Copyright (c) 2016 - 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Softwa		Transform (H.1) efinition
Copyright (c) 2016 - 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Softwa		emition
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software		20170201
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software		
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software		
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software		
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software		
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software		
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software		
	Perm GNU F	ission is granted to copy, distribute and/or modify this document under the terms of the

Based on
Complex Analysis for Mathematics and Engineering
J. Mathews

Z - Transform $\begin{array}{l} \chi(z) = \sum_{k=-\infty}^{+10} \chi[k] z^{-k} & \overline{z} = |r| e^{j 2^{\pi} \overline{r}} \\ & = |r| e^{j \Omega} \end{array}$ X[n] <-> X(z) Onesided Z-transform $\chi(z) = \sum_{k=0}^{+\infty} \chi[k] z^{-k}$

$$I_{nverse} = Transform$$

$$X(z) = Z[(x_n)_{n=0}^{\infty}] \qquad x(z)$$

$$= \sum_{n=0}^{\infty} x_n z^{-n}$$

$$= \sum_{n=0}^{\infty} x c_n] z^{-n}$$

$$X_n = x c_n] \qquad x(z)$$

$$= Z^+[X(z)]$$

$$= \frac{1}{2\pi t} \int_C x(z) z^{n+} dz$$

Admissible Form of z-transform

$$\chi(z) = \sum_{n=0}^{\infty} \chi(n) z^{-n}$$

$$\chi(z): admissible z-transform$$
if $\chi(z)$ is a rational function

$$\chi(z) = \frac{P(z)}{Q(z)} = \frac{b_0 + h_2^2 + b_2 z^{n+1} + b_1 z^n}{a_0 + a_0^2 + a_0 z^{n+1} + a_0 z^n}$$

$$P(z): a \quad polynomial of degree p$$

$$Q(z): a \quad polynomial of degree g$$

Residue Theorem D: Simply connected domain C: Simple closed contour (CCW) in D if f(z) is analytic inside c and on c except at the points Z1, Z2, ..., Zk in C then $\frac{1}{2\pi i} \int_{C} f(z) dz = \sum_{j=1}^{k} \operatorname{Res}(f(z), z_{j})$ Singular points of f(Z): Z1, Z2, ..., Zk

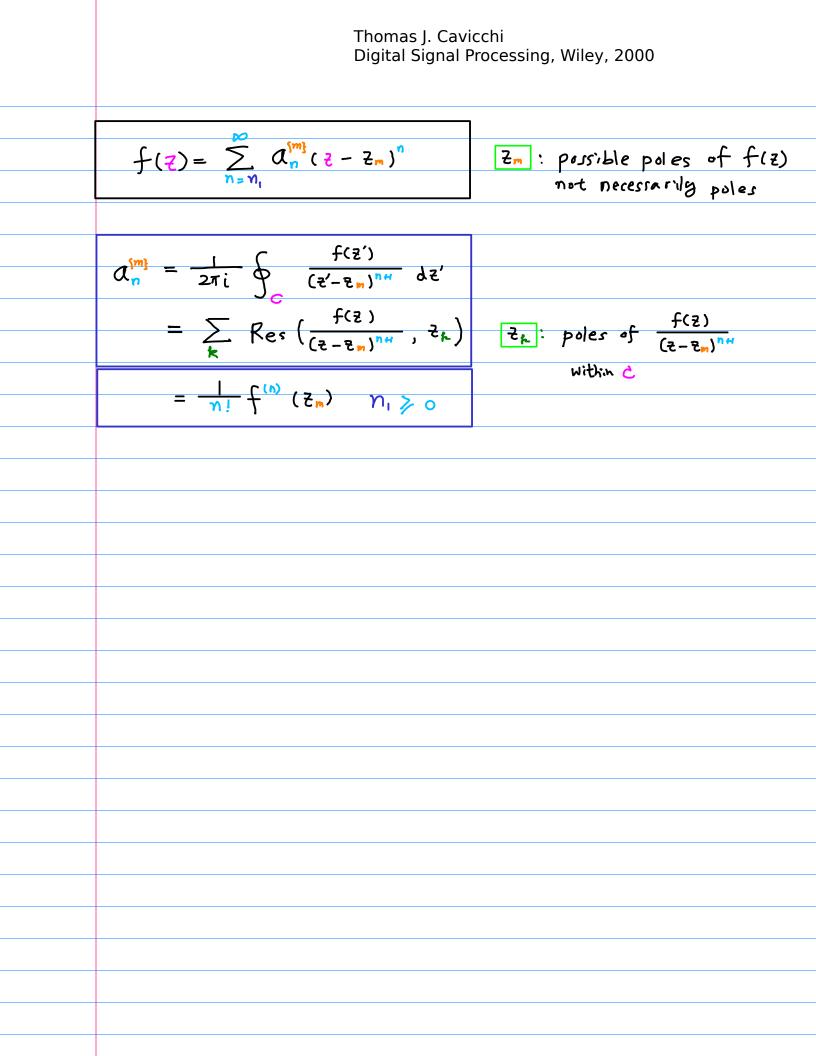
Integration of a function of a complex var.

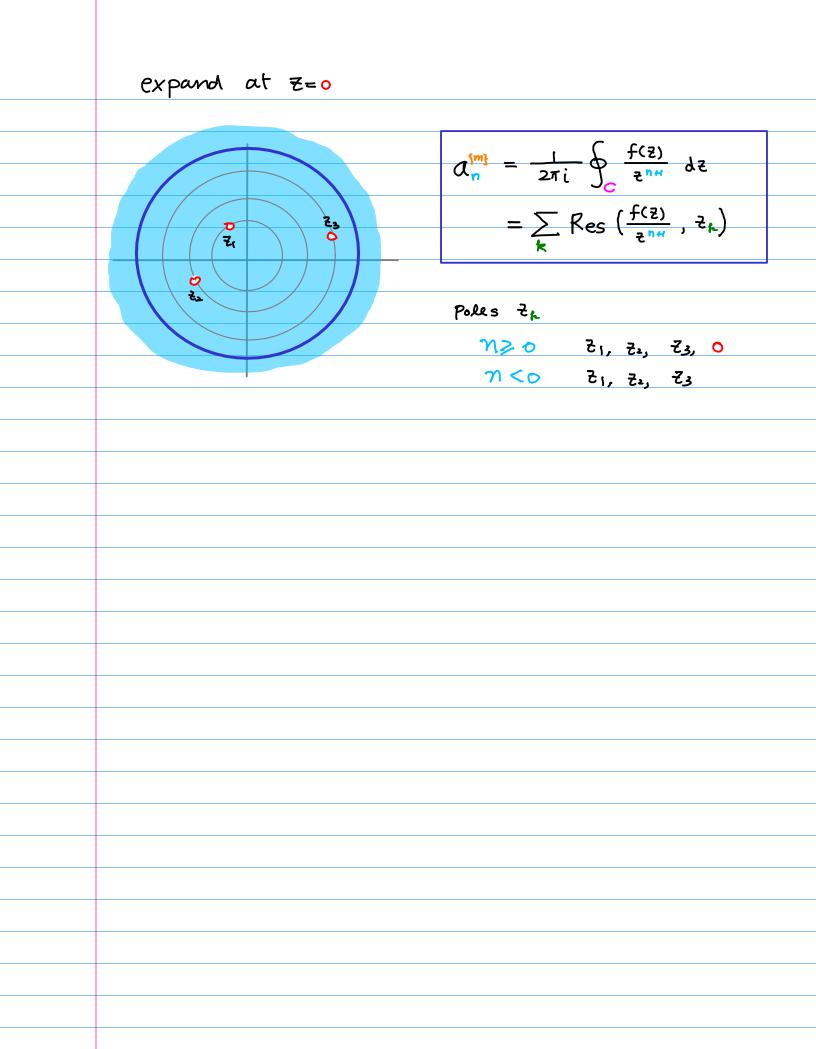
$$\oint_{c} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f(z), z_{k})$$
finite pumber & of
Singular points z_{k}
residue theorem

$$\oint_{c} f(z) dz = 0 \quad \text{if } f(z) = f'(z) \text{ on } C$$
 $: F(z) \text{ is an outidative live of } f(z)$
fundamental theorem of calculus

$$\oint_{c} f(z) dz = 0 \quad \text{if } f(z) \text{ is analytic within and on } C$$
No singularity
Thomas J. Cavicchi
Digital Signal Processing, Wiley, 2000

$$\oint_{c} f(E)dE = 0 \quad \text{if } f(E) \text{ is continuous in } D \text{ and } \\ f(E) = f'(E) \quad \text{if } f(E) \text{ is an autidative of } f(E) \\ fundamental theorem of calculus \\ \hline \oint_{E} f(E)dE = 0 \quad \text{if } f(E) \text{ is analytic within and on } C \\ \text{ Yo Singularity} \\ \hline \end{array}$$


Can expand
$$f(z)$$
 about any point Z_{m}
over powers of $(\overline{z} - Z_{m})$
whether or not $f(z)$ is singular at \overline{z}_{m}
or at other points between \overline{z} and \overline{z}_{m}
 $f(\overline{z}) = \sum_{n=M_{1}}^{\infty} d_{n}^{(m)} (\overline{z} - \overline{z}_{n})^{n}$
 $f(\overline{z}) = \sum_{n=M_{1}}^{\infty} d_{n}^{(m)} (\overline{z} - \overline{z}_{n})^{n}$
 $f(\overline{z}) = \sum_{n=M_{1}}^{\infty} d_{n}^{(m)} (\overline{z} - \overline{z}_{n})^{n}$
 $general π_{1} - depend on $f(\overline{z})$ at \overline{z}_{m}
 $general π_{1} - depend on $f(\overline{z})$ and \overline{z}_{m}
 $\overline{z} - transform of $d_{n}^{(m)}$
 $general π_{1} - depend on $f(\overline{z})$
 $\overline{z}_{m} = O$
 $\overline{z}_{m} = O$$$$$



