
1 Young Won Lim
6/4/22

Monad P3 : Non-terminating Expressions (1E)



2 Young Won Lim
6/4/22

 Copyright (c)  2022  - 2016 Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com


Non-terminating
Expressions (1E)

3 Young Won Lim
6/4/22

Haskell Expressions



Non-terminating
Expressions (1E)

4 Young Won Lim
6/4/22

Because Haskell is a purely functional language, 

all computations are done via the evaluation of 

expressions (syntactic terms) to yield values 

Every value has an associated type. 

(Intuitively, we can think of types as sets of values.) 

Examples of expressions include atomic values 

such as the integer 5, the character 'a', 

and the function \x -> x+1, 

as well as structured values 

such as the list [1,2,3] and the pair ('b',4).

https://www.haskell.org/tutorial/goodies.html

Expressions and values

Expressions

Value Type

Atomic values
Structured values



Non-terminating
Expressions (1E)

5 Young Won Lim
6/4/22

Just as expressions denote values, 

type expressions are syntactic terms 

that denote type values (or just types). 

Examples of type expressions include the atomic types 

Integer (infinite-precision integers), 

Char (characters), 

Integer->Integer (functions mapping Integer to Integer), 

as well as the structured types 

[Integer] (homogeneous lists of integers) and 

(Char,Integer) (character, integer pairs).

https://www.haskell.org/tutorial/goodies.html

Type expressions and types

expression Type expression

value Type value

Atomic types
Structured types

Atomic values
Structured values



Non-terminating
Expressions (1E)

6 Young Won Lim
6/4/22

All Haskell values are "first-class"

- they may be passed as arguments to functions, 

- returned as results, 

- placed in data structures, etc. 

Haskell types, on the other hand, are not first-class. 

https://www.haskell.org/tutorial/goodies.html

First class values



Non-terminating
Expressions (1E)

7 Young Won Lim
6/4/22

Types in a sense describe values, and 

the association of a value with its type is called a typing. 

Using the examples of values and types above, 

we write typing as follows:  (the "::" can be read "has type.")

                          5  :: Integer

                         'a' :: Char

                         inc :: Integer -> Integer

                     [1,2,3] :: [Integer]

                     ('b',4) :: (Char,Integer)

https://www.haskell.org/tutorial/goodies.html

Typing



Non-terminating
Expressions (1E)

8 Young Won Lim
6/4/22

Functions in Haskell are normally defined by a series of equations. 

For example, the function inc can be defined by the single equation:

Inc  n          = n+1

An equation is an example of a declaration. 

Another kind of declaration is a type signature declaration, 

with which we can declare an explicit typing for inc:

inc            :: Integer -> Integer

https://www.haskell.org/tutorial/goodies.html

Function definition and declaration



Non-terminating
Expressions (1E)

9 Young Won Lim
6/4/22

when we wish to indicate that an expression e1 evaluates, or

"reduces," to another expression or value e2, we will write:

e1 => e2

For example, note that:

inc (inc 3) => 5 

https://www.haskell.org/tutorial/goodies.html

Expression evaluation =>



Non-terminating
Expressions (1E)

10 Young Won Lim
6/4/22

Many programming languages differentiate

statements from expressions. 

    Statement: What code does 

    Expression: What code is 

can think the term "statement" very broadly to refer to anything 

that is not an expression or type declaration. 

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Statements vs Expressions



Non-terminating
Expressions (1E)

11 Young Won Lim
6/4/22

statements vs. expressions closely parallels 

imperative languages vs. functional languages:

    Imperative: A language that emphasizes statements 

    Functional: A language that emphasizes expressions 

C lies at one end of the spectrum (imperative), 

relying heavily on statements to accomplish everything.

Haskell lies at the exact opposite extreme (functional), 

using expressions heavily:

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Imperative vs functional languages



Non-terminating
Expressions (1E)

12 Young Won Lim
6/4/22

#include <stdio.h>

int main(int argc, char *argv[]) {
    int elems[5] = {1, 2, 3, 4, 5}; // statement

    int total = 0;
    int i;

    for (i = 0; i < 5; i++) { // statement
        total += elems[i];  // statement
    }
    printf("%d\n", total);  // statement

    return 0;
}

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Statement examples in the imperative language C



Non-terminating
Expressions (1E)

13 Young Won Lim
6/4/22

everything in Haskell is an expression, 

and even statements are expressions.

main = print (sum [1..5])  -- Expression

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Expression examples in the functional language Haskell (1) 



Non-terminating
Expressions (1E)

14 Young Won Lim
6/4/22

For example, the following code might appear to be 

a traditional imperative-style sequence of statements:

main = do

    putStrLn "Enter a number:"         -- Statement?

    str <- getLine                     -- Statement?

    putStrLn ("You entered: " ++ str)  -- Statement?

