ELF1 7A Linking Background - ELF Study 1999

Young W. Lim

2020-07-08 Wed

Outline

- Based on
- Types of linking
 - TOC
 - Staic vs. dynamic linking
 - Build-time, load-time, run-time linking
- Oynamic loading and dynamic linking
 - Dynamic loading
 - Dynamic linking
 - Possible Cases of loading and linking
- 4 Linking for dynamic executables / libraries
 - TOC
 - Build-time linking for dynamic executables / libraries
 - Load-time linking for dynamic executables / libraries

Based on

"Study of ELF loading and relocs", 1999 http://netwinder.osuosl.org/users/p/patb/public_html/elf_ relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short: you are free to share and make derivative works of the file under the conditions that you appropriately attribute it, and that you distribute it only under a license compatible with this one.

Compling 32-bit program on 64-bit gcc

- gcc -v
- gcc -m32 t.c
- sudo apt-get install gcc-multilib
- sudo apt-get install g++-multilib
- gcc-multilib
- g++-multilib
- gcc -m32
- objdump -m i386

TOC: Types of linking

- Static vs. dynamic linking
- Build-time, load-time, run-time linking
- Build-time dynamic linking
- Load-time dynamic linking
- ld-linux.so

TOC: Static and dynamic linking

- Binary executable files
- Statically linked files
- Dynamically linked files
- In-memory copy of an executable

Binary executable file

- a statically linked binary with all libraries loaded into the executable itself
- a dynamically linked binary with only some libraries statically linked

 $\verb|https://unix.stackexchange.com/questions/356709/difference-between-ld-and-ld-som/questions/3$

Statically linked files

- when you statically link a file into an executable, the contents of the files are included in the executable at link time.
- statically linked executable and library files <u>never change</u> (the last step in the compilation prcess)

https://stackoverflow.com/questions/311882/what-do-statically-linked-and-dynamical

Dynamically linked files

- when you dynamically link a file into an executable, a pointer to the file is <u>included</u> in the executable but the <u>contents</u> of the file are not included at <u>link</u> time.
- these referenced dynamically linked files are
 - not brought in the memory until you run the executable
 - loaded into memory by the dynamic linker at run time

 $\verb|https://stackoverflow.com/questions/311882/what-do-statically-linked-and-dynamically-li$

In-memory copy of an executable

- dynamically linked files are only brought into the in-memory copy of the executable, not the executable file on the disk.
 - files on the disk are not modified
 - a shared library is shared across several processes
- dynamically loaded libraries
 can <u>change</u> at the <u>next run</u> time
 just by <u>replacing</u> the corresponding files on the disk.

https://stackoverflow.com/questions/311882/what-do-statically-linked-and-dynamical

TOC: Build-time, load-time, run-time linking

- Build-time, load-time, run-time
- Build-time vs. load-time linking
- (1) build-time linking for staic executables / libraries
- (2) build-time linking for dynamic executables / libraries
- (3) load-time linking for dynamic executables / libraries
- Load-time vs. run-time dynamic linking
- Run-time dynamic linking
- Build-time linker 1d
- Run-time linker 1d.so
- Linker at the build time
- Kernel at the load time
- Dynamic loader at the load time

Build-time, load-time, run-time

compile step	link step	run step	run step
build-time	build-time	load-time	run-time

 $\verb|https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and the composition of th$

Build-time and. load-time linkers

build-time linking	build-time linking	load-time linking
static linking	static linking	dynamic linking
ld	ld	ld.so
for statically	for dynamically	for dynamically
linked exectuables	linked executables	linked executables
or static libraries	or shared libraries	or shared libraries

 $\verb|https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are also as the control of t$

(1) build-time linking for static executables / libraries

- static linking, at build-time the build-time linker 1d
 - resolves all the objects used in the program during the build,
 - · merges the objects which are used, and
 - produces an executable binary which doesn't use external libraries;

 $\verb|https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are all the control of the c$

(2) build-time linking for dynamic executables / libraries

- static linking, at build-time: the build-time linker 1d
 - resolves all objects used in the program, but
 - it only stores *references* to them;
 - instead of storing them in the executable (no merge)
 - records
 - which shared libraries are required at the run time,
 - possibly which versions of libraries or symbols are required.
 - which run time loader should be used

 $\label{lem:https://unix.stackexchange.com/questions/449107/what-differences-and-relations-archites://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-ancherences-architecture-a$