Thomas J. Cavicchi Digital Signal Processing, Wiley, 2000 * Expansion of f(2) about any point Zm over powers of (= Zm) $f(z) = \sum_{n=n_{1}}^{\infty} a_{n}^{(m)} (z - z_{m})^{n}$ $\alpha_n^{[m]} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-z_n)^{n+1}} dz$ for general flzj $\alpha_n^{(m)} = \sum_k \operatorname{Res}\left(\frac{f(z)}{(z-z_n)^{n+1}}, z_k\right)$ for general flz) $\alpha_n^{[m]} = \frac{1}{n!} f^{(n)}(z_n) \qquad n_1 \ge 0$ for analytic f(z) within C analytic f(z) $\longrightarrow \frac{f(z)}{(z-z_m)^{n+1}}$ has a pole at z_m order of n+1

Residue Theorem assumed there are (m) singularities (poles) of f(z) in a region Cm is taken to enclose only one pole Zm DZ1 23 0 Z2 and expanded at Z C, encloses Z, only $\widetilde{\alpha}_{-1}^{\{1\}} = \operatorname{Res}(f(z), z_1)$ an expanded at Z2 C2 encloses Z2 only $\widetilde{\mathcal{A}}_{-1}^{\{\Sigma\}} = \operatorname{Res}(f(z), z_{2})$ an expanded at Z3 C; encloses Z; only $\widetilde{a}_{-1}^{\frac{5}{3}} = \operatorname{Res}(f(z), \overline{z_3})$

expand at Zm $\alpha_n^{[m]} = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_n)^{n+1}} dz$ 5 Z1 23 0 $= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z - z_{m})^{n+1}}, z_{k} \right)$ 0 22 N≥ 0 Z1, Z2, Z3, Zm Zm $\gamma < 0$ $\overline{z}_1, \overline{z}_2, \overline{z}_3$ 23

$$\begin{aligned} & (2 \times pansion at Z_{m}) \\ & (2 \times pansion at$$

$$\int_{C} f(z) dz = 2\pi j \sum_{k=1}^{M} \tilde{a}_{1}^{(k)} = 2\pi j \sum_{k=1}^{M} Re(f(z), z_{k})$$

$$\int_{C} f(z) dz = 2\pi j \sum_{k=1}^{M} \tilde{a}_{1}^{(k)} = 2\pi j \sum_{k=1}^{M} Re(f(z), z_{k})$$

$$Pesidue theorem$$

$$A_{n} = \sum_{j=1}^{M} Res \left(\frac{f(z)}{(z-z_{n})^{n}}, z_{n}\right)$$

$$Leurent coefficient$$

$$C = ncloses k piles$$

$$C_{k} = ncloses k piles$$

$$C_{k} = ncloses k piles$$

$$\tilde{a}_{1}^{(k)} = the residue of the k-th pile = nclosed by C_{n} z_{k}$$

$$f(z) = \sum_{n=n}^{\infty} a_n^{(n)} (z - z_n)^n$$

$$a_n^{(n)} = \frac{1}{2\pi i} \oint_c \frac{f(z)}{(z - z_n)^{n+1}} dz'$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z - z_n)^{n+1}}, z_n \right)$$
C is in the same region of analyticity of $f(z)$

$$\frac{f(z)}{(z - z_n)^{n+1}}$$

$$z_k \text{ withm } c : \operatorname{singularities of } \frac{f(z)}{(z - z_n)^{n+1}}$$

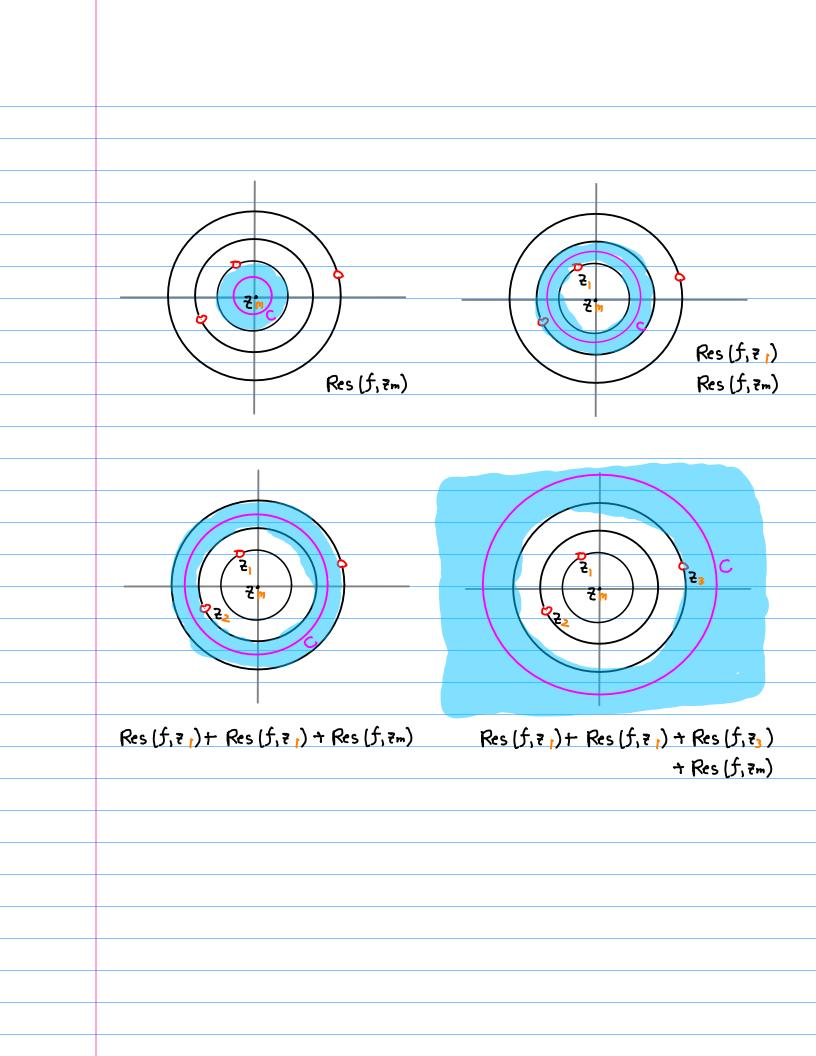
$$n_k = n_{f(n)} \quad depends \text{ on } f(z), z_n, \text{ region of analyticity}$$
Whether $f(z)$ is singular at $z = z_n$ or $n \in z_n$

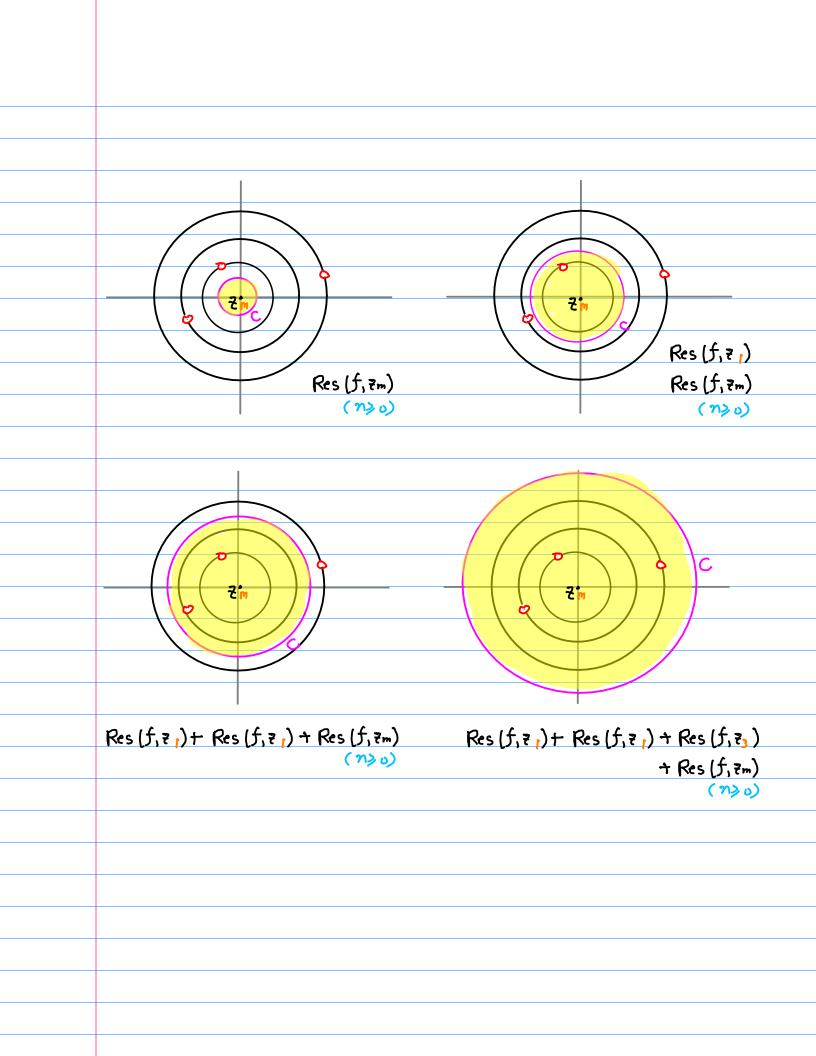
$$d_n^{(n)} \quad depends \text{ on } f(z), z_n$$

