
1 Young Won Lim
1/22/21

Monad P3 : Existential Types (1D)



2 Young Won Lim
1/22/21

 Copyright (c)  2016  - 2020 Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com


Existential Types (1D) 3 Young Won Lim
1/22/21

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps



Existential Types (1D) 4 Young Won Lim
1/22/21

Basically, there are 3 different common uses for the forall keyword 

(or at least so it seems), and each has its own Haskell extension: 

ScopedTypeVariables

specify types for code inside where clauses 

RankNTypes/Rank2Types, 

The type is labeled "Rank-N" where N is the number of foralls

which are nested and cannot be merged with a previous one.

ExistentialQuantification  

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Three different usages for forall



Existential Types (1D) 5 Young Won Lim
1/22/21

Existential Quantification  

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do



Existential Types (1D) 6 Young Won Lim
1/22/21

Normally when creating a new type 

using type, newtype, data, etc., 

every type variable that appears on the right-hand side 

must also appear on the left-hand side. 

newtype ST s a = ST (State# s -> (# State# s, a #))

Existential types are a way of escaping

Existential types can be used for several different purposes. 

But what they do is to hide a type variable on the right-hand side.

https://wiki.haskell.org/Existential_type

Hiding a type variable (1)



Existential Types (1D) 7 Young Won Lim
1/22/21

Normally, any type variable appearing on the right must 

also appear on the left:

data Worker x y = Worker {buffer :: b, input :: x, output :: y}

This is an error, since the type b of the buffer 

is not specified on the right  

(b is a type variable rather than a type) 

but also is not specified on the left 

(there's no b in the left part). 

In Haskell98, you would have to write 

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

https://wiki.haskell.org/Existential_type

Hiding a type variable (2)



Existential Types (1D) 8 Young Won Lim
1/22/21

However, suppose that a Worker can use any type b 

so long as it belongs to some particular class. 

Then every function that uses a Worker will have a type like

foo :: (Buffer b) => Worker b Int Int

In particular, failing to write an explicit type signature (Buffer b)

will invoke the dreaded monomorphism restriction.

Using existential types, we can avoid this: 

https://wiki.haskell.org/Existential_type

Hiding a type variable (3)



Existential Types (1D) 9 Young Won Lim
1/22/21

Using existential type :

data Worker x y =  forall b. Buffer b =>   Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

The type of the buffer (Buffer) now does not appear 

in the Worker type at all. Worker x y

Explicit type signature :

data Worker b x y = Worker {buffer :: b, input :: x, output :: y}

foo :: (Buffer b) => Worker b Int Int

https://wiki.haskell.org/Existential_type

Hiding a type variable (4)



Existential Types (1D) 10 Young Won Lim
1/22/21

● it is now impossible for a function 

to demand a Worker having a specific type of buffer.

 

● the type of foo can now be derived automatically 

without needing an explicit type signature. 

(No monomorphism restriction.) 

● since code now has no idea 

what type the buffer function returns, 

you are more limited in what you can do to it. 

data Worker x y = forall b. Buffer b =>  Worker {buffer :: b, input :: x, output :: y}

foo :: Worker Int Int

https://wiki.haskell.org/Existential_type

Hiding a type variable (5)



Existential Types (1D) 11 Young Won Lim
1/22/21

In general, when you use a hidden type in this way, 

you will usually want that type to belong to a specific class, 

or you will want to pass some functions along 

that can work on that type.

 

Otherwise you'll have some value belonging 

to a random unknown type, 

and you won't be able to do anything to it!

https://wiki.haskell.org/Existential_type

Hiding a type variable (6)



Existential Types (1D) 12 Young Won Lim
1/22/21

Note: You can use existential types 

to convert a more specific type 

into a less specific one.

constrained type variables 

There is no way to perform the reverse conversion! 

https://wiki.haskell.org/Existential_type

Less specific types (1)



Existential Types (1D) 13 Young Won Lim
1/22/21

This illustrates creating a heterogeneous list, 

all of whose members implement "Show", 

and progressing through that list to show these items:

data Obj = forall a. (Show a) => Obj a

xs :: [Obj]

xs = [Obj 1, Obj "foo", Obj 'c']

doShow :: [Obj] -> String

doShow [] = ""

doShow ((Obj x):xs) = show x ++ doShow xs

With output: doShow xs ==> "1\"foo\"'c'" 

https://wiki.haskell.org/Existential_type

Less specific types (2)