(3) load-time linking for dynamic executables / libraries

- dynamic linking, at <u>run-time</u> (specifically <u>load-time</u>):
 the run-time linker <u>ld.so</u>, or <u>dynamic linker</u>,
 - resolves all the references stored in the executable,
 - loading all the required libraries (shared objects) and
 - updating all the object references before running the program.

https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are

Load-time vs. run-time dynamic linking

- load-time dynamic linking the OS handles unresolved symbols in the library
 - referenced by the executable (or another library)
 - resolved when the executable/library is loaded into memory
- run-time dynamic linking an API provided by the OS or through a <u>library</u>
 - can explicitly load a DLL or DSO when you need it
 - and then perform the symbol resolution

https://stackoverflow.com/questions/2055840/difference-between-load-time-dynamic-

Run-time dynamic linking

• using libdl

dlopen()	gain access to an executable object file
dclose()	close a dlopen object
dlsym()	obtain the address of a symbol from a dlopen object
dlvsym()	Programming interface to dynamic linking loader.
dlerror()	get diagnostic information

http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html

Build-time linker 1d

- a static linker
 - links a program or library at compile (build) time
 - usually as the last step in the compilation process, creating a binary executable or a library.
- a static library
 - has the suffix name .a denoting archive
 - is created by the ar utility
- 1d is a static linker (build-time linker)
- 1d also plays a role in dynamic linking (build-time linker)
 - stores all object references in a dynamic executable

Run-time linker 1d.so

- a dynamic linker
 - <u>loads</u> the dynamic libraries into the process' address space at <u>run</u> time.
 - libraries were dynamically linked at compile (build) time
- a dynamic library
 - so represents shared object
 - the suffix name of shared libraries
 - a library that may be dynamically linked into programs
 - one library is shared among several programs
- ld.so is a dynamic linker (run-time linker)

https://unix.stackexchange.com/questions/356709/difference-between-ld-and-ld-so

Linker at the build time

- o compile, link, run
 - 1d is not called at either compile or run time
 - only at the link step is /usr/bin/ld is invoked.
 - on Linux, 1d is part of the binutils package.
- a link step is performed as a <u>final step</u> in producing an executable, or a shared library (build time)
 - this is called static linking, to differentiate this step from dynamic loading that will happen at run time (specifically load time)

https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and-

kernel at the load time

The kernel

- · loads executable into memory, and
- checks whether runtime loader was requested at static link time.
- If it was, the dynamic loader is also loaded into memory, and
- execution control is passed to it (instead of the main executable).

https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and-

dynamic loader at the load time

- the dynamic loader
 - examines the executable
 - · which other libraries are required
 - whether correct versions can be found,
 - loads them into memory, and
 - performs symbol resolution
 between the main executable and the shared libraries
 - this is the runtime loading step, often also called dynamic linking
 - on Linux, dynamic loader is a part of libc (GLIBC, uClibc and musl each have their own loader).

https://stackoverflow.com/questions/52118756/is-ld-called-at-both-compile-time-and-called-at-both-called

TOC: Dynamic loading

dynamic loading

Dynamic loading (1)

- suppose our program that is to be <u>executed</u> consist of various modules.
- not all the modules are loaded into the memory at once
- the main module is loaded first and then starts to execute
- some other modules are loaded only when they are required
- until loading them, the execution is stopped

 $\verb|https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and the control of the cont$

Dynamic loading (2)

- Assume a linker is called to link necessary modules into an executable module.
- In dynamic loading, after the <u>linker</u> is called, only main module is loaded into memory.
- During execution, if main module needs another module which is already linked in executable module, then calling module calls relocatable linking loader to load the called module into apporiate location in the processes logical adress space.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and-com/questions/9

Dynamic loading (3)

- loading the dependent library or routine
 on-demand or
 at some time at run time <u>after</u> load time
 (the time at which the main program executable is loaded).
- this is contrast to loading all dependencies with the main program.
 at load-time together
- The loading process completes when the library has been successfully loaded into main memory.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-adding

Dynamic loading (4)

- loading the library (or any other binary executable) into the memory during load or run time.
- dynamic loading can be imagined to be similar to plugins
 - an executable (main module) can actually start to <u>run</u> before the <u>dynamic loading</u> happens
- The dynamic loading example can be created using dlopen()
 of Dynamically Loaded (DL) libraries

 $\verb|https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and the control of the cont$

Dynamic loading (5)