$$whether $f(z)$ is singular at $z = z_n$ or $n \in z_n$

$$d_n^{(n)} \quad depends \text{ of } f(z) = z_n z_n$$$$

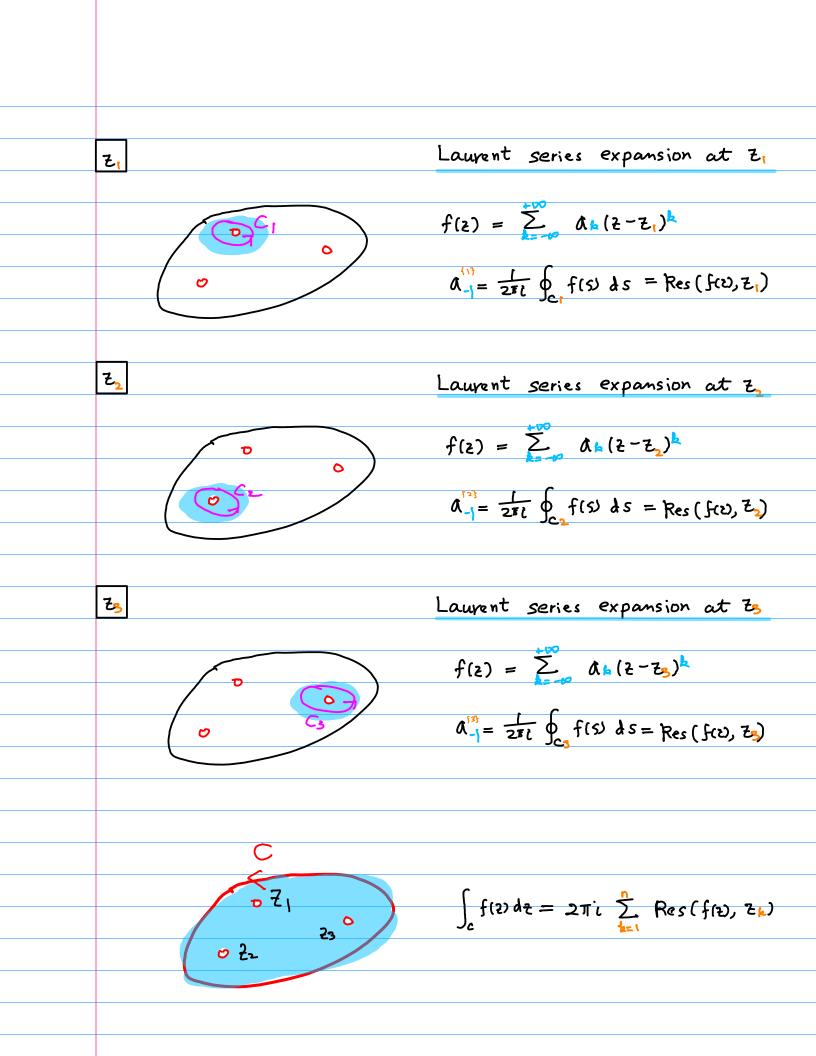
$$f(z) = \sum_{n=n}^{\infty} a_n^{(n)} (z - z_m)^n$$

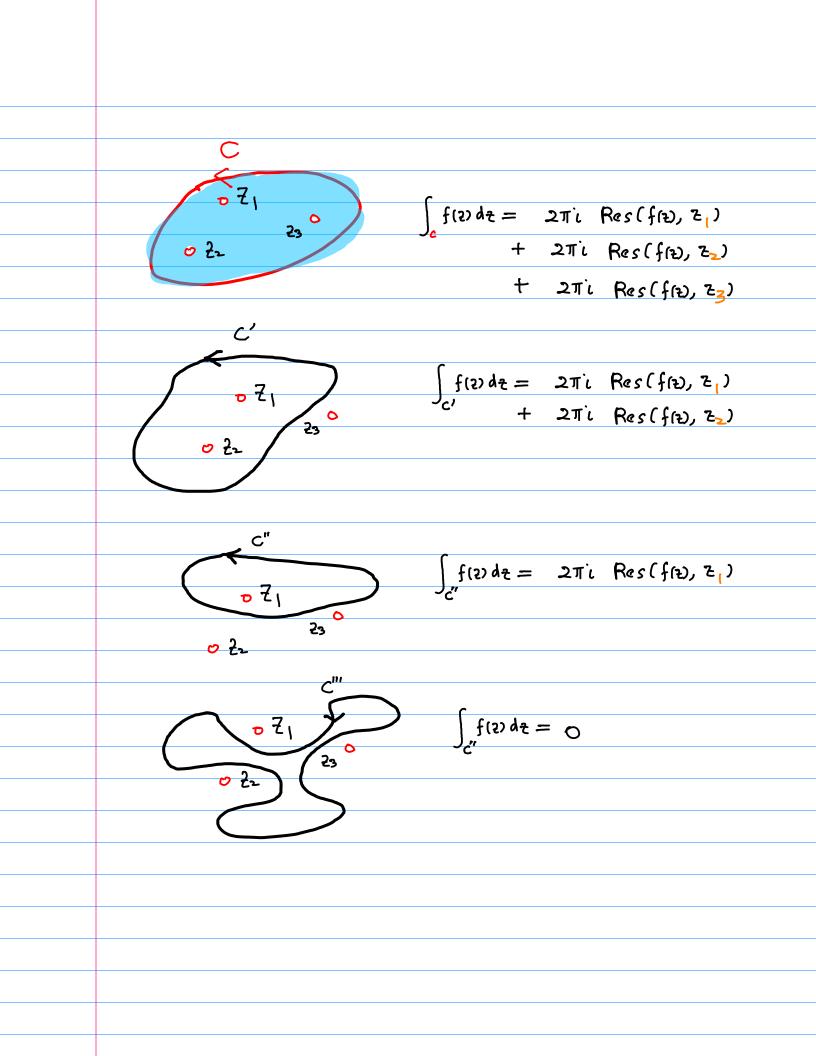

$$a_n^{(n)} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_m)^{n+1}} dz^i$$

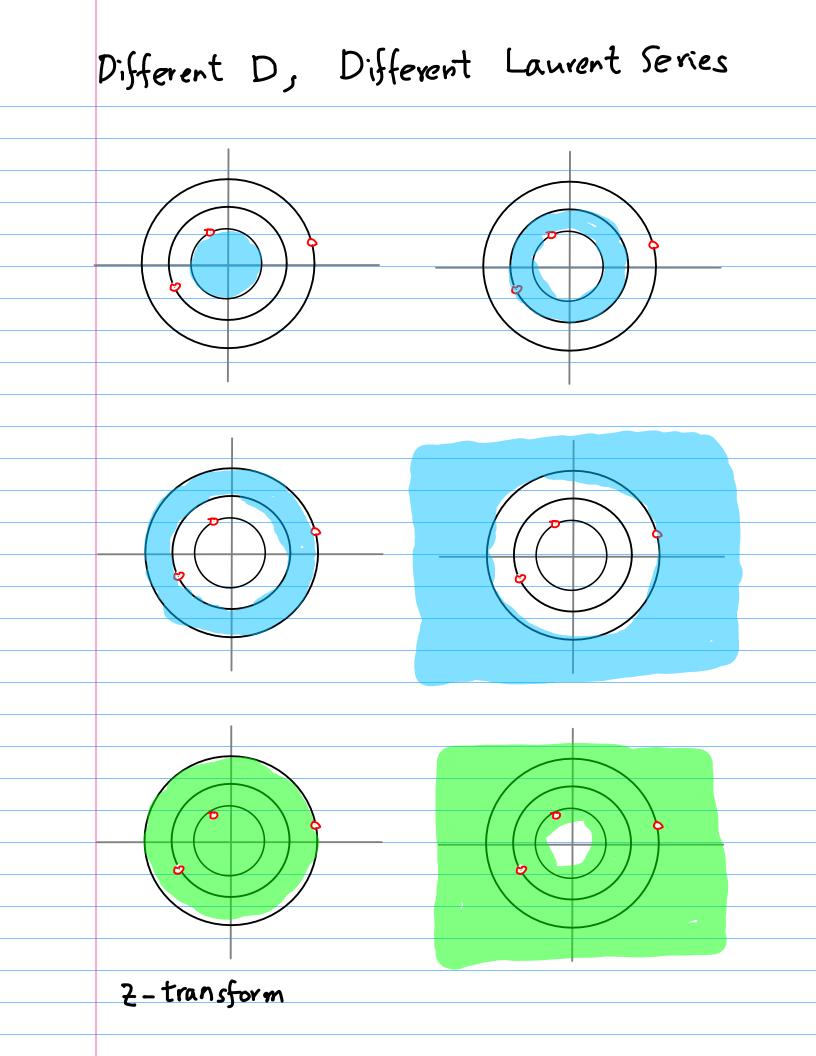

$$= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z - z_m)^{n+1}}, z_k \right)$$

$$\frac{f(z)}{(z - z_m)^{n+1}}$$

$$\begin{cases} poles of f(z) \ \forall z = z_m \quad n \ge 0 \\ poles of f(z) \quad n < 0 \end{cases}$$


$$f(z) = \sum_{n=n}^{\infty} a_n^{(n)} (z - z_n)^n$$


$$a_n^{(n)} = \frac{1}{2\pi \epsilon} \oint_{c} \frac{f(z)}{(z - z_n)^{n+\epsilon}} dz^{\epsilon}$$

