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Lambda expressions are composed of:

    variables v1, v2, ...;

    the abstraction symbols λ (lambda) and . (dot);

    parentheses ().

The set of lambda expressions, Λ, can be defined inductively:

    If x is a variable, then x  Λ.∈
    If x is a variable and M  Λ, then ∈ (λx.M)  Λ.∈
    If M, N  Λ, then∈  (M N)  Λ.∈

instances of rule 2 are known as abstractions (λx.M)

instances of rule 3 are known as applications (M N)

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Definition 
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The abstraction operator, λ, is said to bind its variable 

wherever it occurs in the body of the abstraction. 

Variables that fall within the scope of an abstraction 

are said to be bound. 

In an expression λx.M, 

the part λx is often called binder, 

as a hint that the variable x is getting bound 

by appending λx to M. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Free and bound variables (1) 
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All other variables (unbound) are called free. 

For example, in the expression λy.x x y, 

y is a bound variable and 

x is a free variable. 

Also a variable is bound by its nearest abstraction. 

In λx.y (λx.z x), the single occurrence of x in the expression 

is bound by the second lambda: . 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Free and bound variables (3) 
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The set of free variables FV(M) of a lambda expression M,

is defined by recursion on the structure of the terms, as follows:

    FV(x) = {x}, where x is a variable

    FV(λx.M) = FV(M) \ {x} x is a bound variable

    FV(M N) = FV(M)  FV(N)∪

An expression that contains no free variables is said to be closed. 

Closed lambda expressions are also known as combinators 

and are equivalent to terms in combinatory logic. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Free and bound variables (4) 
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The meaning of lambda expressions is defined 

by how expressions can be reduced.[21]

There are three kinds of reduction:

    α-conversion: changing bound variables;

    β-reduction: applying functions to their arguments;

    η-reduction: which captures a notion of extensionality.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction (1) 
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two expressions are 

α-equivalent, 

if they can be α-converted into the same expression. 

β-equivalent,

if they can be β-converted into the same expression. 

η-equivalent,

if they can be η-converted into the same expression. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction (2)
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The term redex (reducible expression), 

refers to subterms that can be reduced by one of the reduction rules. 

For example, (λx.M) N is a β-redex 

in expressing the substitution of N for x in M. 

The expression to which a redex reduces 

is called its reduct; the reduct of (λx.M) N is M[x := N].

If x is not free in M, λx.M x is also an η-redex, with a reduct of M. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction (5)
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α-conversion (α-renaming) 

allows bound variable names to be changed. 

For example, α-conversion of λx.x might yield λy.y. 

terms that differ only by α-conversion are called α-equivalent. 

Frequently, in uses of lambda calculus, 

α-equivalent terms are considered to be equivalent.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

α-conversion (1)
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The precise rules for α-conversion are not completely trivial. 

First, when α-converting an abstraction, 

the only variable occurrences that are renamed 

are those that are bound to the same abstraction. 

For example, an α-conversion of λx.λx.x could result in λy.λx.x, 

but it could not result in λy.λx.y. 

The latter has a different meaning from the original. 

This is analogous to the programming notion of variable shadowing. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

α-conversion (2)
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Second, α-conversion is not possible 

if it would result in a variable getting captured by a different abstraction. 

For example, if we replace x with y in λx.λy.x, 

we get λy.λy.y, which is not at all the same.

In programming languages with static scope, 

α-conversion can be used to make name resolution simpler 

by ensuring that no variable name masks a name 

in a containing scope 

(see α-renaming to make name resolution trivial).

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

α-conversion (3)
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In the De Bruijn index notation, 

any two α-equivalent terms are syntactically identical. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

α-conversion (4)
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Substitution, written M[V := N], 

is the process of replacing all free occurrences 

of the variable V in the expression M with expression N. 

Substitution on terms of the lambda calculus 

is defined by recursion on the structure of terms, 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Substitution (1)
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note: x and y are only variables 

while M and N are any lambda expression

    x[x := N] = N

    y[x := N] = y, if x ≠ y

    (M1 M2)[x := N] = M1[x := N] M2[x := N]

    (λx.M)[x := N] = λx.M

    (λy.M)[x := N] = λy.(M[x := N]), if x ≠ y and y  FV(∉ N)

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Substitution (1’)
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To substitute into an abstraction, 

it is sometimes necessary to α-convert the expression. 

