1}{4} m^{2} T \leq n-m+\frac{1}{4} T-\left(1-(-1)^{m-1}\right) \frac{T}{8} \\
\left(\frac{1}{4} m^{2} T\right) \cdot 4 T \leq\left(n-m+\frac{1}{4} T-\left(1-(-1)^{m-1}\right) \frac{T}{8}\right) \cdot 4 T \\
m^{2} T^{2} \leq 4 n T-4 m T+T^{2}-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}
\end{array}
$$

Combining two cases (odd \& even r) (2-2)

$$
\begin{aligned}
& m^{2} T^{2} \leq 4 n T-4 m T+T^{2}-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2} \\
& m^{2} T^{2}+4 m T \leq 4 n T+T^{2}-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2} \\
& m^{2} T^{2}+4 m T+4 \leq 4+4 n T+T^{2}-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2} \\
& (m T+2)^{2} \leq 4+4 n T+T^{2}-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2} \\
& (m T+2) \leq \sqrt{4+4 n T+T^{2}-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}
\end{aligned}
$$

$$
m T \leq-2+\sqrt{4+4 n T+T^{2}-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}} \quad\left\langle\quad \sum_{i=1}^{m-1} y_{i}<n\right.
$$

$$
\sum_{i=1}^{m} y_{i}=m+\frac{1}{2} m T+\frac{1}{4} m^{2} T+\left(1-(-1)^{m}\right) \frac{1}{8} T
$$

$r=2 k$ even r

$$
r=2 k
$$

$$
\begin{gathered}
m T \leq-2+\sqrt{4 n T+T^{2}+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}} \\
-D \leq-\sqrt{4 n T+8 T}+(T+2) \\
m T-D \leq T-\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}} \\
m T-D \leq T+\frac{T^{2}-8 T+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}{\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}}
\end{gathered}
$$

$r=2 k$ even r

$$
\begin{aligned}
& r=2 k \\
& X \stackrel{\text { wt }}{\underline{=}} 4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& m T \leq-2+\sqrt{4 n T+T^{2}+X} \\
& -D \leq-\sqrt{4 n T+8 T}+(T+2)
\end{aligned}
$$

$$
\begin{aligned}
& m T-D \leq T-\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+X} \\
& (-\sqrt{a}+\sqrt{b}) \cdot \frac{(+\sqrt{a}+\sqrt{b})}{(+\sqrt{a}+\sqrt{b})} \quad=\frac{(-a+b)}{(+\sqrt{a}+\sqrt{b})} \\
& \left(-\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+X}\right) \cdot \frac{\left(\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+X}\right)}{\left(\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+X}\right)} \\
& \left\{-\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+X}\right\} \cdot\left\{+\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+X}\right\} \\
& =-(4 n T+8 T)+\left(4 n T+T^{2}+X\right)=T^{2}-8 T+X
\end{aligned}
$$

$$
m T-D \leq T+\frac{T^{2}-8 T+X}{\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+X}}
$$

$r=2 k+1$ odd r

$$
\begin{aligned}
& r=2 k+1 \\
& \quad \sqrt{4 n T+4 T}-(T+2) \leq D \\
& \quad-\sqrt{4 n T+4 T}+(T+2) \geq-D
\end{aligned}
$$

$r=2 k+1$ odd r

$$
\begin{aligned}
& r=2 k+1 \\
& X \xlongequal{\text { wat }} 4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& m T \leq-2+\sqrt{4 n T+T^{2}+X} \\
& -D \leq-\sqrt{4 n T+4 T}+(T+2)
\end{aligned}
$$

$$
\begin{aligned}
& m T-D \leq T-\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+X} \\
& (-\sqrt{a}+\sqrt{b}) \cdot \frac{(+\sqrt{a}+\sqrt{b})}{(+\sqrt{a}+\sqrt{b})}=\frac{(-a+b)}{(+\sqrt{a}+\sqrt{b})} \\
& \left(-\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+X}\right) \cdot \frac{\left(\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+X}\right)}{\left(\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+X}\right)} \\
& \left\{-\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+X}\right\} \cdot\left\{+\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+X}\right\} \\
& =-(4 n T+4 T)+\left(4 n T+T^{2}+X\right)=T^{2}-4 T+X
\end{aligned}
$$

$$
m T-D \leq T+\frac{T^{2}-4 T+X}{\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+X}}
$$