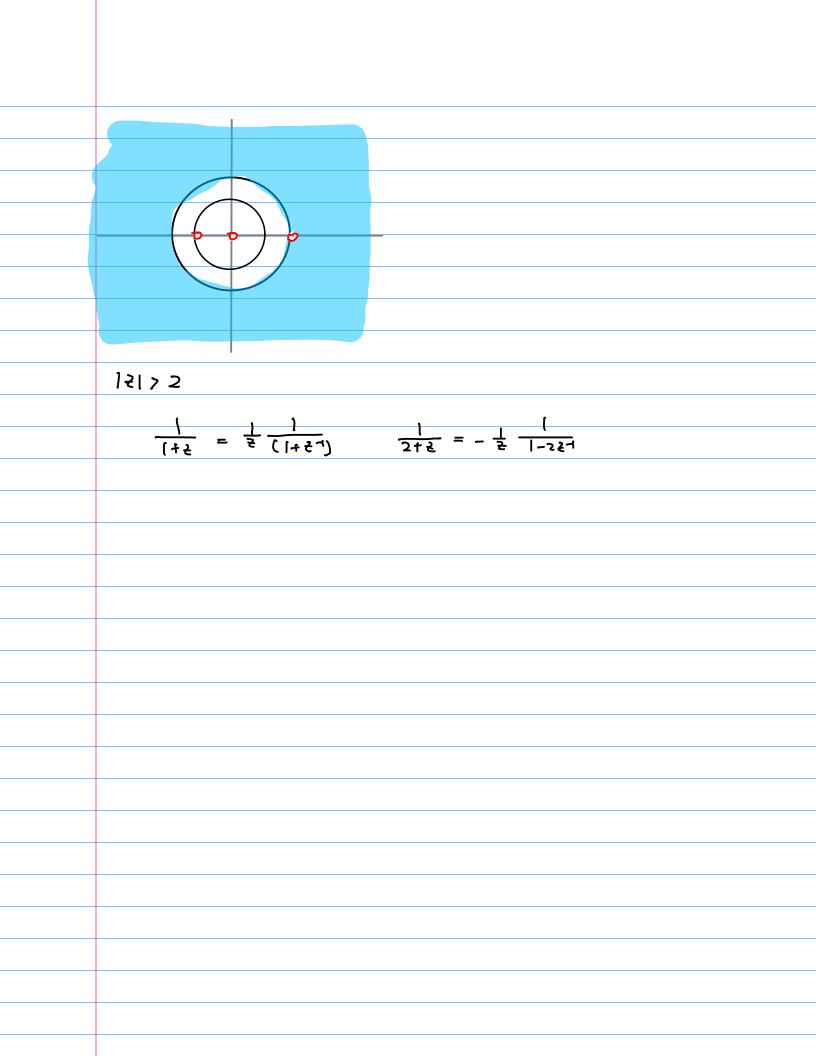

$$= \sum_{A} - \operatorname{Res} \left(\frac{f(z)}{(z - z_n)^{n+\epsilon}}, z_n \right)$$

$$c_{D} = \sum_{a} - \operatorname{Res} \left(\frac{f(z)}{(z - z_n)^{n+\epsilon}}, z_n \right)$$

 C, Zo: expansion point
z_{1} z_{2} z_{2} z_{2} z_{2} z_{2} z_{2} z_{2} z_{2} z_{3} z_{4} z_{2} z_{3} z_{4} z_{5} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7} z_{7}
Which poles of fize lie between the point of evaluation & and the point zo about which the expansion is formed
<u>f(?')</u> is analytic between C, & Cz (?'-2.)
deformation theorem Ci – Ci Coincide Common contour C

$$f(z) = \frac{12}{2(2-\frac{2}{3})(1+\frac{2}{3})} = \frac{4}{2} \left(\frac{1}{1+\frac{1}{3}} + \frac{1}{2-\frac{2}{3}} \right)$$
poly.: 2=0, 2=-1

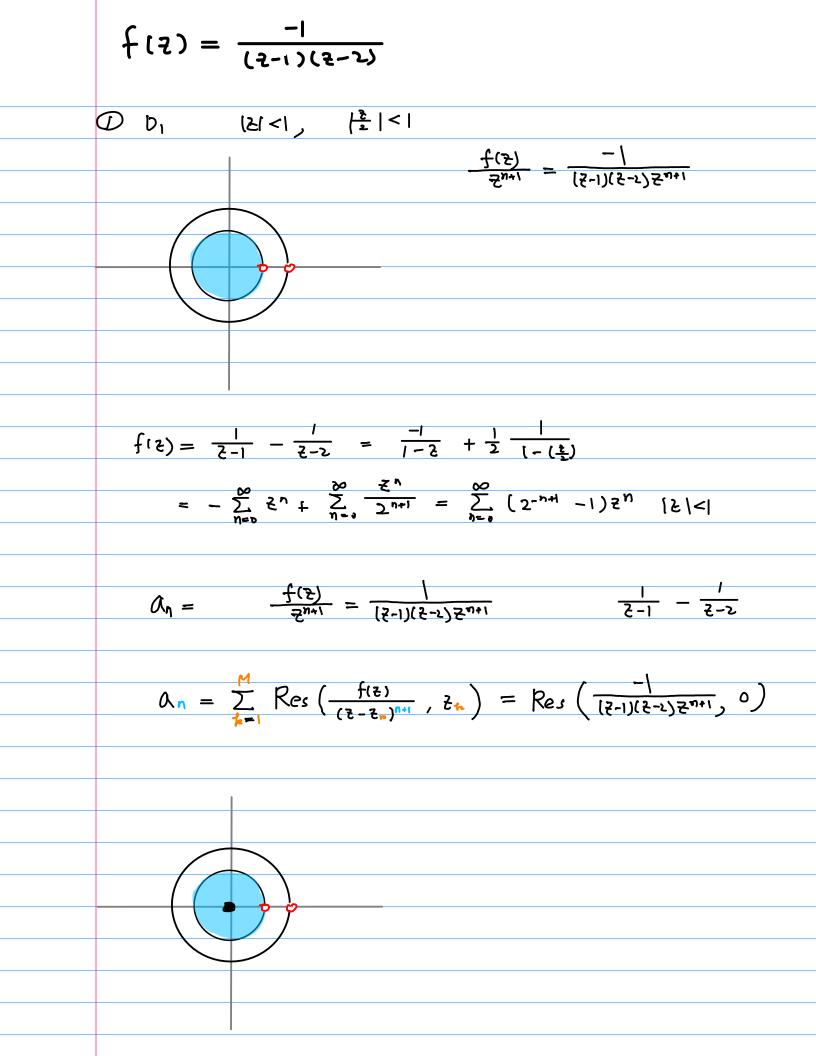
$$0 < |2| < 1$$


$$f(z) = -3 + 9z/_{2} - 15z^{2}/_{4} + 35z^{3}/_{8} + \dots + C/z$$

$$1|2| > 2$$

$$\frac{1}{(+z)} = \frac{1}{z} \frac{1}{(+z^{2})} - \frac{1}{2+z} = -\frac{1}{z} \frac{1}{(-z^{2})^{2}}$$

$$f_{1}(z) = -(1z/z^{3}) (1 + Vz + 3/z^{2} + 5/z^{3} + 11/z^{4} + \dots)$$


1> 151>0 $f(z) = -3 + 9z/2 - 15z^2/4 + 33z^3/8 + \dots + 6/z$

$$\begin{aligned} \int (z) = \frac{-1}{(2-1)(2-2)} & \text{Complex Variables and Ar} \\ & \text{Brown & Churchill} \\ \\ f(z) = \frac{-1}{(2-1)(2-2)} = \frac{1}{2-1} - \frac{1}{2-2} \\ & p_1 : |2| <| \\ & p_2 : 1 < |2| <2 \\ & p_3 : 2 < |2| \end{aligned}$$

$$\begin{aligned} D_1 \quad |2| <|, \qquad |\frac{1}{2}| <| \\ & f(z) = \frac{1}{2-1} - \frac{1}{2-2} = \frac{-1}{1-2} + \frac{1}{2} - \frac{1}{1-(\frac{1}{2})} \\ & = -\frac{2\pi}{2m} \frac{2^n}{2^n} + \frac{2\pi}{2m} - \frac{2\pi}{2m} = \frac{2\pi}{2m} (2^{-m} - 1) \frac{2^n}{2^n} |2| <| \end{aligned}$$

$$\begin{aligned} & (2) \quad p_2 \quad | < |2| <2 \Rightarrow \quad |\frac{1}{2}| <|, \qquad |\frac{1}{2}| <| \\ & f(z) = \frac{1}{2-1} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{1-(\frac{1}{2})} + \frac{1}{2} \cdot \frac{1}{1-(\frac{1}{2})} \\ & = -\frac{2\pi}{2m} \frac{2^n}{2^n} + \frac{2\pi}{2m} - \frac{2\pi}{2m} = \frac{2\pi}{2m} (2^{-m} - 1) \frac{2^n}{2^n} |2| <| \\ & f(z) = \frac{1}{2-1} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{1-(\frac{1}{2})} + \frac{1}{2} \cdot \frac{1}{1-(\frac{1}{2})} \\ & = \frac{\pi}{2m} \frac{1}{2m} + \frac{\pi}{2m} - \frac{2\pi}{2m} \\ & = \frac{\pi}{2m} \frac{1}{2} - \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2-1} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2-1} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2} - \frac{1}{2-2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\ & f(z) = \frac{1}{2} - \frac{1$$

$$\Delta_{n} = \sum_{j=1}^{M} \operatorname{Res} \left(\frac{f(z)}{(z-z_{n})^{n_{1}}}, z_{n} \right) = \operatorname{Res} \left(\frac{-1}{(z-1)(z-1)z^{n_{1}}}, 0 \right)$$

$$n \geq 0 \quad \text{from the pole } z = 0$$

$$\frac{1}{(P^{n})!} \frac{dim}{dz^{n}} \frac{d^{h_{1}}}{dz^{2n}} (z-2)^{n} f(z) \quad (order, n)$$