For example, it is not correct for (λx.y)[y := x] to result in λx.x, 

because the substituted x was supposed to be free 

but ended up being bound. 

    (λy.M)[x := N] = λy.(M[x := N]), if x ≠ y and y  FV(∉ N)

The correct substitution in this case is λz.x, up to α-equivalence. 

Substitution is defined uniquely up to α-equivalence. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Substitution (2)
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β-reduction captures the idea of function application. 

β-reduction is defined in terms of substitution: 

the β-reduction of (λV.M) N is M[V := N].

For example, assuming some encoding of 2, 7, ×, 

we have the following β-reduction: (λn.n × 2) 7 → 7 × 2.

β-reduction can be seen to be the same 

as the concept of local reducibility in natural deduction, 

via the Curry–Howard isomorphism. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

β-reduction
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η-reduction expresses the idea of extensionality, 

which in this context is that two functions are the same 

if and only if they give the same result for all arguments. 

η-reduction converts between λx.f x and f 

whenever x does not appear free in f.

η-reduction can be seen to be the same as 

the concept of local completeness in natural deduction, 

via the Curry–Howard isomorphism. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

η-reduction
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For the untyped lambda calculus, 

β-reduction as a rewriting rule is 

neither strongly normalising 

nor weakly normalising.

However, it can be shown that β-reduction is confluent 

when working up to α-conversion 

(i.e. we consider two normal forms to be equal 

if it is possible to α-convert one into the other).

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Normal form and confluence (1)



Lambda Calculus (2A) - 
Formal description

20 Young Won Lim
11/2/22

Therefore, both strongly normalising terms 

and weakly normalising terms have a unique normal form. 

For strongly normalising terms, 

any reduction strategy is guaranteed to yield the normal form, 

whereas for weakly normalising terms, 

some reduction strategies may fail to find the normal form. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Normal form and confluence (2)
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Whether a term is normalising or not, 

and how much work needs to be done in normalising it if it is, 

depends to a large extent on the reduction strategy used. 

Common reduction strategies include:

● Normal order

● Applicative order

● Full β-reductions

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (1)
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Common reduction strategies include:

● Normal order

    The leftmost, outermost redex is always reduced first. 

That is, whenever possible the arguments are 

substituted into the body of an abstraction 

before the arguments are reduced.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (2)
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Common reduction strategies include:

● Applicative order

   The leftmost, innermost redex is always reduced first. 

Intuitively this means a function's arguments 

are always reduced before the function itself. 

Applicative order always attempts to apply functions 

to normal forms, even when this is not possible.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (3)
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Common reduction strategies include:

● Full β-reductions

    Any redex can be reduced at any time. 

This means essentially the lack of 

any particular reduction strategy

— with regard to reducibility, "all bets are off".

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (4)
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Weak reduction strategies do not reduce under lambda abstractions:

● Call by value

● Call by name

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (5)
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Weak reduction strategies do not reduce under lambda abstractions:

● Call by value

    A redex is reduced only when its right hand side 

has reduced to a value (variable or abstraction). 

Only the outermost redexes are reduced.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (6)
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Weak reduction strategies do not reduce under lambda abstractions:

● Call by name

    As normal order, but no reductions 

are performed inside abstractions. 

For example, λx.(λy.y)x is in normal form 

according to this strategy, although it contains the redex (λy.y)x.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (7)
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Strategies with sharing reduce computations

 that are "the same" in parallel:

● Optimal reduction

● Call by need

    

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (8)



Lambda Calculus (2A) - 
Formal description

29 Young Won Lim
11/2/22

Strategies with sharing reduce computations

 that are "the same" in parallel:

● Optimal reduction

    As normal order, but computations 

that have the same label are reduced simultaneously.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (9)
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Strategies with sharing reduce computations

 that are "the same" in parallel:

● Call by need

    As call by name (hence weak), but function applications 

that would duplicate terms instead name the argument, 

which is then reduced only "when it is needed".

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Reduction strategies (10)
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