- Dynamic loading: system library or other routine is loaded during run time and it is not supported by OS
- when your program runs, it's the <u>programmer</u>'s job to open that library.
 such programs are usually linked with <u>libdl</u>, which provides the ability to open a shared library.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-adding

Dynamic loading (6)

- dynamic loading allows a computer program
 - to <u>start</u> up <u>without</u> loading these libraries,
 - to discover and load available libraries after starting
- a computer program can, at run time,
 - load a library or other binary into memory,
 - retrieve the addresses of library functions and variables
 - execute those functions or access those variables, and
 - <u>unload</u> the library from memory.
- the 3 mechanisms by which
 - dynamic loading
 - static linking
 - dynamic linking.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-adding

2020-07-08 Wed

Dynamic loading (7)

- With dynamic loading a module is not loaded until it is called
 - all modules are kept on a disk in a relocatable load format.
 - the main program is loaded into memory and is executed
- when a module needs to <u>call</u> <u>another module</u>, the calling module first checks to see whether it has been loaded.
 - if not , the relocatable linking loader is called to load the desired module into memory and update program's address tables to reflect this change.
 - then control is passed to newly loaded module

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-adding

Dynamic loading (8)

- an unused module is never loaded .
 - useful when the code is large
- dynamic loading does not need special support from OS
 - it is the responsibility of a <u>programmer</u>

 $\verb|https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and the control of the cont$

TOC: Dynamic linking

dynamic linking

Dynamic linking (1)

- suppose our program has some <u>function calls</u> whose definition is located in some system library
- the header file only consists of the declarations of functions and not definitions
- during execution, if the function gets called
 - the system library is loaded into main memory
 - link the <u>function call</u> in the program with the <u>function definition</u> in the system library.

 $\verb|https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and the control of the cont$

Dynamic linking (2)

- when a module needs to be called, that module is loaded into memory and a <u>link</u> between the calling module and called module is established by the <u>stub</u> which is a piece of code that is linked in <u>linking time</u> of the program.
- dynamic Linking mostly used with shared libraries which different users may use.

 $\verb|https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-and the control of the cont$

Dynamic linking (3)

- When the program makes the <u>first call</u> to an imported function whose library may or may not have been loaded yet.
 - Initially, the compiler places a temporary small function, called a stub, that gets called instead of the imported function.
 - the stub calls into the OS.
 - if the library is currently <u>not loaded</u>, it gets loaded (this step is called <u>dynamic loading</u>).
 - then, the stub is modified so that it calls the imported function <u>directly</u> for subsequent calls this process is called <u>dynamic linking</u>.
- The component of the OS that performs both steps is called the dynamic linker or the dynamic linking loader.

https://cs.stackexchange.com/questions/92484/difference-between-dynamic-loading-ar

Dynamic linking (4)

- linking is done during load or run time and not when the executable is created.
- the static linker does minimal work when creating the executable the dynamic linker has to load the libraries so it is called linking loader.

 $\verb|https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and the control of the cont$

Dynamic linking (5)

- Dynamic linking: system library or other routine is linked during runtime and it is supported by OS
- when compiling your executable you must specify the shared library your program uses, otherwise it won't even compile.
- When your program starts it's the system's job to open these libraries, which can be listed using the ldd command.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-amount in the control of the co

Dynamic linking (6)

- Dynamic linker is a <u>run time</u> program that <u>loads</u> and <u>binds</u> all of the dynamic dependencies of a program <u>before</u> starting to execute that program.
 - <u>find</u> what dynamic libraries a program requires, what libraries those libraries require (and so on)
 - <u>load</u> all those libraries and make all <u>references</u> to functions point to the <u>right places</u>
- the "hello world" program requires the C library
 - the dynamic linker will load the C library before loading the hello world program and will make any calls to printf() go to the right place

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-adding

Dynamic linking (7)

- both dynamic loading and linking happen at runtime, and load whatever they need into memory.
- The key difference is that
 - dynamic loading checks
 if the routine was loaded by the loader
 - dynamic linking checks
 if the routine is in the memory.