Existential Types (1D) 14 Young Won Lim
1/22/21

It is also possible to express existentials with RankNTypes

as type expressions directly (without a data declaration) 

forall r. (forall a. Show a => a -> r) -> r

(the leading forall r. is optional 

unless the expression is part of another expression). 

the equivalent type Obj :

data Obj = forall a. (Show a) => Obj a

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (1)



Existential Types (1D) 15 Young Won Lim
1/22/21

The conversions are:

fromObj ::  Obj -> forall r. (forall a. Show a => a -> r) -> r

fromObj (Obj x) k = k x

toObj :: (forall r. (forall a. Show a => a -> r) -> r)  ->  Obj

toObj f = f Obj

https://wiki.haskell.org/Existential_type

Existentials in terms of forall (2)



Existential Types (1D) 16 Young Won Lim
1/22/21

Existential types, or 'existentials' for short, provide a way of  

'squashing' a group of types into one, single type.

Existentials are part of GHC's type system extensions. 

They aren't part of Haskell98, and as such you'll have 

to either compile any code that contains them 

with an extra command-line parameter of 

-XExistentialQuantification, 

or put at the top of your sources that use existentials. 

{-# LANGUAGE ExistentialQuantification #-} 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Existentials



Existential Types (1D) 17 Young Won Lim
1/22/21

Example: A polymorphic function

map :: (a -> b) -> [a] -> [b]

Example: Explicitly quantifying the type variables

map :: forall a b. (a -> b) -> [a] -> [b]

instantiating the general type of map to a more specific type

a = Int and b = String     

(Int -> String) -> [Int] -> [String] 

Example: Two equivalent type statements

id :: a -> a

id :: forall a . a -> a

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall type variables



Existential Types (1D) 18 Young Won Lim
1/22/21

Suppose we have a group of values. 

they may not be all the same type, 

but they are all members of some class 

thus, they have a certain property 

It might be useful to throw all these values into a list. 

normally this is impossible because lists elements 

must be of the same type 

(homogeneous with respect to types). 

existential types allow us to loosen this requirement 

by defining a type hider or type box: 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Type hider 

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]



Existential Types (1D) 19 Young Won Lim
1/22/21

data ShowBox = forall s. Show s => SB s -- type hider

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

[SB (), SB 5, SB True] calls the constructor 

on three values of different types,

to place them all into a single list 

virtually the same type for each one. 

Use the forall in the constructor 

SB :: forall s. Show s => s -> ShowBox. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (1)



Existential Types (1D) 20 Young Won Lim
1/22/21

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]

When passing heteroList type parameters to a function

we cannot take out the values inside the SB 

because their type might Bool. Int, Char, …  

But each of the elements can be  

converted to a string via show. 

In fact, that's the only thing we know about them. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (2)



Existential Types (1D) 21 Young Won Lim
1/22/21

 instance Show ShowBox where

  show (SB s) = show s        

 f :: [ShowBox] -> IO ()

 f xs = mapM_ print xs

 main = f heteroList

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (3)



Existential Types (1D) 22 Young Won Lim
1/22/21

Example: Using our heterogeneous list

 instance Show ShowBox where

show (SB s) = show s        -- (*) see the comment in the text below

f :: [ShowBox] -> IO ()

f xs = mapM_ print xs

main = f heteroList

Example: Types of the functions involved

print :: Show s => s -> IO () -- print x = putStrLn (show x)

mapM_ :: (a -> m b) -> [a] -> m ()

mapM_ print :: Show s => [s] -> IO ()

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Heterogeneous list example (4)



Existential Types (1D) 23 Young Won Lim
1/22/21

The core idea is that mapM maps 

an "action" (ie function of type a -> m b) over a list and 

gives you all the results as m [b] 

mapM_ does the same thing, 

but never collects the results, returning a m ().

If you care about the results 

of your a -> m b function, use mapM. 