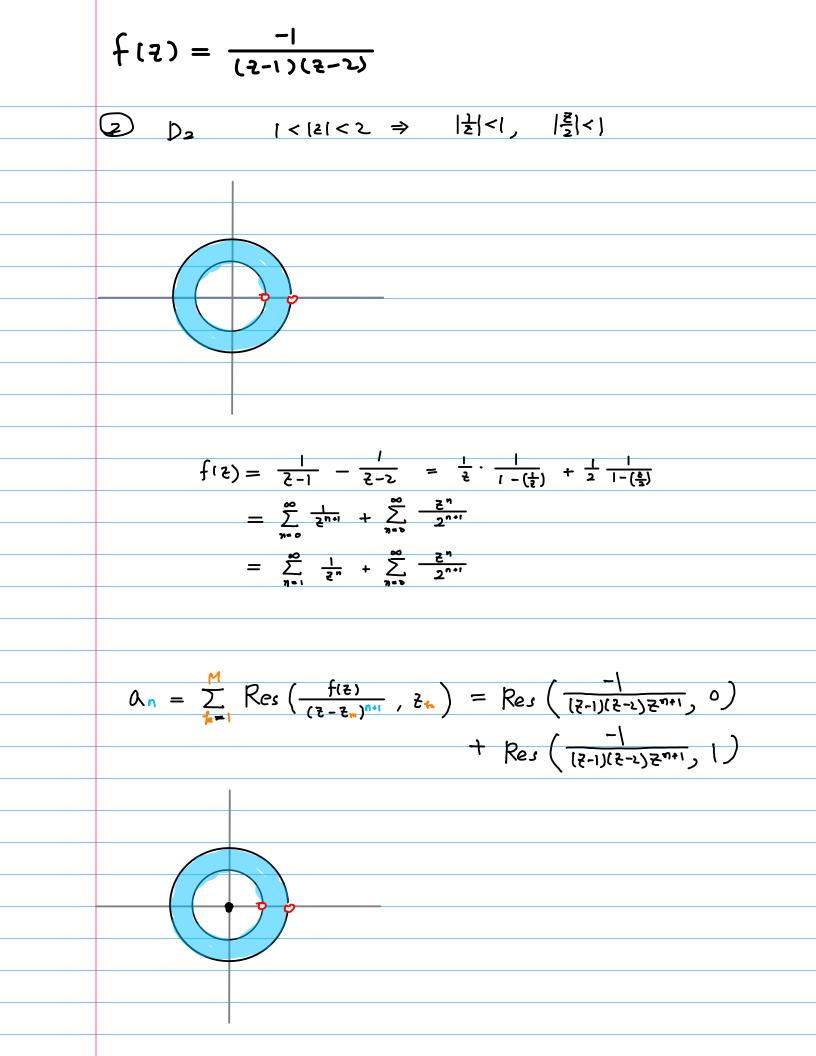
$$\frac{d}{dz} ((z+1)^{n} - (z-2)^{n}) = (-1) ((z+1)^{n} - (z-2)^{n})$$

$$\frac{d}{dz^{2}} ((z+1)^{n} - (z-2)^{n}) = (-1)(-1) (z+1)^{n} - (z-2)^{n}$$

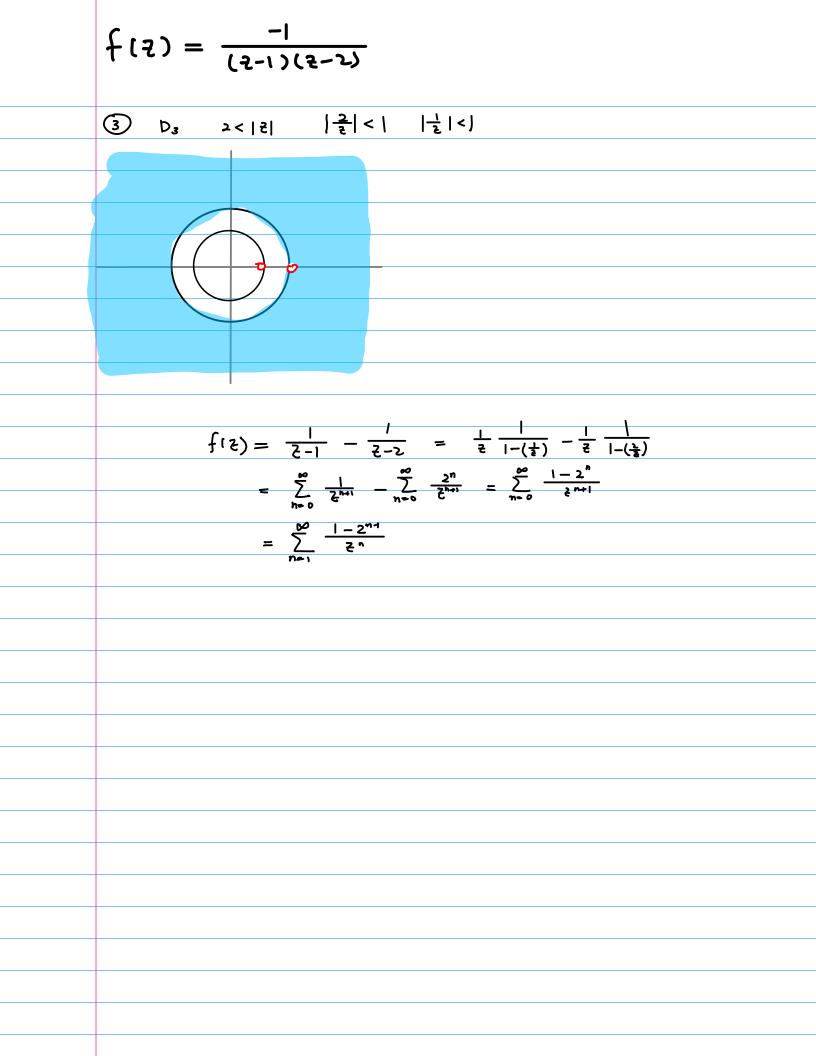
$$\frac{d}{dz^{2}} ((z+1)^{n} - (z-2)^{n}) = (-1)(-1)(-1)(z) ((z+1)^{n} - (z-2)^{n})$$

$$\frac{d}{dz^{2}} ((z+1)^{n} - (z-2)^{n}) = (-1)(-1)(z) (z+1)^{n} - (z-2)^{n}$$

$$\frac{d}{dz^{2}} ((z+1)^{n} - (z-2)^{n}) = (-1)^{n} ((z+1)^{n} - (z-2)^{n})$$


$$= (-1)^{n} ((z+1)^{n} - (z-2)^{n})$$

$$= (-1)^{n} ((z+1)^{n} - (z-2)^{n})$$


$$= (-1)^{n} (z+2^{n})$$

$$\Delta_{n} = -1 + 2^{n}$$

$$\Delta_{n} = -1 + 2^{n} (2^{n} + 2^{n} - 2^{n} - 2^{n} - 2^{n} - 2^{n} - 1)z^{n} \quad [z+1]$$

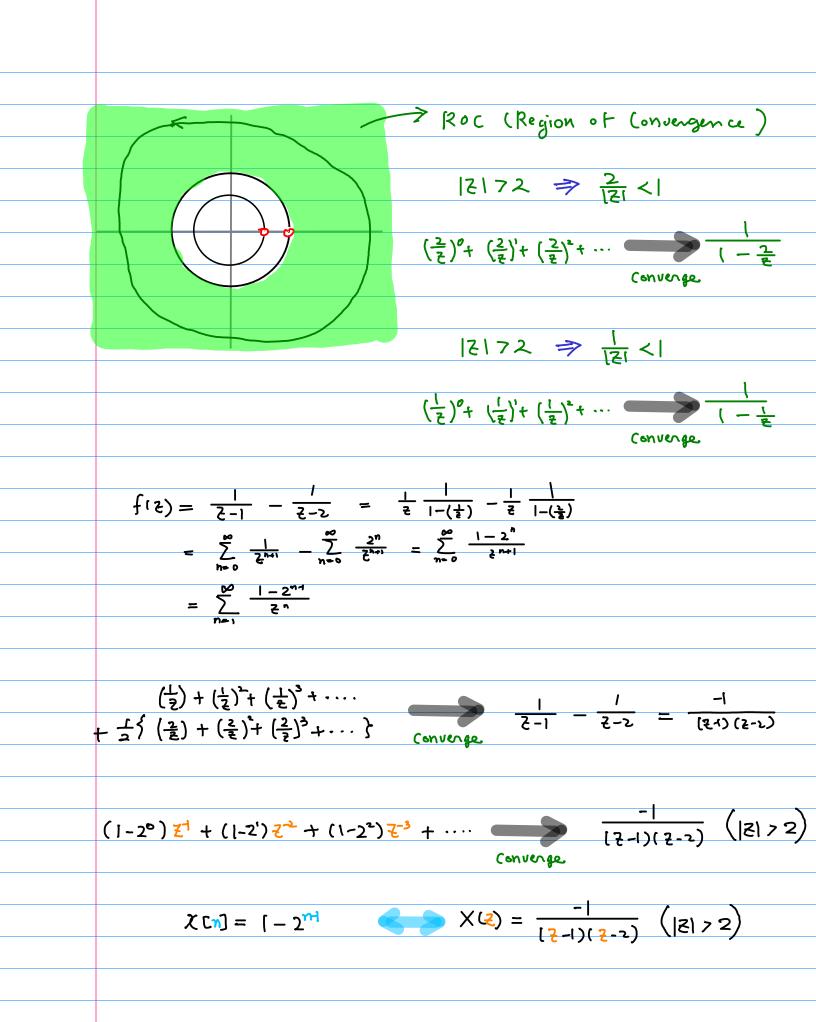
$$\Delta_{n} = \sum_{j=1}^{M} \operatorname{Res} \left(\frac{f(z)}{(z-z_{0})^{n+1}}, z_{0} \right) = \operatorname{Res} \left(\frac{-1}{(z-1)(z-1)z^{n+1}}, 0 \right) \\ + \operatorname{Res} \left(\frac{-1}{(z-1)(z-1)z^{n+1}}, 1 \right) \\ \frac{1}{(n-1)!} \lim_{z \to z_{0}} \frac{d^{n}}{dz^{n}} (z-z_{0})^{d} f(z) \left(\operatorname{Order} n \right) \\ = (-1)^{n} \lim_{z \to 0} ((z-1)^{n-1} - (z-2)^{n-1}) \\ = (-1)^{n} ((-1)^{n-1} - (z-2)^{n-1}) \\ = -1 + 2^{-n-1} \\ \operatorname{Res} \left(\frac{-1}{(z-1)(z-1)z^{n+1}}, 0 \right) = -1 + 2^{-n-1} \\ \operatorname{Res} \left(\frac{-1}{(z-1)(z-1)z^{n+1}}, 1 \right) = \lim_{z \to 1} (2-1) \frac{-1}{(z-1)(z-1)z^{n+1}} = 1 \\ \end{array}$$

