## The Complexity of Algorithms (3A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

## Complexity Analysis

- to compare algorithms at the idea level ignoring the low level details
- To measure how fast a program is
- To explain how an algorithm behaves as the input grows larger


## Counting Instructions

- Assigning a value to a variable
- Accessing a value of a particular array element
- Comparing two values
- Incrementing a value
- Basic arithmetic operations
- Branching is not counted
$x=100$;
A[i]
( $\mathrm{x}>\mathrm{y}$ )
i++
$+,-,{ }^{*}, /$
if else


## Asymptotic Behavior

- avoiding tedious instruction counting
- eliminate all the minor details
- focusing how algorithms behaves when treated badly
- drop all the terms that grow slowly
- only keep the ones that grow fast as $\mathbf{n}$ becomes larger


## Finding the Maximum

$$
\begin{aligned}
& \mathrm{M}=\mathrm{A}[0] ; \\
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ;++\mathrm{i})\{ \\
& \quad \text { if }(\mathrm{A}[\mathrm{i}]>=\mathrm{M})\{ \\
& \quad \mathrm{M}=\mathrm{A}[\mathrm{i}] ; \\
& \\
& \quad\}
\end{aligned}
$$

int $\mathrm{A}[\mathrm{n}]$; // n element integer array A
int M ; // the current maximum value found so far
// set to the $1^{\text {st }}$ element, initially

## Worst and Best Cases

| $\mathrm{i}=0$ | A[0] |
| :---: | :---: |
| i=1 | A[1] |
| $\mathrm{i}=2$ | A[2] |
| i=3 | A[3] |

Case 1:
Worst Case

$$
\begin{array}{ll}
A[0]=\mathbf{1} & \Rightarrow M=1 \\
A[1]=2 & \Rightarrow M=2 \\
A[2]=\mathbf{3} & \Rightarrow M=3 \\
A[3]=4 & \Rightarrow M=4
\end{array}
$$

4 updates of M

Case 2:
Best Case

$$
\begin{aligned}
& \mathrm{A}[0]=\mathbf{4} \\
& \mathrm{A}[1]=3 \\
& \mathrm{~A}[2]=2 \\
& \mathrm{~A}[3]=\mathbf{1}
\end{aligned}
$$

1 update of M

```
for (i=0; i<n; ++i) {
    if (A[i] >= M) { // always n comparisons
        M = A[i]; // the updating of M depends on the data
    } // minimum 1 update, maximum n updates
```


## Assignment instruction counts

```
M = A[0]
for (i=0; i<n; ++i) {
    if (A[i] >= M) {
        M = A[i];
    }
}
A[0] - 1 instruction
\(M=\quad-1\) instruction
A[i] - 1 instruction
\(\mathrm{M}=-1\) instruction
```


## for loop instruction iterations



$$
\begin{aligned}
& \text { for }(=0|<n|++)\{ \\
& \text { if }(A[i]>=M) \text { \{ } \\
& \mathrm{M}=\mathrm{A}[\mathrm{i} \text {; } \\
& \text { \} }
\end{aligned}
$$

Loop body * $n$
Update * $\mathbf{n}$

## for loop instruction counts



Initialization * 1

| $\mathrm{i}=0$ | $: 1$ instruction |
| :--- | :--- |
| $\mathrm{i}<\mathrm{n}$ | $: 1$ instruction |