If you only care about the effect, 

but not the resulting value, 

  use mapM_, because it can be more efficient 

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (1)



Existential Types (1D) 24 Young Won Lim
1/22/21

Always use mapM_ with functions of the type a -> m (), 

like print or putStrLn. 

these functions return () to signify that only the effect matters. 

If you used mapM, you'd get a list of () (ie [(), (), ()]), 

which would be completely useless 

but waste some memory. 

If you use mapM_, you would just get a (), 

but it would still print everything.

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (2)



Existential Types (1D) 25 Young Won Lim
1/22/21

Normal map is something different: 

it takes a normal function (a -> b) 

instead of one using a monad (a -> m b). 

This means that it cannot have any sort of effect 

besides returning the changed list. 

You would use it if you want to transform a list 

using a normal function. 

map_ doesn't exist because, since you don't have any effects, 

you always care about the results of using map.

https://stackoverflow.com/questions/27609062/what-is-the-difference-between-mapm-and-mapm-in-haskell/27609146

mapM, mapM_, and map (3)



Existential Types (1D) 26 Young Won Lim
1/22/21

One way to think about forall is 

to consider types as a set of possible values. 

Bool is the set {True, False, } ⊥} 

(remember that bottom, ⊥} , is a member of every type!), 

Integer is the set of integers (and bottom), 

String is the set of all possible strings (and bottom), and so on. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

A set of possible values



Existential Types (1D) 27 Young Won Lim
1/22/21

forall serves as a way to assert a commonality or intersection 

of the specified types (i.e. sets of values). 

forall a. a is the intersection of all types. 

this subset turns out to be the set { }⊥} , 

since it is an implicit value in every type. 

that is, [the type whose only available value is bottom] 

However, since every Haskell type includes bottom, { }⊥} , 

this quantification in fact stipulates all Haskell types. 

But the only permissible operations on it are 

those available to [a type whose only available value is bottom] 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Intersection of the specified types



Existential Types (1D) 28 Young Won Lim
1/22/21

1. The list [forall a. a]

2. The list [forall a. Show a => a]

3. The list [forall a. Num a => a]

4. The list forall a. [a]

a list of bottoms. [ ] , [ , ], …⊥} ⊥} ⊥} 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

A list of bottoms type (1)



Existential Types (1D) 29 Young Won Lim
1/22/21

The list, [forall a. a], is the type of a list 

whose elements all have the type forall a. a, i.e. 

a list of bottoms. [ ] , [ ,⊥} ⊥} ], …⊥} 

The list, [forall a. Show a => a], is the type of a list 

whose elements all have the type forall a. Show a => a. 

the Show class constraint requires the possible types 

also to be a member of the class, Show. 

   

However, ⊥}  is still the only value common to all these types, { }⊥} ,

so this too is a list of bottoms.  [forall a. a]

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

A list of bottoms type (2)



Existential Types (1D) 30 Young Won Lim
1/22/21

The list, [forall a. Num a => a], requires each element 

to be a member of the class, Num. 

Consequently, the possible values include numeric literals, 

which have the specific type, forall a. Num a => a, 

as well as bottom.

forall a. [a] is the type of the list 

whose elements all have the same type a. 

since we cannot presume any particular type at all, 

this too is a list of bottoms.

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

A list of bottoms type (3)



Existential Types (1D) 31 Young Won Lim
1/22/21

most intersections over types just lead to bottoms  ⊥} ⊥} ⊥} ⊥} 

types generally don't have any values in common  

presumptions cannot be made about a union of their values.

a heterogeneous list using a type hider 

type hider' functions as a wrapper type 

which guarantees certain facilities 

by implying a predicate or constraint on the permissible types. 

the purpose of forall is to impose type constraint 

on the permissible types within a type declaration 

guaranteeing certain facilities with such types. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Intersections over types

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]



Existential Types (1D) 32 Young Won Lim
1/22/21

An existential datatype

 data T = forall a. MkT a

This defines a polymorphic constructor, 

or a family of constructors for T 

MkT :: forall a. (a -> T)

Pattern matching on our existential constructor

 foo (MkT x) = ... -- what is the type of x?