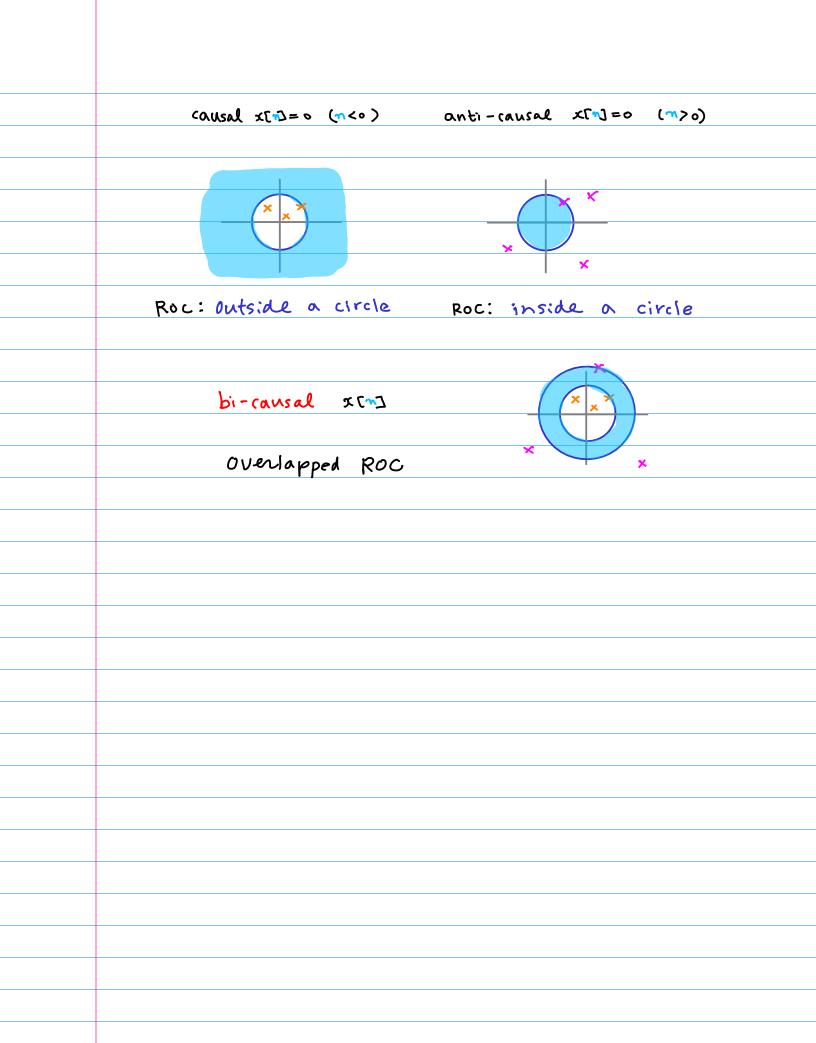
$$f(z) = \frac{-1}{(z-1)(z-2)}$$

$$X \subseteq n \end{bmatrix}$$

$$= \frac{1}{2\pi i} \int_{C} [X(z) z^{n}] dz$$

$$= \frac{h}{2\pi i} \operatorname{Res} \left([X(z) z^{n}], \bar{z}_{0} \right)$$


$$X(z) = \frac{-1}{(z-1)(z-1)}$$


$$X(z) z^{n} = \frac{-1}{(z-1)(z-1)} z^{n}$$

$$\operatorname{Res} \left([X(z) z^{n}], 1 \right) = (2\pi) \frac{-1}{(z-1)(z-1)} z^{n} \int_{z-1}^{z-1} z^{n}$$

$$\operatorname{Res} \left([X(z) z^{n}], 2 \right) = (z-1) \frac{-1}{(z-1)(z-1)} z^{n} \int_{z-2}^{z-1} - 2^{n-1}$$

$$X \subseteq n = (z-2)^{n-1}$$

	$f(z) = \sum_{n=0}^{\infty} \alpha_n^{\{n\}} (z - z_m)^n$
	$f(z) = \sum_{n=0}^{\infty} a_n z^n \qquad z_m = o \qquad a_n^{\{o\}} \Rightarrow a_n$
	Laurent Series at z=0
	$f(z) = \cdots + \alpha_2 z^2 + \alpha_1 z^1 + \alpha_0 z^0 + \alpha_1 z^1 + \alpha_2 z^2 + \alpha_3 z^3 + \cdots$
	Z-transform
b	
Bi-causal	$X(\mathbf{z}) = \cdots + X[\mathbf{z}]\mathbf{z} + \mathbf{z}[\mathbf{z}]\mathbf{z} + \mathbf{z}[\mathbf{z}]\mathbf{z} + \mathbf{z}[\mathbf{z}]\mathbf{z} + \mathbf{z}[\mathbf{z}]\mathbf{z}^{+} + \mathbf{z}[\mathbf{z}]$
Causal	$X(\mathbf{z}) = (\mathbf{z}) + \mathbf{z} [\mathbf{z}] \mathbf{z} + \mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z} [\mathbf{z}] \mathbf{z} + \mathbf{z} [\mathbf{z} [\mathbf{z}] \mathbf{z}' + \mathbf{z} [\mathbf{z} [\mathbf{z}] \mathbf{z} + \mathbf{z} [\mathbf$
6	
Anti-causal	$X(5) = \cdots + X[-1]\frac{2}{5} + x[-1]\frac{2}{5} + x[-1]\frac{2}{5}$
	$a_n \leftrightarrow \pi_{-n}$
	$a_n \leftrightarrow \pi(m)$
	ν_η <u>·</u> · · · · · · · · · · · · · · · · · ·

$$f(z) = \sum_{n=n}^{\infty} a_n^{(n)} (z - z_m)^n$$

$$a_n^{(n)} = \frac{1}{2\pi \ell} \oint_C \frac{f(z)}{(z - z_m)^{n/2}} dz'$$

$$= \sum_{k} Res \left(\frac{f(z)}{(z - z_m)^{n/2}}, z_k\right)$$

$$analytic at z_m$$

$$n \ge 0 \qquad Taylor Series$$

$$general n, z_m = 0 \qquad MacLawrin Series$$

$$singular at z_m$$

$$general n, Lawrent Series$$

$$general n, z_m = 0 \qquad z - Transform$$

$$f(z) = \sum_{n=n}^{\infty} a_n^{(n)} (z - z_m)^n$$

$$a_n^{(m)} = \frac{1}{2\pi i} \oint_c \frac{f(z')}{(z' - z_m)^{n+1}} dz'$$

$$= \sum_{\mathbf{k}} \operatorname{Res}\left(\frac{f(z)}{(z - z_m)^{n+1}}, z_n\right)$$

$$z_m = 0 \qquad a_{-n}^{(0)} = h(n) \qquad n \to -n$$

$$H(z) = \sum_{n=n}^{\infty} h(-n) z^n \qquad H(z) = \sum_{n=-\infty}^{\infty} h(n) z^{-n}$$

$$h(n) = \frac{1}{2\pi i} \oint_{c} \frac{H(z')}{z'^{n+1}} dz' \qquad h(n) = \frac{1}{2\pi i} \oint_{c} H(z') z'^{n-1} dz'$$
$$= \sum_{k} \operatorname{Res}\left(\frac{H(z)}{z^{n+1}}, z_{k}\right) \qquad = \sum_{k} \operatorname{Res}\left(H(z) z^{n-1}, z_{k}\right)$$

C is in the same region of analyticity of f(z) typically a circle centered on Zm Z_k within C: Singularities of $\frac{f(z)}{(z-z_m)^{n+1}}$ C is in the same region of analyticity of H(z) typically a circle centered on Zm generally a circle centered on the origin may enclose any on all singularities of H(2) often the unit circle Zk within C : Singularities of H(z) zn-1

$$H(z) = \sum_{n=1}^{\infty} \hat{K}(n) z^{-n} \quad \vec{z} \in R, Q, C$$

$$R(n) = \frac{1}{2\pi i} \oint_{C} H(z) z^{n-i} dz^{i} \quad C \text{ in } R, Q, C,$$

$$= \sum_{k} Res(H(z) z^{n-i}, \tilde{z}_{k})$$

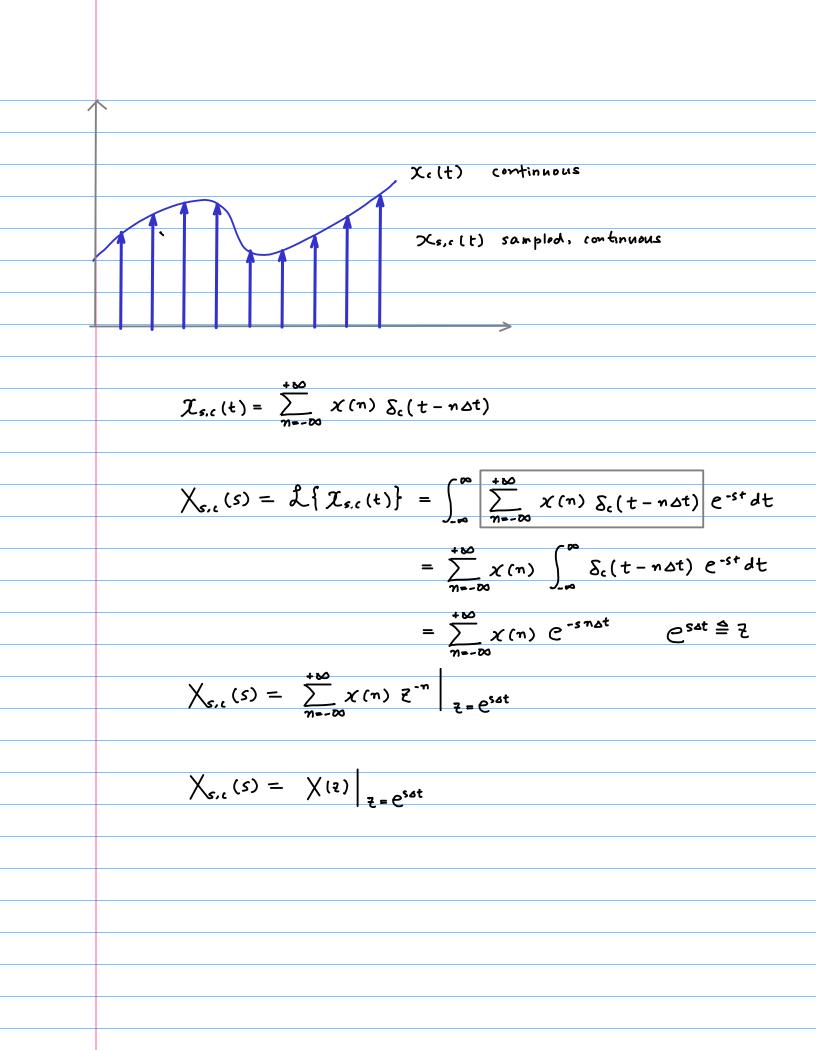
$$(1) \quad a \text{ power series representation}$$