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Expression examples in the functional language Haskell (2) 



Non-terminating
Expressions (1E)

15 Young Won Lim
6/4/22

but do notation is merely syntactic sugar 

for nested applications of (>>=), which is itself nothing more than 

an infix higher-order function:

main =

    putStrLn "Enter a number:" >>= (\_   ->  -- Expression

     getLine                   >>= (\str -> -- Sub-expression

          putStrLn ("You entered: " ++ str) ))  -- Sub-expression

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Expression examples in the functional language Haskell (3) 



Non-terminating
Expressions (1E)

16 Young Won Lim
6/4/22

In Haskell, "statements" are actually nested expressions, 

and sequencing statements just builds larger and larger expressions.

This statement-as-expression paradigm promotes consistency 

and prevents arbitrary language limitations, 

such as Python's restriction of lambdas to single statements. 

In Haskell, you cannot limit 

the number of statements a term uses 

any more than you can limit the number of sub-expressions.

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Statement-as-expression



Non-terminating
Expressions (1E)

17 Young Won Lim
6/4/22

do notation works for more than just IO. 

Any type that implements the Monad class 

can be "sequenced" in statement form, 

as long as it supports the following two operations:

class Monad m where

    (>>=)  :: m a -> (a -> m b) -> m b

    return :: a -> m a

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Monads



Non-terminating
Expressions (1E)

18 Young Won Lim
6/4/22

This provides a uniform interface for translating 

imperative statement-like syntax into expressions under the hood.

For example, the Maybe type implements the Monad class:

data Maybe a = Nothing | Just a

instance Monad Maybe where

    m >>= f = case m of

        Nothing -> Nothing

        Just a  -> f a

    return = Just

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Statement-like syntax using monads



Non-terminating
Expressions (1E)

19 Young Won Lim
6/4/22

This lets you assemble Maybe-based computations using do notation

example :: Maybe Int

example = do example =

    x <- Just 1 Just 1   >>= (\x ->

    y <- Nothing Nothing >>= (\y ->

    return (x + y) return (x + y) ))

The above code desugars to nested calls to (>>=):

    

    

      

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

do notation using monads



Non-terminating
Expressions (1E)

20 Young Won Lim
6/4/22

The compiler then substitutes in our definition of (>>=) and return

example = case (Just 1) of

    Nothing -> Nothing

    Just x  -> case Nothing of

        Nothing -> Nothing

        Just y  -> Just (x + y)

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Substitute >>= and return

example =

Just 1   >>= (\x ->

 Nothing >>= (\y ->

return (x + y) ))

instance Monad Maybe where

    m >>= f = case m of

        Nothing -> Nothing

        Just a  -> f a

    return = Just



Non-terminating
Expressions (1E)

21 Young Won Lim
6/4/22

We can then hand-evaluate this expression to prove 

that it short-circuits when it encounters Nothing:

-- Evaluate the outer `case`

example = case Nothing of

    Nothing -> Nothing

    Just y  -> Just (1 + y)

-- Evaluate the remaining `case`

example = Nothing

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Evaluate the outer and inner case expression

example = case (Just 1) of

    Nothing -> Nothing

    Just x  -> case Nothing of

        Nothing -> Nothing

        Just y  -> Just (x + y)



Non-terminating
Expressions (1E)

22 Young Won Lim
6/4/22

Notice that we can evaluate these Maybe "statements" 

without invoking any sort of abstract machine. 

When everything is an expression, 

everything is simple to evaluate 

and does not require understanding or 

invoking an execution model.

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Everything is an expression to be evaluated

Expression

  Evaluate

  Value

FSM not needed

for sequencing



Non-terminating
Expressions (1E)

23 Young Won Lim
6/4/22

In fact, the distinction between statements and expressions 

also closely parallels another important divide: 

the difference between operational semantics and 

denotational semantics.