Constructing the hetereogeneous list

 heteroList = [MkT 5, MkT (), MkT True, MkT map]

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Summary of heterogeneous list examples (1)

data ShowBox = forall s. Show s => SB s

heteroList :: [ShowBox]

heteroList = [SB (), SB 5, SB True]



Existential Types (1D) 33 Young Won Lim
1/22/21

A new existential data type, with a class constraint

 data T' = forall a. Show a => MkT' a

 data T = forall a. MkT a

Using our new heterogenous setup

 heteroList' = [MkT' 5, MkT' (), MkT' True, MkT' "Sartre"]

main = mapM_ (\(MkT' x) -> print x) heteroList'

 {- prints:

 5

 ()

 True

 "Sartre"

 -}

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Summary of heterogeneous list examples (2)



Existential Types (1D) 34 Young Won Lim
1/22/21

the ST monad is essentially 

a more powerful version of the State monad: 

It was originally written to provide Haskell with IO. 

IO is basically just a State monad 

with an environment of all the information about the real world. 

In fact, inside GHC at least, ST is used, 

and the environment is a type called RealWorld. 

To get out of the State / ST monad,

use runState / runST 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

State and ST monads



Existential Types (1D) 35 Young Won Lim
1/22/21

runST :: forall a. (forall s. ST s a) -> a

This is actually an example of rank-2 polymorphism

a forall appearing within the left-hand side of (->) 

cannot be moved up, and therefore forms another level or rank 

therefore, there are 2 levels of universal quantification. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

runST –  rank-2 polymorphism 



Existential Types (1D) 36 Young Won Lim
1/22/21

runST :: forall a. (forall s. ST s a) -> a

there is no parameter for the initial state … s

Indeed, ST uses a different notion of state to State;

 

State allows you to get and put the current state, 

ST provides an interface to references

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

runST – initial state 



Existential Types (1D) 37 Young Won Lim
1/22/21

To create references of the type STRef

newSTRef :: a -> ST s (STRef s a) 

To provide an initial value

readSTRef :: STRef s a -> ST s a 

To manipulate them. 

writeSTRef :: STRef s a -> a -> ST s () 

runST :: forall a. (forall s. ST s a) -> a

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

runST – reference interfaces



Existential Types (1D) 38 Young Won Lim
1/22/21

the internal environment of a ST computation 

is not one specific value, 

but a mapping from references to values. … (STRef s a) 

newSTRef :: a -> ST s (STRef s a) 

No need to provide an initial state to runST, 

as the initial state is just the empty mapping … ()

containing no references. 

runST :: forall a. (forall s. ST s a) -> a

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

runST – a mapping 



Existential Types (1D) 39 Young Won Lim
1/22/21

It is not allowed 

to create a reference in one ST computation, 

then to use the created reference in another ST computation.

for reasons of thread-safety

because no ST computation should be allowed 

to assume that the initial internal environment 

contains any specific references. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

runST – no specific references



Existential Types (1D) 40 Young Won Lim
1/22/21

runST :: forall a. (forall s. ST s a) -> a

newSTRef :: a -> ST s (STRef s a) 

readSTRef :: STRef s a -> ST s a 

Example: Bad ST code

 let v = runST (newSTRef True) … one ST computation

 in runST (readSTRef v) … another ST computation

Example: Briefer bad ST code

... runST (newSTRef True) ...

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

runST

newSTRef True :: ST s (STRef s a) 

runST (newSTRef True) :: STRef s a 

v :: STRef s a 

readSTRef v :: ST s a 

runST (readSTRef v) :: a 



Existential Types (1D) 41 Young Won Lim
1/22/21

Example: Bad ST code

 let v = runST (newSTRef True)

 in runST (readSTRef v)

runST :: forall a. (forall s. ST s a) -> a

the rank-2 polymorphism in runST's type 

to constrain the scope of the type variable s 

to be within the first parameter (the left hand side of ->) 

if the type variable s appears in the first parameter 

it cannot also appear in the second. 

(the right hand side of ->)

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

runST



Existential Types (1D) 42 Young Won Lim
1/22/21

Example: Briefer bad ST code

... runST (newSTRef True) ...