Combining two cases (odd \& even r) (3)

$$
\begin{array}{ll}
r=2 k & \sqrt{4 n T+8 T}-(T+2) \leq D \\
r=2 k+1 & \sqrt{4 n T+4 T}-(T+2) \leq D
\end{array}
$$

$$
m T \leq-2+\sqrt{4+4 n T+T^{2}-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}
$$

$$
\begin{array}{ll}
m T-D \leq T+\frac{T^{2}-8 T+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}{\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}} & r=2 k \\
m T-D \leq T+\frac{T^{2}-4 T+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}{\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}} & r=2 k+1
\end{array}
$$

$r=2 k$ even r

$$
\begin{gathered}
\sqrt{4 n T+T^{2}+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}} \\
X \stackrel{\text { def }}{=} 4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2} \\
X=4 \\
X=4-T^{2} \quad \text { odd } m \\
X
\end{gathered}
$$

$$
\sqrt{4 n T+T^{2}+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}=\sqrt{4 n T+T^{2}+X}
$$

- odd m
$(-1)^{m-1}=1$
$\left(1-(-1)^{m-1}\right)=0$
$\sqrt{4 n T+4+T^{2}}$
- even m

$$
\begin{aligned}
& (-1)^{m-1}=-1 \\
& \left(1-(-1)^{m-1}\right)=2 \\
& \sqrt{4 n T+T^{2}+4-T^{2}} \\
& =\sqrt{4 n T+4}
\end{aligned}
$$

Combining two cases (odd \& even r) (3)

$r=2 k$

$$
m T-D \leq T+\frac{T^{2}-8 T+4-\left(1-(-1)^{m-1} \frac{T^{2}}{2}\right.}{\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}}
$$

$$
m T-D \leq T+\frac{T^{2}-8 T+X}{\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+X}}
$$

$$
\leq T+\frac{T^{2}-8 T+4-T^{2}}{\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+4}}
$$

$$
X=4-T^{2} \quad \text { even } m
$$

$r=2 k+1$

$$
m T-D \leq T+\frac{T^{2}-4 T+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}{\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+4-\left(1-(-1)^{m-1}\right) \frac{T^{2}}{2}}}
$$

$$
X=4 \quad \text { odd } m
$$

$$
\begin{aligned}
m T-D & \leq T+\frac{T^{2}-4 T+X}{\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+X}} \\
& \leq T+\frac{T^{2}-4 T+4}{\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+4}}
\end{aligned}
$$

$$
\leq T+\frac{(T-2)^{2}}{\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+4}}
$$

Combining two cases (odd \& even r) (3)

$$
\begin{aligned}
& r=2 k \\
& m T-D \leq T+\frac{T^{2}-8 T+X}{\sqrt{4 n T+8 T}+\sqrt{4 n T+T^{2}+X}} \\
& r=2 k+1 \quad X=4 \\
& m T-D \leq T+\frac{T^{2}-4 T+X}{\sqrt{4 n T+4 T}+\sqrt{4 n T+T^{2}+X}} \\
& T=3 \\
& n=32 \text { bits }
\end{aligned}
$$

Combining two cases (odd \& even r) (3)

$$
\begin{array}{ll}
r=2 k & X=4-T^{2} \\
m T-D \leq T+\frac{-8(T / n)+4}{\sqrt{4(T / n)+8\left(T / n^{2}\right)}+\sqrt{4(T / n)+4 / n^{2}}} & =T+\frac{-8(T / n)+4}{\sqrt{4(T / n)}+\sqrt{4(T / n)}} \approx T+\frac{-8(T / n)+4}{4 \sqrt{(T / n)}} \\
r=2 k+1 \quad X=4 & \approx T+-2 \sqrt{T / n}+\frac{1}{\sqrt{(T / n)}} \\
m T-D \leq T+\frac{(T-2)^{2} / n}{\sqrt{4(T / n)+4\left(T / n^{2}\right)}+\sqrt{4(T / n)+(T / n)^{2}+4 / n^{2}}} & =T+\frac{(T-2)^{2} / n}{\sqrt{4(T / n)}+\sqrt{4(T / n)}} \approx T+\frac{(T-2)^{2} / n}{4 \sqrt{(T / n)}}
\end{array}
$$

$T=3$
$n=32$ bits

```
2 \leqT\leq7
```

$n=32$ bits

$$
m T-D<T+1
$$

$$
\frac{2}{32} \leq \frac{T}{32} \leq \frac{7}{32}
$$

```
```

0.0625 \leq \frac{T}{32}\leq0.21875

```
```

```
```

0.0625 \leq \frac{T}{32}\leq0.21875

```
```


Delay model

For n sufficiently large,
We have $\quad m T-D<T+1$

Since $\quad m T-D$ is an integer

$$
m T-D \leq T
$$