## Update * $\mathbf{n}$

$++\mathrm{i} \quad: 1$ instruction
$\mathrm{i}<\mathrm{n}$
: 1 instruction

Loop body * $\mathbf{n}$


## Worst case examples

| $\mathrm{i}=0$ |  |  | $i=1$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\rightarrow$ | $A[0]=1$ | >= $M=1$ |  | A $[0]=1$ |  |
|  | A[1] $=2$ | $\mathrm{M}=1$ - | $\cdots$ | A[1] $=2$ | >= $M=1$ |
|  | A[2] $=3$ |  |  | A[2] $=3$ | $\mathrm{M}=2 \mathrm{~d}$ |
|  | $\mathrm{A}[3]=4$ |  |  | A[3] $=4$ |  |
| $\mathrm{i}=2$ |  |  | $i=3$ |  |  |
| $\Rightarrow$ | A [0]=1 |  |  | $\mathrm{A}[0]=1$ |  |
|  | A[1] $=2$ |  |  | A[1] $=2$ |  |
|  | A[2]=3 | >= $M=2$ |  | A[2]=3 |  |
|  | $\mathrm{A}[3]=4$ | $\mathrm{M}=3{ }^{-1}$ | $\rightarrow$ | A[3]=4 | >= M=3 |
|  |  |  |  |  | $\mathrm{M}=4$ - |

$$
\begin{aligned}
& \text { for (i=0; } \mathrm{i}<\mathrm{n} ;++\mathrm{i})\{ \\
& \quad \text { if }(\mathrm{A}[\mathrm{i}]>=\mathrm{M})\{ \\
& \quad \mathrm{M}=\mathrm{A}[\mathrm{i}] ; \\
& \quad\} \\
& \mathbf{2 n + 2 n}=\mathbf{4 n} \\
& \text { instructions }
\end{aligned}
$$

## Best case examples

| $\mathrm{i}=0$ |  |  | $i=1$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | $\mathrm{A}[0]=4$ | $>=M=4$ |  | $A[0]=4$ |  |
|  | A[1] $=3$ | $\mathrm{M}=4{ }^{4}$ | $\Rightarrow$ | $\mathrm{A}[1]=3$ | < M=4 |
|  | $\mathrm{A}[2]=2$ |  |  | $\mathrm{A}[2]=2$ |  |
|  | $\mathrm{A}[3]=1$ |  |  | $\mathrm{A}[3]=1$ |  |
| $i=2$ |  |  | $i=3$ |  |  |
|  | $\mathrm{A}[0]=4$ |  |  | $\mathrm{A}[0]=4$ |  |
|  | $\mathrm{A}[1]=3$ |  |  | A[1] $=3$ |  |
| $\Rightarrow$ | A[2] $=2$ | < M $=4$ |  | A[2] $=2$ |  |
|  | $\mathrm{A}[3]=1$ |  | $\Rightarrow$ | $\mathrm{A}[3]=1$ | < M $=4$ |

```
for (i=0; i<n; ++i) {
    if (A[i] >= M) {
        M = A[i];
    }
2n+2
instructions
n comparisons
1 update
```


## Asymptotic behavior



$$
f(n)= \begin{cases}6 n+4 & \text { instructions for the worst case } \\ 4 n+6 & \text { instruction for the best case }\end{cases}
$$

$$
\begin{aligned}
& f(n)=\Theta(n) \\
& f(n)=O(n) \\
& f(n)=\Omega(n)
\end{aligned}
$$

## $\Theta(\mathbf{n})$ codes

```
// Here c is a positive integer constant
for (i=1; i <= n; i += c) {
    // some \Theta(1) expressions
}
for (int i= n; i>0; i -= c) {
    // some \Theta(1) expressions
}
```


## $\Theta(\mathbf{n})$ codes

$$
\text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathbf{n} ; \mathrm{i}+=\mathrm{c})
$$

| $c=1$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | . . | $\approx n$ | $=\Theta(n)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $c=2$ | 1 |  | 3 |  | 5 |  | 7 |  | 9 |  | 11 |  | 13 |  | 15 |  | $\ldots$ | $\approx n / 2$ | $=\Theta(n)$ |
| $c=3$ | 1 |  |  | 4 |  |  | 7 |  |  | 10 |  |  | 13 |  |  | 16 | ... | $\approx n / 3$ | $=\Theta(n)$ |
| $c=4$ | 1 |  |  |  | 5 |  |  |  | 9 |  |  |  | 13 |  |  |  | ... | $\approx n / 4$ | $=\Theta(n)$ |

$$
\text { for (int } \mathbf{i}=\mathbf{n} ; \mathrm{i}>0 ; \mathrm{i}-=\mathrm{c})\{
$$