Example: The compiler's typechecking stage

newSTRef True :: forall s. ST s (STRef s Bool)

runST :: forall a. (forall s. ST s a) -> a

runST (newSTRef True) :: 

 (forall s. ST s (STRef s Bool)) -> STRef s Bool

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

runST

runST :: forall a. (forall s. ST s a) -> a

newSTRef :: a -> ST s (STRef s a) 

readSTRef :: STRef s a -> ST s a 



Existential Types (1D) 43 Young Won Lim
1/22/21

The importance of the forall in the first bracket is 

that we can change the name of the s. 

runST (newSTRef True) :: 

 (forall s. ST s (STRef s Bool)) -> STRef s Bool

Example: A type mismatch!

(forall s'. ST s' (STRef s' Bool)) -> STRef s Bool

This is similar to  x . x > 5 is precisely the same as  y . y > 5 ∀ x . x > 5 is precisely the same as ∀ y . y > 5 ∀ x . x > 5 is precisely the same as ∀ y . y > 5 

giving the variable a different label. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall



Existential Types (1D) 44 Young Won Lim
1/22/21

Example: A type mismatch!

(forall s'. ST s' (STRef s' Bool)) -> STRef s Bool

Notice that as the forall does not scope over 

the return type of runST, STRef s Bool

we don't rename the s there as well. 

But suddenly, we've got a type mismatch! 

The result type of the ST computation in the first parameter 

must match the result type of runST, but now it doesn't! 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall



Existential Types (1D) 45 Young Won Lim
1/22/21

(forall s'. ST s' (STRef s' Bool)) -> STRef s Bool

The key feature of the existential is that 

it allows the compiler to generalise 

the type of the state in the first parameter, 

and so the result type cannot depend on it. 

This neatly sidesteps our dependence problems, 

'compartmentalises' each call to runST 

into its own little heap, 

with references not being able 

to be shared between different calls. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall



Existential Types (1D) 46 Young Won Lim
1/22/21

A universally quantified type may be interpreted 

as an infinite product of types. 

a polymorphic function can be understood 

as a product, or a tuple, of individual functions, 

one per every possible type a. 

To construct a value of such type, we have 

to provide all the components of the tuple at once. 

-- one formula generating an infinity of functions

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums



Existential Types (1D) 47 Young Won Lim
1/22/21

Example: Identity function

 id :: forall a. a -> a

 id a = a

in case of numeric types, one numeric constant 

may be used to initialize multiple types at once. 

For instance, in: 

Example: Polymorphic value

 x :: forall a. Num a => a

 x = 0

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums



Existential Types (1D) 48 Young Won Lim
1/22/21

Example: Polymorphic value

 x :: forall a. Num a => a

 x = 0

x may be conceptualized as a tuple consisting 

of an Int value, a Double value, etc. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums



Existential Types (1D) 49 Young Won Lim
1/22/21

Similarly, an existentially quantified type may be interpreted 

as an infinite sum. For instance, 

Example: Existential type

 data ShowBox = forall s. Show s => SB s

may be conceptualized as a sum: 

Example: Sum type

 data ShowBox = SBUnit | SBInt Int | SBBool Bool | SBIntList [Int] | ...

to construct a value of this type, 

we only have to pick one of the constructors. 

A polymorphic constructor SB combines all those constructors into one. 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

Quantified Types as Products and Sums



Existential Types (1D) 50 Young Won Lim
1/22/21

{-# LANGUAGE ExistentialQuantification, RankNTypes #-}

newtype Pair a b = Pair (forall c. (a -> b -> c) -> c)

makePair :: a -> b -> Pair a b

makePair a b = Pair $ \f -> f a b

 

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall



Existential Types (1D) 51 Young Won Lim
1/22/21

λ> :set -XExistentialQuantification

 λ> :set -XRankNTypes

 λ> newtype Pair a b = Pair {runPair :: forall c. (a -> b -> c) -> c}

 λ> makePair a b = Pair $ \f -> f a b

 λ> pair = makePair "a" 'b' 

 

 λ> :t pair

 pair :: Pair [Char] Char

 

 λ> runPair pair (\x y -> x)