    Operational semantics: 

Translates code to abstract machine statements 

    Denotational semantics: 

Translates code to mathematical expressions 

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Semantics



Non-terminating
Expressions (1E)

24 Young Won Lim
6/4/22

Haskell teaches you 

to think denotationally in terms of expressions and their meanings 

instead of statements and an abstract machine. 

This is why Haskell makes you a better programmer: 

you separate your mental model 

from the underlying execution model, … abstract machine

so you can more easily identify common patterns 

between diverse programming languages and problem domains. 

https://www.haskellforall.com/2013/07/statements-vs-expressions.html

Expressions and their meaning



Non-terminating
Expressions (1E)

25 Young Won Lim
6/4/22

the distinction between statements and expressions 

in imperative languages 

x = 2 + 2; 

the x = ...; part being a statement 

the 2 + 2 part being an expression.

The body of a Haskell function is 

always one single expression 

although you can split that one expression apart for convenience 

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression



Non-terminating
Expressions (1E)

26 Young Won Lim
6/4/22

So if you want to "do more than one thing", 

which is an imperative notion of a function 

being able to change global state, 

you solve this with monads, like so:

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression



Non-terminating
Expressions (1E)

27 Young Won Lim
6/4/22

Scotty is a web framework written in Haskell, 

which is similar to Ruby’s Sinatra. 

You can install it using the following commands:

$ sudo apt-get install cabal-install

$ cabal update

$ cabal install scotty

You can compile and start the server from the terminal 

$ runghc hello-world.hs 

Setting phasers to stun... (port 3000) (ctrl-c to quit)

http://shakthimaan.com/posts/2016/01/27/haskell-web-programming/news.html

Web service examples



Non-terminating
Expressions (1E)

28 Young Won Lim
6/4/22

$ runghc hello-world.hs 

The service will run on port 3000, and 

you can open localhost:3000 in a browser 

to see the `Hello, World!’ text. 

You can also use Curl to make a query to the server. 

$ sudo apt-get install curl

$ curl localhost:3000

Hello, World!

http://shakthimaan.com/posts/2016/01/27/haskell-web-programming/news.html

hello-world.hs

-- hello-world.hs

{-# LANGUAGE OverloadedStrings #-}

import Web.Scotty

main :: IO ()

main = scotty 3000 $ do

  get "/" $ do

    html "Hello, World!"



Non-terminating
Expressions (1E)

29 Young Won Lim
6/4/22

{-# LANGUAGE OverloadedStrings #-}

import Web.Scotty

import Network.HTTP.Types

main = scotty 3000 $ do

  get "/" $ do                         -- handle GET request on "/" URL

    text "This was a GET request!"     -- send 'text/plain' response

  delete "/" $ do -- handle DELETE request on "/" URL

    html "This was a DELETE request!"  – send 'text/html' response

  post "/" $ do -- handle POST request on "/" URL

    text "This was a POST request!" -- send 'text/plain' response

  put "/" $ do -- handle PUT request on "/" URL

    text "This was a PUT request!" -- send 'text/plain' response

https://dev.to/parambirs/how-to-write-a-haskell-web-servicefrom-scratch---part-3-5en6

Web service requests and responses



Non-terminating
Expressions (1E)

30 Young Won Lim
6/4/22

{-# LANGUAGE OverloadedStrings #-} 

is called a language pragma and 

extends the languauge with nice features. 

In this case, OverloadedStrings allows us to write a string and 

it gets automatically converted to the string type we need 

(String, ByteString, or Text).

 

https://www.stackbuilders.com/blog/getting-started-with-haskell-projects-using-scotty/

Overloaded Strings

{-# LANGUAGE OverloadedStrings #-}



Non-terminating
Expressions (1E)

31 Young Won Lim
6/4/22

scotty is the entry function 

that Scotty defines for running an application. 

The first parameter is the port that we want it to run in, and 

the rest is the application, 

which looks like a list of routes and handlers.

