Partial Oder Relations (5A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Partial Order Relation

A (non-strict) partial order is a binary relation \leq over a set P satisfying particular axioms.
When $\mathbf{a} \leq \mathbf{b}$, we say that \mathbf{a} is related to \mathbf{b}.
(This does not imply that \mathbf{b} is also related to \mathbf{a}, because the relation need not be symmetric.)

That is, for all \mathbf{a}, \mathbf{b}, and \mathbf{c} in P, it must satisfy:

```
a \leq a (reflexivity)
if a \leqb}\mathrm{ and }\mathbf{b}\leq\mathbf{a}\mathrm{ , then a = b (antisymmetry)
if a}\leq\mathbf{b}\mathrm{ and }\mathbf{b}\leq\mathbf{c}\mathrm{ , then }\mathbf{a}\leq\mathbf{c}\mathrm{ (transitivity)
```


Partial Order Relation

The axioms for a non-strict partial order state that the relation \leq is reflexive: every element is related to itself.
antisymmetric: two distinct elements cannot be related in both directions
transitive: if a first element is related to a second element, and, in turn, that element is related to a third element, then the first element is related to the third element

Relation Examples (1)

$$
x \geq y
$$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1}$	$(1,1)$				
$\mathbf{2}$	$(2,1)$	$(2,2)$			
$\mathbf{3}$	$(3,1)$	$(3,2)$	$(3,3)$		
$\mathbf{4}$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	
$\mathbf{5}$	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$

Reflexive Relation \& Anti-Symmetric Relation \& Transitive Relation

Partial Order Relation

Anti-symmetric Relation

$$
x \geq y
$$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
	$\mathbf{1}$	$(1,1)$			

Transitive Relation

(\%i2) A:matrix($[0,0,0,0,0]$,
$[1,0,0,0,0]$,
$[1,1,0,0,0]$,
$[1,1,1,0,0]$,
$[1,1,1,1,0]$
$)$
$\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0\end{array}\right]$
(\%i4) A2 : A.A;
$(\% 04)\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 3 & 2 & 1 & 0 & 0\end{array}\right]$
$(\% i 5)$
$(\% 05)\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 & 0\end{array}\right]$
(\%i6) A4: A.A.A.A;
$(\% 06)\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right]$
(\%i7) A5: A.A.A.A.A;
$(\% 07)\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(\%i8) A6: A.A.A.A.A.A; (\%i11) A+A2+A3+A4+A5;
$(\% 08)\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \quad(\% 011)\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 4 & 2 & 1 & 0 & 0 \\ 8 & 4 & 2 & 1 & 0\end{array}\right]$
(\%i9) A7 : A6.A;
$(\% 09)\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(\%i10) A8 : A7.A;
$(\% 010)\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Relation Examples (1)

$x>y$

 Transitive Relation		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
	$\mathbf{1}$					
Not Partial Order Relation	$\mathbf{2}$	$(2,1)$				
	$\mathbf{3}$	$(3,1)$	$(3,2)$			

Equivalence Relation

Partial Order Relation

> Reflexive Relation \&
> Anti-Symmetric Relation \& Transitive Relation

References

[1] http://en.wikipedia.org/
[2]