 "a"

 

 λ> runPair pair (\x y -> y)

 'b'

https://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types

forall



Existential Types (1D) 52 Young Won Lim
1/22/21

quantifier in predicate calculus

type quantifier polymorphic types

to encode a type in type isomorphism

Isomorphism

    from . to = id 

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

forall – quantifier (1)



Existential Types (1D) 53 Young Won Lim
1/22/21

the class of isomorphic types, i.e. those which 

can be cast to each other without loss of information. 

type isomorphism is an equivalence relation 

(reflexive, symmetric, transitive), 

but due to the limitations of the type system, 

only reflexivity is implemented for all types

Isomorphism

    from . to = id 

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

forall – quantifier (2) type isomorphism



Existential Types (1D) 54 Young Won Lim
1/22/21

foo :: (forall a. a -> a) -> (Char, Bool)

bar :: forall a. ((a -> a) -> (Char, Bool))

To call bar, any type a can be chosen, 

and it is possible to pass a function from type a to type a. 

the function (+1) or the function reverse. 

the forall is considered to be as saying 

"I get to pick the type now". (instantiating.)

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

forall – quantifier (3)



Existential Types (1D) 55 Young Won Lim
1/22/21

foo :: (forall a. a -> a) -> (Char, Bool)

bar :: forall a. ((a -> a) -> (Char, Bool))

The restrictions on calling foo are much more stringent: 

the argument to foo must be a polymorphic function. 

With that type, the only functions that can be passed to foo 

are id or a function that always diverges or errors, like undefined. 

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

forall – quantifier (4)



Existential Types (1D) 56 Young Won Lim
1/22/21

foo :: (forall a. a -> a) -> (Char, Bool)

bar :: forall a. ((a -> a) -> (Char, Bool))

The reason is that with foo, the forall is to the left of the arrow, 

so as the caller of foo I don't get to pick what a is

—rather it's the implementation of foo that gets to pick what a is. 

Because forall is to the left of the arrow, 

rather than above the arrow as in bar, 

the instantiation takes place in the body of the function 

rather than at the call site.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

forall – quantifier (5)



Existential Types (1D) 57 Young Won Lim
1/22/21

Jargon "above", "below", "to the left of". 

nothing to do with the textual ways types are written 

everything to do with abstract-syntax trees. 

In the abstract syntax, 

● a forall takes the name of a type variable, 

and then there is a full type "below" the forall. 

● an arrow takes two types (argument and result type) 

and forms a new type (the function type). 

● the argument type is "to the left of" the arrow; 

● it is the arrow's left child in the abstract-syntax tree.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

forall – quantifier (6) above, below, left



Existential Types (1D) 58 Young Won Lim
1/22/21

forall a . [a] -> [a], 

the forall is above the arrow; 

what's to the left of the arrow is [a].

forall n f e x . (forall e x . n e x -> f -> Fact x f) 

                  -> Block n e x -> f -> Fact x f

(forall e x . n e x -> f -> Fact x f) 

the type in parentheses would be called 

"a forall to the left of an arrow". 

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

forall – quantifier (7)



Existential Types (1D) 59 Young Won Lim
1/22/21

foo :: a -> a

given this type signature, there is only one function 

that can satisfy this type and 

 the identity function id.

foo 5 = 6

foo True = False

they both satisfy the above type signature, 

then why do Haskell folks claim 

that it is id alone which satisfies the type signature?

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

foo :: a -> a (1)



Existential Types (1D) 60 Young Won Lim
1/22/21

That is because there is an implicit forall hidden in the type signature. 

id :: forall a. a -> a

Constraints liberate, liberties constrain

A constraint at the type level, 

becomes a liberty at the term level

A liberty at the type level, 

becomes a constraint at the term level

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

foo :: a -> a (2)



Existential Types (1D) 61 Young Won Lim
1/22/21

A constraint at the type level..

So putting a constraint on our type signature

foo :: (Num a) => a -> a

becomes a liberty at the term level gives us 

the liberty or flexibility to write all of these

foo 5 = 6

foo 4 = 2

foo 7 = 9

...