 $\verb|https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-and the control of the cont$

Dynamic linking (8)

- for dynamic linking,
 there is only one copy of the library code in the memory,
 - this may be not true for dynamic loading
 - That's why dynamic linking needs OS support to check the memory of other processes.
- this feature is very important for language subroutine libraries, which are shared by many programs.

https://stackoverflow.com/questions/10052464/difference-between-dynamic-loading-adding

Dynamic loading and dynamic linking

- dynamic loading refers to <u>mapping</u> (or less often copying)
 an executable or library into a <u>process's memory</u>
 after the executable has been started.
- dynamic linking refers to resolving symbols
 - associating their names with addresses or offsets
 - after compile time
- the reason it's hard to make a distinction is that the two are often done together without recognizing

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dystems-programming/What-is-the-exact-dystems-programming/What-is-the-exact-dystems-programming/What-is-the-exact-dystems-programming/What-is-the-exact-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-prog

$\left(1 ight)$ Dynamic loading, Static linking

- The executable has an address/offset table generated at compile time, but the actual code/data aren't loaded into memory at process start.
- old-fashioned overlay systems.
- some current embedded systems may work in this way
- to give the programmer control over memory use
- also to avoid the linking overhead at runtime

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dystems-programming/what-dystems-programming/what-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-pr

(2) Static loading, Dynamic linking

- when dynamic libraries specified at compile time
- an executable contains a reference to the dynamic/shared library, but the symbol table is missing or incomplete.
- both loading and linking occur at process start, which is considered as
 - dynamic for linking
 - static for loading.

 $\verb|https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamics and the control of the control of$

(3) Dynamic loading, Dynamic linking

- when you call dlopen
- the object file is <u>loaded</u> <u>dynamically</u> under program control (i.e. after <u>process start</u>)
- <u>symbols</u> in the calling <u>program</u> and in the <u>library</u> are <u>resolved</u> based on the process's particular memory layout at that time.

 $\verb|https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dynamics and the control of the control of$

(4) Static loading, Dtatic linking

- everything is resolved at compile time.
- everything is <u>loaded</u> into memory immediately at <u>process start</u>
- no further resolution (linking)
- does not require to load a single file
- but no known implementation for <u>multiple</u> file loading without dynamic linking

https://www.quora.com/Systems-Programming/What-is-the-exact-difference-between-dystems-Programming/What-is-the-exact-difference-between-dystems-programming/What-is-the-exact-dystems-programming/What-is-the-exact-dystems-programming/What-is-the-exact-dystems-programming/What-is-the-exact-dystems-programming/What-is-the-exact-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-programming/What-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program-dystems-program

TOC: Linking for dynamic executables / libraries

- Build-time linking for dynamic executables / libraries
- Load-time linking for dynamic executables / libraries

TOC: Build-time linking for dynamic executables / libraries

- Unresolved symbols
- Referenced libraries
- Copy relocation and symbol table
- PLT thunks
- Dynamic symbol table
- Dynamic relocation table
- Converted relocation types

Unresolved symbols

- unresolved symbols in a dynamic execuble
 - should be resolved
- unresolved symbols in a shared library
 - remain valid

Referenced libraries

- 1d stores the needed library in a DT_NEEDED record of the _DYNAMIC object of the output file
 - When the application starts, the dynamic linker looks at the DT_NEEDED field to find the required libraries.
 This field contains the soname of the library, so the next step is for the dynamic linker to walk through all the libraries in its search path looking for it.

http://bottomupcs.sourceforge.net/csbu/x4012.htm https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against

Copy relocation and symbol table

- If the output is <u>not</u> position-independent and references data objects in the shared library,
 - generate a copy relocation to copy the original image of the object into the main program's data segment at load time,
 - create a proper symbol table entry
 so that references to the object in the shared library itself
 get resolved to the new copy in the main program,
 rather than the original copy in the library.

PLT thunks

- generating PLT thunks
 for the destination of each function call in the output
 - remain unresolved at build-time

Dynamic symbol table

- creating a dynamic symbol table,
 - the runtime linker ld.so can use dynamic symbol table to link the executable against the library at run-time
- To see details:

```
objdump -T myprog (--dynamic-syms)
```

 $\verb|https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against terms for the control of the control of$

Dynamic relocation table

- creating the dynamic relocation table to check which machine code locations need to be changed to point toynamically linked symbols.
- To see details:

```
objdump -R myprog (--dynamic-reloc)
```

Converted relocation types

- that 1d takes object files with various relocation types
 - representing anything the compiler or assembler can produce
- resolves most of them except a small number of relocation types
 - for static linking, unresolved relocations are not allowed
 - for dynamic linking, all the remaining relocations shall be <u>converted</u> into a limited set of relocation types shall be resolved by the dynamic linker at load time.