| $c=1$ | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | $\ldots$ | $\approx n$ | $=\Theta(n)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $c=2$ | 16 | 14 | 12 | 10 |  | 8 |  | 6 |  | 4 |  | 2 |  | $\ldots$ | $\ldots$ | $\approx n / 2$ | $=\Theta(n)$ |  |  |
| $c=3$ | 16 |  | 13 |  | 10 | 10 |  | 7 |  |  | 4 |  |  | 1 | $\ldots$ | $\approx n / 3$ | $=\Theta(n)$ |  |  |
| $c=4$ | 16 |  |  | 12 |  |  | 8 |  |  |  | 4 |  |  |  | $\ldots$ | $\approx n / 4$ | $=\Theta(n)$ |  |  |

## $\Theta\left(\mathbf{n}^{2}\right)$ codes

```
for (i=1; i <=n; i += c) {
        for (j = 1; j <=n; j += c) {
            // some \Theta(1) expressions
    }
}
}
```

```
for (i=n; i>0; i-= c) {
```

for (i=n; i>0; i-= c) {
for ( j = i+1; j <=n; j += c) {
for ( j = i+1; j <=n; j += c) {
// some \Theta(1) expressions

```
        // some \Theta(1) expressions
```



## $\Theta(\log \mathbf{n})$ codes

```
for (int i=1; i <=n; i *= c) {
    // some \Theta(1) expressions
}
for (int i = n; i> 0; i /= c) {
    // some \Theta(1) expressions
}
```


## $\Theta(\mathbf{n})$ vs. $\Theta(\log \mathbf{n})$



## $\Theta(\log \mathbf{n})$ codes

```
// Here c is a constant greater than 1
for(int i = 2; i <=n; i= pow(i, c)){ // i= i^c }\quadi=\mp@subsup{i}{}{2},i=\mp@subsup{i}{}{3
    // some \Theta(1) expressions
}
//Here fun is sqrt or cuberoot or any other constant root
for (int i = n; i> 0; i = fun(i)) {
    // i = i^(1/c)
    // some \Theta(1) expressions
}
```


## $\Theta(\log \log \mathbf{n})$ codes

```
// Here c is a constant greater than 1
for (int i=2; i <=n; i = pow(i, c)) { // i = i^c c i= i
    // some \Theta(1) expressions
}
//Here fun is sqrt or cuberoot or any other constant root
for (int i = n; i>0; i = fun(i)) { // i = i^(1/c) i= i
    // some \Theta(1) expressions
}
```


## $\Theta(\log \log \mathbf{n})$ codes

```
// Here c is a constant greater than 1
for (int i=2; i <=n; i = pow(i, c)) { // i = i^c c i= i
    // some \Theta(1) expressions
}
//Here fun is sqrt or cuberoot or any other constant root
for (int i = n; i>0; i = fun(i)) { // i = i^(1/c) i c i i
    // some \Theta(1) expressions
}
```


## Some Algorithm Complexities and Examples (1)

$\boldsymbol{O}(1)$ - Constant Time
not affected by the input size $\mathbf{n}$.
$\Theta(n)$ - Linear Time
Proportional to the input size $\mathbf{n}$.
$\Theta(\log n)$ - Logarithmic Time
recursive subdivisions of a problem
binary search algorithm
$\boldsymbol{\theta}(\mathrm{n} \log \mathrm{n})$ - Linearithmic Time
Recursive subdivisions of a problem and then merge them
merge sort algorithm.

## Some Algorithm Complexities and Examples (2)

$\Theta\left(\mathbf{n}^{2}\right)$ - Quadratic Time
bubble sort algorithm
$\Theta\left(n^{3}\right)$ - Cubic Time
straight forward matrix multiplication
$\Theta\left(2^{n}\right)$ - Exponential Time
Tower of Hanoi
$\Theta(n!)$ - Factorial Time
Travel Salesman Problem (TSP)

## References

[1] http://en.wikipedia.org/
[2]