$$of a function f(z) of a complex variable \vec{z}$$

$$(2) \quad a \text{ transform } H(z) \text{ of } a \text{ segmence of } 1$$

$$X(z) = \frac{z}{z - \frac{z}{2}} \qquad p_0 y_{-z_0} = \frac{1}{2}$$

$$X(z) = \frac{z}{z - \frac{z}{2}} \qquad p_0 y_{-z_0} = \frac{1}{2}$$


$$X(z) = kes \left(X(z) z^{n_1}, z_0\right) = kes \left(\frac{z}{z - \frac{z}{2}} z^{n_1}, \frac{1}{2}\right)$$

$$= kes \left(\frac{z^n}{z - \frac{z}{2}}, \frac{1}{2}\right) = \lim_{z \to \frac{z}{2}} \left(z - \frac{z}{2}\right) \frac{z^n}{z - \frac{z}{2}} = \left(\frac{1}{2}\right)^n$$

$$X(z) = \frac{1}{2n} \qquad n \ge 0$$

$$\left(\frac{1}{2}\right)^n z^n + \left(\frac{1}{2}\right)^n z^{-2} + \left(\frac{1}{2}\right)^n z^{-3} + \dots = \frac{1}{1 - \left(\frac{1}{2}z^n\right)}$$

$$= \frac{z}{z - \frac{1}{2}}$$

$$X_{o,c}(s) = \mathcal{L}\{\mathcal{I}_{s,c}(t)\} = |X(t)||_{t=c^{1}st}$$

$$\mathcal{I}_{s,c}(t) \quad \text{are impulse train}$$

$$whose coefficients are given by $x(t) = x_c(t)$$$

$$\overline{z} - \operatorname{transform} : \alpha \text{ special Lawent Series}$$

$$\overline{z}_{m} = 0 \qquad \overline{a_{n-n}^{(n)} = R(n)} \qquad n \to -n$$

$$f(\overline{z}) = \sum_{m=n}^{\infty} \overline{a_{n}^{(n)}} (\overline{z} - \overline{z}_{m})^{n}$$

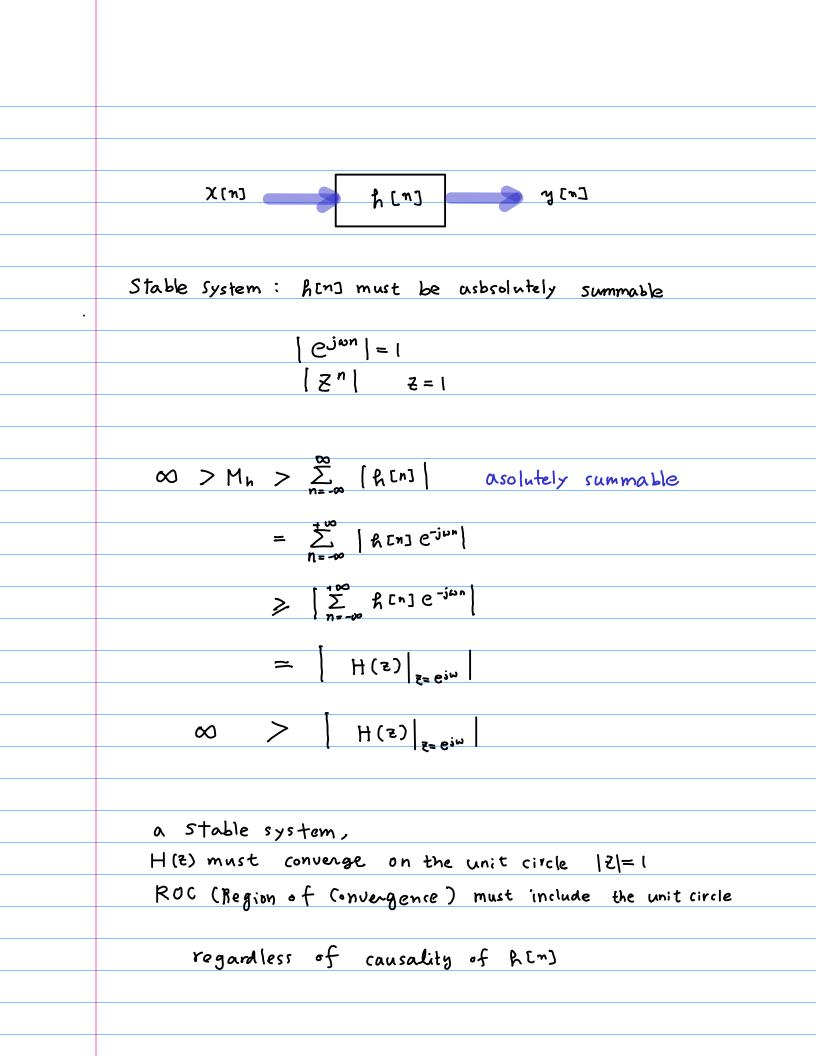
$$\overline{a_{n}^{(n)}} = \frac{1}{2\pi i} \oint_{C} \frac{f(\overline{z})}{(\overline{z} - \overline{z}_{m})^{n}} d\overline{z}^{i}$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(\overline{z})}{(\overline{z} - \overline{z}_{m})^{n}}, \overline{z}_{k}\right)$$

$$T_{1}me \text{ Reversal} \leftarrow Laplace \text{ Transform}$$

$$\operatorname{The transform functions} X(s) = \int over \text{ negative powers } \overline{z}^{-n} \quad \text{for } t > 0$$

$$X(\overline{z}) = \int over \text{ negative powers } \overline{z}^{-n} \quad \text{for } t > 0$$


$$T_{1}me \text{ Reversal} \leftarrow \overline{z}^{1}: unit dulog_{2}, \quad \text{Char eq. (models in } \overline{z}^{k})$$

$$H(z)\Big|_{z=z} = H(e^{j\hat{n}}) \quad \text{DTFT of } K[v]$$

discrete All Stable sequence must have convergent DTFTs
continuous All Stable Signal must have convergent CTFTs

$$C \leftarrow unit Circle \quad z=e^{j\hat{n}}$$

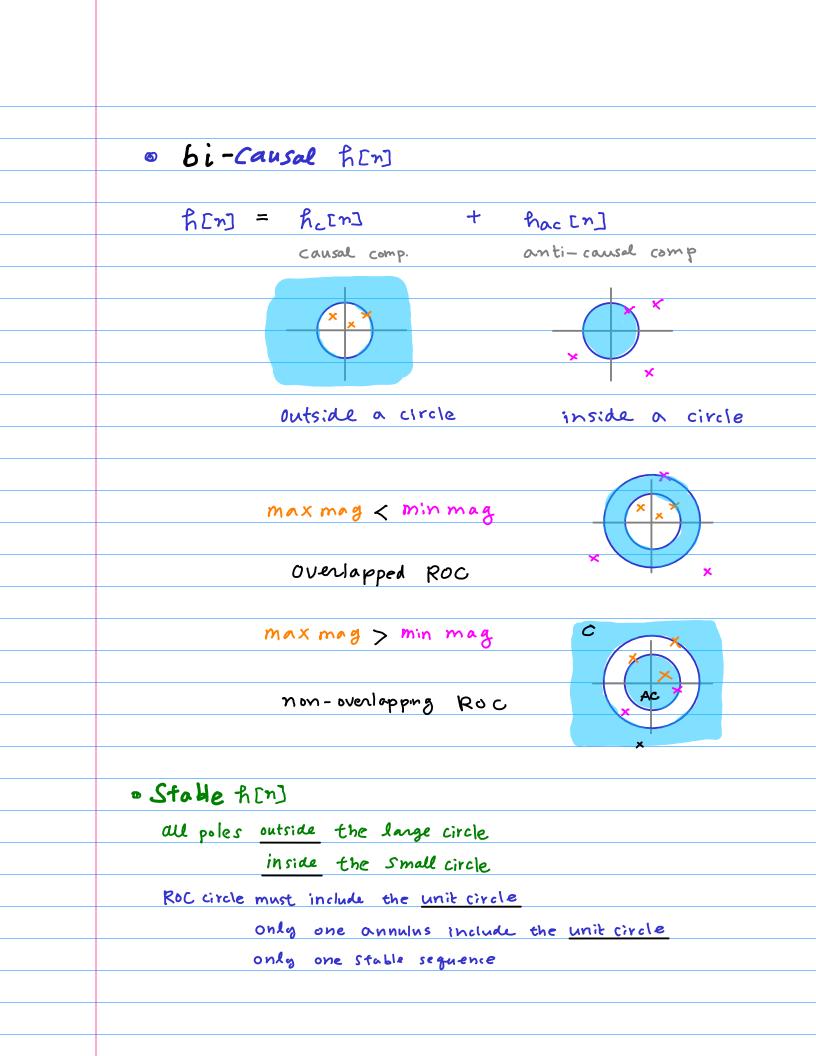
$$ZT^{-1} \quad DTFT^{-1} \quad identical formulas$$

$$ZT^{-1} \quad DTFT^{-1} \quad identical formulas$$

$$f(r) = causal$$

$$H(z) = \sum_{n=0}^{\infty} h(n) z^{-n} = \sum_{n=0}^{\infty} h(n) z^{-n} \quad n \in [0, \infty)$$
for finite values of n,
each term must be finite as long as $\overline{z} + 0$
For the sum to converge,
$$h(n) z^{-n} \text{ must vanish as } n + \infty$$

$$|z| > r_n \quad z_h = r_h e^{j\theta}$$


$$Z_h^n is the longest magnitude
geometrically increasing component
$$n^m z_k^n : \text{the most general term}$$
for impulz responses
$$n + \infty \quad \overline{z_k}^n \text{ dominant over } n^m \text{ for finite } m$$$$

geometric components - as poles $\frac{5}{25-5} = \frac{1}{\left(\frac{29}{5}\right)-1} = \frac{5}{2} - 2e$ ROC of a causal sequence h[n] outside the radius of the langest magnitude pole of H(2) ROC of a causal signal h(t) to the right of the rightmost pole of Hc(s) if h[n] is a stable, causal sequence, the unit circle must be included in the ROC