For now, we only have one route (the root) and a handler, 

which is a GET and returns an HTML string with a title.

https://www.stackbuilders.com/blog/getting-started-with-haskell-projects-using-scotty/

Entry function scotty

  scotty 3000 $

    get "/" $

      html "<h1>Shortener</h1>"



Non-terminating
Expressions (1E)

32 Young Won Lim
6/4/22

https://dev.to/parambirs/how-to-write-a-haskell-web-servicefrom-scratch---part-3-5en6

Named and unnambed parameters

-- named parameters:

get "/askfor/:word" $ do

   w <- param "word"

   html $ mconcat ["<h1>You asked for ", w, ", you got it!</h1>" ]

-- unnamed parameters from a query string or a form:

post "/submit" $ do  -- e.g. http://server.com/submit?name=somename

  name <- param "name"

  text name



Non-terminating
Expressions (1E)

33 Young Won Lim
6/4/22

{-# LANGUAGE OverloadedStrings #-}

module Main (main) where

import Web.Scotty

main :: IO ()

main = scotty 3000 $

  get "/:who" $ do

    who <- param "who"

    text ("Beam " <> who <> " up, Scotty!")

Ghci> [1,2,3] <> [4,5,6]  -- concatenation

[1,2,3,4,5,6]

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (1)



Non-terminating
Expressions (1E)

34 Young Won Lim
6/4/22

Here, main's body (a monadic action, not a function) is 

a single expression, scotty 3000 (...). 

While the linebreak1 after scotty 3000 $ doesn't carry meaning 

and only makes the code look nicer, 

the linebreak2 in the do block actually 

reduces multiple actions into one expression 

via syntactic sugar. 

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (2)

main :: IO ()

main = scotty 3000 $ -- linebreak1

  get "/:who" $ do -- linebreak2

    who <- param "who"

    Text ("..." <> who <> " ...")



Non-terminating
Expressions (1E)

35 Young Won Lim
6/4/22

So while it may seem that this event handler 

does two things things: 

(1) param "who" 

(2) text (...) 

it is still one expression equivalent to this:

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (3)

{-# LANGUAGE OverloadedStrings #-}

module Main (main) where

import Web.Scotty

main :: IO ()

main = scotty 3000 $

  get "/:who" $ do

    who <- param "who"

    text ("Beam " <> who <> " up, Scotty!")



Non-terminating
Expressions (1E)

36 Young Won Lim
6/4/22

main =

  scotty 3000 

(get "/:who" 

(param "who" >>= 

(\who -> text ("Beam " <> who <> " up, Scotty!"))))

with >>= being the invisible operator between the do-block lines. 

When expressions begin to grow, this becomes very inconvenient, 

so you split parts of them into sub-expressions 

and give those names, e.g. like:

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (4)



Non-terminating
Expressions (1E)

37 Young Won Lim
6/4/22

main = scotty 3000 handler

  where

    handler = do

      get "/:who" getWho

      post "/" postWho

    getWho = do

      ...

    postWho = do

      ...

But it is essentially equivalent to one big expression.

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (5)



Non-terminating
Expressions (1E)

38 Young Won Lim
6/4/22

There are many things in the language beyond function bodies 

that are not expressions; in the example above, 

the following are not expressions:

●    {-# LANGUAGE OverloadedStrings #-} (a language pragma)

●    module Main (main) where (a module, export list)

●    import Web.Scotty (an import declaration)

●    main :: IO () (a type signature)

●    main = (a top declaration, or 

 a value binding)

https://stackoverflow.com/questions/63144227/what-is-an-expression-in-haskell

Haskell expression in scotty examples (6)



Non-terminating
Expressions (1E)

39 Young Won Lim
6/4/22

import Web.Scotty could be called a kind of statement, 

since grammatically it's in imperative form, 

but if we're going to be imprecise, 

It would be ok to call them all declarations.

More interestingly, in Haskell you have 

both an expression language 

at the value level and one at the type level. 

So IO () isn't a value expression, but it's a type expression. 

If you had the ability to mix those two expression languages up, 

you'd have dependent types.

https://www.haskell.org/tutorial/goodies.html

Haskell expression in scotty examples (7)

● {-# LANGUAGE OverloadedStrings #-} 

 (a language pragma)

● module Main (main) where 

 (a module, export list)

● import Web.Scotty 

 (an import declaration)

● main :: IO () 

 (a type signature)

● main = 

 (a top declaration, or a value binding)



Non-terminating
Expressions (1E)

40 Young Won Lim
6/4/22

Non-terminating Expressions



Non-terminating
Expressions (1E)

41 Young Won Lim
6/4/22

Semantics is about defining the "meaning" of a program. 

denotational semantics In Haskell

– the value is a mathematical object of some sort 

the expression 10 (but also the expression 9 + 1) 

have denotations of the number 10 

(rather than the Haskell value 10). 