https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against

TOC: Load-time linking for dynamic executables / libraries

- At the link time
- ld-linux.so vs. ld.so
- glibc
- ld-linux.so

$\left(1\right)$ dynamic applications

- a dynamic applications (binary, executable)
 - consist of one or more <u>dynamic</u> <u>objects</u>
 - typically a <u>dynamic</u> <u>executable</u> and one or more <u>shared</u> <u>object</u> <u>dependencies</u>
- run time linker for dynamic objects

https://renenyffenegger.ch/notes/development/dynamic-loader https://docs.oracle.com/cd/E19253-01/816-5165/ld.so.1-1/index.html

(2) search shared libraries

- to see the shared object libraries used by a given <u>application</u> use the <u>ldd</u> command
- shared library directories
 - /lib
 - /usr/lib.
- additional search directory
 - /etc/ld.so.conf can be used to configure the dynamic loader to search for other directories (eg. /usr/local/lib or /opt/lib)

https://renenyffenegger.ch/notes/development/dynamic-loader https://docs.oracle.com/cd/E19253-01/816-5165/ld.so.1-1/index.html

(3) 1dd print shared object dependencies

- 1dd prints the shared objects (shared libraries) required by each program or shared object specified on the command line.
- An example of its use and output is the following:

```
$ ldd /bin/ls
linux-vdso.so.1 (0x00007ffcc3563000)
libselinux.so.1 => /lib64/libselinux.so.1 (0x00007f87e5459000)
libcap.so.2 => /lib64/libcap.so.2 (0x00007f87e5254000)
libc.so.6 => /lib64/libc.so.6 (0x00007f87e4e92000)
libpcre.so.1 => /lib64/libpcre.so.1 (0x00007f87e4c22000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f87e4ale000)
/lib64/ld-linux-x86-64.so.2 (0x00005574bf12e000)
libattr.so.1 => /lib64/libattr.so.1 (0x00007f87e4817000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f87e45fa000)
```

https://stackoverflow.com/questions/19736853/what-does-ld-do-when-linking-against

(4) loading shared libraries

- most modern programs are dynamically linked
- when a dynamically linked application is <u>loaded</u> by the operating system kernel
- the dynamic loader must <u>locate</u> and <u>load</u>
 the dynamic libraries it needs for execution.

https://www.cs.virginia.edu/~dww4s/articles/ld_linux.html

(5) interpreter

- As part of the *initialization* and *execution* of a dynamic application, an <u>interpreter</u> is called
 - to run the executable, an interpreter program is used
- this interpreter completes
 the binding of the application
 to its shared object dependencies.

 $\verb|https://docs.oracle.com/cd/E19253-01/816-5165/ld.so.1-1/index.html| \\$

(6) ld-linux.so vs. ld.so

- The programs ld.so and ld-linux.so <u>find</u> and <u>load</u> the shared libraries require by a program, prepare the program to run, and then run it.
- linux binaries require dynamic linking (linking at run time)
 unless the -static option was given to ld(1) during compilation.

ld.so	a.out	
ld-linux.so	ELF	
/lib/ld-linux.so.1		libc5
/lib/ld-linux.so.2		glibc2

https://linux.die.net/man/8/ld-linux

(7) specifying an interpreter

- ELF allows executables to specify an interpreter,
 - the compiler and static linker set the interpreter of executables
 - the interpreter is set to be /lib/ld-linux-ia64.so.2
 which is the dynamic linker
- when the kernel loads the binary executable
 - it will check if the PT_INTERP field is present
 - if so load what it points to into memory and start it.

(8) dynamic linker name

- linux's dynamic loader / linker
 - ld.so for a.out
 - ld-linux.so for ELF
 - Id-linux.so.2 for glibc
 - /lib/ld-linux.so.2
 - /lib/ld-linux-x86-64.so.2
- finding the name of the dynamic loader with readelf -l executable | grep interpreter
 - readelf -1 dsplays the information contained in the file's segment headers

https://www.cs.virginia.edu/~dww4s/articles/ld_linux.html

(9) executing an interpreter

- indirect execution
 by running some dynamically linked program or shared object
 - the dynamic linker is specified in the .interp section of an ELF file (program)
 - no command-line options to the dynamic linker
- direct execution by the command-line
 - /lib/ld-linux.so.* [OPTIONS] [PROGRAM [ARGUMENTS]]

man ld-linux.so

(10) managing shared libraries

- The dynamic linker is the program that manages shared dynamic libraries on behalf of an executable.
 - load libraries into memory
 - modify the program at runtime (resolving relocation)
 - <u>call</u> the functions in the library