γ · Causal h[n] ROC: <u>outside</u> of a circle × X × · Stable h[n] all poles inside the unit circle ROC circle must be smaller than the unit circle => all the geometric components of R[n] : modes must decay with increasing n all the poles of H(z) must be within the unit circle all the poles of He(s) must be in the left half plane

X o anti-Causal h[m] ROC: in side of a circle \rightarrow • Stable h[n] all poles outside the unit circle ROC circle must be larger than the unit circle => all the geometric components of R[n] : modes must decay with <u>decreasing n</u>

• bi-causal ficn]
$h_c[n] + h_{ac}[n]$
outside inside
max mag < min mag
Overlapped ROC
 • Stable h[n]
all poles outside
the unit circle
ROC circle must include the unit circle

Existence of the z-Transform $X(z) = \sum_{n=0}^{\infty} x[n] z^{-n} = \sum_{n=0}^{\infty} \frac{x[n]}{z^{n}}$ the existence of the z-transform is guaranteed if $|\chi(z)| \leq \sum_{n=0}^{\infty} \frac{|\chi(n)|}{|z^n|} < \infty$ for some |z|any signal X[m] that grows no faster than an exponential signal run, for some ro satisfies the above condition if |x[n] |≤ ron for some ro then $|X(z)| \leq \sum_{n=0}^{\infty} \left(\frac{\gamma_{0}}{|z|}\right)^{n} = \frac{1}{1-\frac{1}{|z|}}$ [z1>ro therefore X(Z) exists for 1217 5 Almost all practical signal satisfy this condition $|x[n]| \leq r_0^n$ for some r_0 and z-transformable Some signal models (e.g. r") grows faster than the exponential signal ron (for any ro) and do not satisfy this condition and are not z-transformable Such signals and of little practical on theoretical interest Even such signals over a finite interval are z-transformable

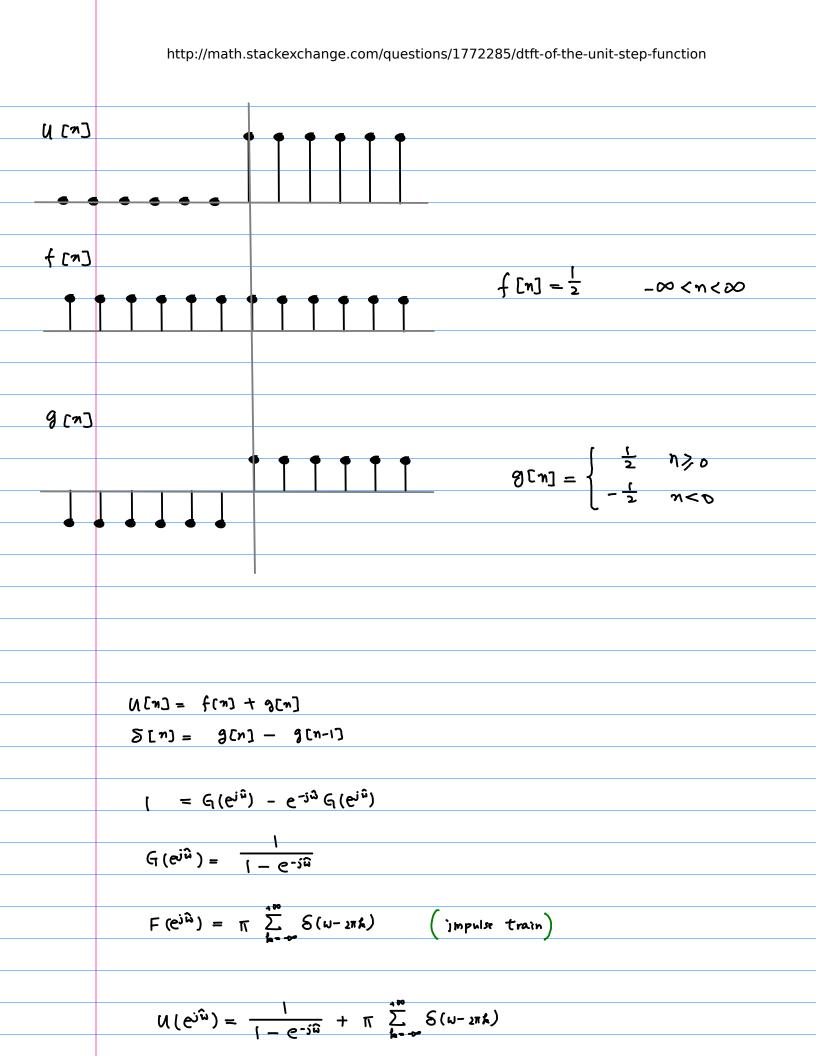
Region of Convergence Laplace Transform Aertults do Z - Transform Ád" ((m) //// PTFT(X) $X(z) = A \sum_{n=0}^{\infty} \propto^n u[n] z^{-n} = A \sum_{n=0}^{\infty} \propto^n z^{-n} = A \sum_{n=0}^{\infty} \left(\frac{\alpha}{z}\right)^n$ Converge $\left|\frac{\alpha}{2}\right| < |\alpha|$ $|z| > |\alpha|$ open exterior of a circle of radius las the sum of a geometric series $\chi(z) = A \frac{1}{1-\frac{\alpha}{2}} = \frac{A}{1-\alpha z^{-1}} = A \frac{z}{z-\alpha} \qquad |z| > |\alpha|$ DT FT $X(j\hat{\omega}) = \sum_{n=1}^{+\infty} x(n) e^{-j\hat{\omega}n}$

DTFT
DTFT of the unit sequence utra

$$X(e^{jikn}) = \sum_{m=0}^{\infty} utrate^{jikn} = \sum_{n=0}^{\infty} e^{-jikn}$$
not converge

$$\hat{u} = 0 \qquad \sum_{m=0}^{\infty} 1^{n} \qquad diverse$$

$$\hat{u} = \pi \qquad \sum_{n=0}^{\infty} (-1)^{n} \qquad \text{oscillater}$$


$$\hat{u} = \pi \qquad \sum_{m=0}^{\infty} (j)^{n}$$
The DTFTE of some commonly used functions
do not exist in the strict conse.
But even though the DTFT does not exist.

$$X(z) = \sum_{m=0}^{\infty} 1^{-n} \qquad \sum_{m=0}^{\infty} 2^{-n}$$

$$[217] \qquad X(z) = \frac{z}{z-1} = \frac{1}{1-z^{n}}$$

$$X(z) = \frac{z}{z-1} \qquad \text{pole } z=1, \quad \text{for } z=0$$

$$X(z) = \frac{1}{1-z^{n}} \qquad \text{or } z=0$$

D'iscrete Time Exponential r ⁿ	
Continuous time exponential e st	
$\mathcal{C}^{\lambda t} = \mathcal{F}^{t} \qquad (\mathcal{C}^{\lambda})^{t} = \mathcal{F}^{t}$	
$e^{\lambda} = \gamma$ $\lambda = \ln \gamma$	
$e^{-0.3t} = (0.9408)^{t}$	
$4^t = e^{1.38/t}$	
Continue time and the OAt	
continuous time analysis e ^{rt} discrete time analysis x ⁿ	
Cisclece Lime Chalysis A	
$\mathcal{C}^{\lambda n} = \mathcal{F}^n \qquad (\mathcal{C}^{\lambda})^n = \mathcal{F}^n$	
$e^{\lambda} = \gamma$	
$\lambda = ln r$	

enn

E
Exponentially grows if REZZO (2 in RHP)
exponentially decays if REZKO (ZINLHP)
oscillates on constant if $Re \lambda = 0$ (λ in imagaxis)
•
the location of λ in the complex plain indicates whether
D CXE will grow exponentially
@ ene will de cag exponentially
3 ext will oscillates with constant amplitude
constant signal : oscillation with zew frequency
e ^{jSen} λ=jSe imaginary axis
Constant amplitude oscillating signal
$e^{j\mathcal{R}n} = (e^{j\mathcal{R}})^n = \mathcal{F}^n \qquad \mathcal{F} = e^{j\mathcal{R}} \qquad \mathcal{F} = 1$
$\lambda = js 2$ imaginary axis $\rightarrow \lambda - 1$ unit circle
if I lies on the unit circle,
8 ^m Oscillates with constant amplitude
the imaginary axis in the 2 plane
the unit circle in the & plane
on unit circle in the 1 plane

$$C^{\lambda n} \quad \lambda = a + jb \quad in the LHP (a < 0)$$
exponentially decoying
$$Y = C^{\lambda} = C^{a+jb} = C^{a} C^{b}$$

$$F^{1} = C^{a} < 1 \quad inside the Unit circle$$

$$Y^{n} : exponentially decoying$$

$$[h] = C^{a} > 1 \quad outside the Unit circle$$

$$Y^{n} : exponentially growing$$

•			
入-plane		r-plane	
the imaginary axis	\rightarrow	the unit circle	
the LHP	\rightarrow	inside of the unit circle	
the RHP	\rightarrow	outside of the unit circle	