Same can be observed by constraining a with any other typeclass etc

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

foo :: a -> a (3)

A constraint at the type level, 

becomes a liberty at the term level



Existential Types (1D) 62 Young Won Lim
1/22/21

foo :: (Num a) => a -> a translates to 

∃a , st a -> a, a  Num∀a ∈ Num ∈ Num

existential quantification

which translates to there exists some instances of a 

for which a function of a -> a 

and those instances all belong to the set of Numbers.

adding a constraint (a should belong to the set of Nnumbers), 

liberates the term level to have multiple possible implementations.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

foo :: a -> a (4)

A constraint at the type level, 

becomes a liberty at the term level



Existential Types (1D) 63 Young Won Lim
1/22/21

the explanation of forall:

So now let us liberate the the function at the type level:

foo :: forall a. a -> a translates to:

∀a ∈ Numa , a -> a

the implementation of this type signature 

should be such that it is a -> a for all circumstances.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

foo :: a -> a (5)

A liberty at the type level, becomes

a constraint at the term level



Existential Types (1D) 64 Young Won Lim
1/22/21

So now this starts constraining us at the term level. 

We can no longer write

foo 5 = 7

because this implementation would not satisfy  

when a Bool type value is passed to foo

this is because

under all circumstances a , a -> a∀a ∈ Num

it should return something of the similar type. 

a can be a Char or a [Char] or a custom datatype. 

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

foo :: a -> a (6)

A liberty at the type level, becomes

a constraint at the term level



Existential Types (1D) 65 Young Won Lim
1/22/21

∀a ∈ Numa , a -> a the liberty at the type level

foo 5 = 7  a constraint at the term level  

(impossible implementation)

this liberty at the type level is what is known 

as Universal Quantification 

the only function which can satisfy foo :: forall a. a -> a

foo a = a the identity function

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

foo :: a -> a (7)

A liberty at the type level, becomes

a constraint at the term level



Existential Types (1D) 66 Young Won Lim
1/22/21

 Runar Bjarnason titled "Constraints Liberate, Liberties Constrain". 

              

  CONSTRAINTS LIBERATE, 

LIBERTIES CONSTRAIN

Its very important to digest and believe this statement 

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

foo :: a -> a (8)



Existential Types (1D) 67 Young Won Lim
1/22/21

runST :: forall a. (forall s. ST s a) -> a

runST has to be able to produce a value of type a, 

no matter what type we give as a. 

runST uses an argument of type (forall s. ST s a) 

which certainly must somehow produce the a. 

runST must be able to produce a value of type a 

no matter what type the implementation of runST 

decides to give as s.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

RunST (1)



Existential Types (1D) 68 Young Won Lim
1/22/21

runST :: forall a. (forall s. ST s a) -> a

the benefit is that this puts a constraint on the caller of runST 

in that the type a cannot involve the type s at all. 

you can't pass it a value of type ST s [s], for example. 

the implementation of runST is free 

to perform mutation with the value of type s. 

The type guarantees that this mutation is 

local to the implementation of runST.

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

RunST (2)



Existential Types (1D) 69 Young Won Lim
1/22/21

runST :: forall a. (forall s. ST s a) -> a

The type of runST is an example of 

a rank-2 polymorphic type 

because the type of its argument 

contains a forall quantifier. 

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

RunST : rank-2 polymorphic type 



Existential Types (1D) 70 Young Won Lim
1/22/21

-- test.hs

{-# LANGUAGE ExistentialQuantification #-}

data EQList = forall a. EQList [a]

eqListLen :: EQList -> Int

eqListLen (EQList x) = length x

ghci> :l test.hs

ghci> eqListLen $ EQList ["Hello", "World"]

2

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Quantifiation



Existential Types (1D) 71 Young Won Lim
1/22/21

ghci> :set -XRankNTypes

ghci> length (["Hello", "World"] :: forall a. [a])

    Couldnt match expected type 'a' against inferred type '[Char]'

    ...

With Rank-N-Types, forall a meant that your expression 

must fit all possible as. For example:

ghci> length ([] :: forall a. [a])

0

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do

Existential Quantifiation



Existential Types (1D) 72 Young Won Lim
1/22/21

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2]  https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72