(11) relocations

- dynamically linked executables leave behind references that will be fixed at the runtime
 - eg. the address of a function in a shared library.
 - the references that are left behind are called relocations
- the essential part of the dynamic linker is fixing up these unresolved addresses at runtime,
 - these addresses can be known only when the executable and shared libraries are loaded in memory

(12) resolving relocations

- A relocation can simply be thought of as a <u>note</u> that a particular <u>address</u> will need to be <u>fixed</u> at the <u>load time</u> of the <u>runtime</u>
- before the code is ready to run all the relocations need to be resolved
 - fixing the addresses it refers to to point to the right place.

(13) base address

- the <u>executable</u> code is <u>not</u> shared, and each executable gets its own fresh <u>address</u> space
 - in an executable file, the <u>code</u> and <u>data</u> <u>segments</u> are given by a <u>base address</u> in <u>virtual memory</u>
 - the compiler knows exact location of the data section and can reference it directly
- shared libraries have no such guarantee.
 - the data section will be a specified as an offset from the base address
 - but exact location of the base address can only be known at runtime

(14) PIC

- all the shared libraries must be produced as position independent codes (PIC).
- note that the data section is still specified as a fixed offset from the code section;
- but to actually find the <u>address</u> of <u>data</u>
 the <u>offset</u> needs to be added to the <u>load</u> address

(15) SONAME

- the string written to the <u>executable</u> will actually be the <u>SONAME</u> of the library, e.g. mylib.so.0
- This will ensure that even when a <u>newer</u> and <u>incompatible</u> mylib.so.1.42 is installed later, the executable will use the compatible ABI version 0 instead.
 - To see details:ldd myprog

(16) Symbolic link

- Usually dynamic libraries are set up using symlinks only
 - libfoo.so is used by ld, and
 - libfoo.so points to libfoo.so.1 or to whatever which is used by ld.so, and
 - libfoo.so is itself typically a symlink to the currently-installed version of the library, e.g. libfoo.so.1.2.3

 $\verb|https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are also as the control of t$

(17) libc

- libc implements both standard C functions like strcpy() and POSIX functions (which may be system calls) like getpid() Note that not all standard C functions are in libc
 - most math functions are in libm

 $\verb|https://stackoverflow.com/questions/11372872/what-is-the-role-of-libcglibc-in-our and the control of the co$

(18) System calls and thunks

- system calls is different from normal functions because they <u>call to the kernel</u> they can't be resolved by the linker
- architecture-specific assembly language thunks are used to call into the kernel
- libc provides those assembly language thunks

https://stackoverflow.com/questions/11372872/what-is-the-role-of-libcglibc-in-our

(19) libc and glibc

- in Linux, it is the combination of the kernel and libc that provides the POSIX API
- libc is a <u>single library file</u> (both .so and .a versions are available) in most cases resides in /usr/lib
- the glibc (GNU libc) project provides more than just libc it also provides the libm and other core libraries like libpthread
- So libc is just one of the libraries provided by glibc and there are other alternate implementations of libc other than glibc

https://stackoverflow.com/questions/11372872/what-is-the-role-of-libcglibc-in-our

(20) glibc

- C library described in ANSI,c99,c11 standards.
 - includes macros, symbols, function implementations etc.
 - printf(), malloc() etc
- 2 POSIX standard library.
 - the "userland" glue of system calls. (open(), read() etc)
 - no actual implementations of system calls (kernel does it)
 - but glibc provides the user land interface to the services provided by kernel so that user application can use a system call just like a ordinary function.
- 3 Also some nonstandard but useful stuff.

https://linux.die.net/man/8/ld-linux

(21) libc.so

- libc.so is usually a linker script
 - pointing to
 - the 64-bit C library (dynamic or shared)
 - dynamic linker
 - used to link 64-bit executables at the build-time
 - provides instructions for 1d

https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are

(22) Linker script

- In the GNU C library's case dynamically linked programs still need some symbols from the <u>static library</u> so a <u>linker script</u> is used instead so that the linker can try both (dynamic linking and static linking)
- the linker script also <u>refers</u> to the <u>dynamic linker</u> which will be used at the <u>runtime</u>
 (/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2)
 its name is embedded in executables in .interp

https://unix.stackexchange.com/questions/449107/what-differences-and-relations-are