We usually write that 9 + 1  = 10⟦ ⟧  meaning that 

the denotation of the Haskell expression 9 + 1 

is the number 10.

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Denotational semantics



Non-terminating
Expressions (1E)

42 Young Won Lim
6/4/22

Haskell expressions denote mathematical values. 

Strachey brackets ·  ⟦ ⟧
to denote the "semantic mapping" 

from Haskell to Math.

 

we want our semantic brackets to be compatible 

with semantic operations. 

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Semantic map and Strachey brackets



Non-terminating
Expressions (1E)

43 Young Won Lim
6/4/22

⟦x + y  = x  + y⟧ ⟦ ⟧ ⟦ ⟧

on the left side + is the Haskell function 

(+) :: Num a => a -> a -> a 

and on the right side it's the binary operation 

in a commutative group. 

we can use the properties from the semantic map 

to know how our Haskell functions should work. 

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Semantic map example



Non-terminating
Expressions (1E)

44 Young Won Lim
6/4/22

the commutative property "in Math"

  ⟦x  + y  == y  + x  ⟧ ⟦ ⟧ ⟦ ⟧ ⟦ ⟧
  = x + y  == y + x  ⟦ ⟧ ⟦ ⟧
  = x + y == y + x⟦ ⟧

where the third step also indicates that the Haskell 

(==) :: Eq a => a -> a -> a 

ought to have the properties of a 

mathematical equivalence relationship.

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Commutative property example



Non-terminating
Expressions (1E)

45 Young Won Lim
6/4/22

expressions that result in some kind of a run-time error, 

such as dividing by zero, have the value _|_ (read "bottom"). 

Such an error is not recoverable: irrecoverable errors

programs will not continue past these errors. 

errors encountered by the I/O system, recoverable errors

such as an end-of-file error, are recoverable 

and are handled in a different manner. 

Such an I/O error is really not an error at all 

but rather an exception. 

https://www.haskell.org/tutorial/functions.html

Irrecoverable / recoverable errors



Non-terminating
Expressions (1E)

46 Young Won Lim
6/4/22

The value is ⊥, usually pronounced "bottom". 

It is a value in the semantic sense 

-- it is not a normal Haskell value per se. 

It represents computations 

that do not produce a normal Haskell value: 

exceptions and infinite loops, for example.

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Value in the semantic sense 



Non-terminating
Expressions (1E)

47 Young Won Lim
6/4/22

denotational semantics, where  lives, is ⊥
a mapping  Haskell values 

to some other space of values. 

in order to give meaning to programs 

in a more formal manner 

than just talking about what programs should do 

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Denotational semantics and ⊥ 



Non-terminating
Expressions (1E)

48 Young Won Lim
6/4/22

Consider an expression like let x = x in x 

● there is no Haskell value 

for this expression. 

● If you tried to evaluate it, 

it would simply never finish. 

● not obvious what mathematical object 

this corresponds to. 

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

let x = x in x 

 x   =  x 

  x   =  x 

    x   =  x 



Non-terminating
Expressions (1E)

49 Young Won Lim
6/4/22

in order to reason about programs 

that have the following characteristics,

we need to give some denotation for it. 

● with no Haskell value 

● never finishing upon evaluation

● not obvious mathematical object 

So, essentially, we just make up a value ⊥ (bottom)

for all these computations

So ⊥ is just a way to define 

what a computation that doesn't return "means".

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

 ⊥ for computations that does not return 



Non-terminating
Expressions (1E)

50 Young Won Lim
6/4/22

We also define other computations like 

undefined and error "some message" as  ⊥
because they also do not have obvious normal values. 

So throwing an exception corresponds to ⊥. 

This is exactly what happens with a failed pattern match.

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

⊥for throwing exceptions



Non-terminating
Expressions (1E)

51 Young Won Lim
6/4/22

every Haskell type is "lifted" -- it contains ⊥. 

That is, Bool corresponds to {⊥, True, False} 

rather than just {True, False}. 

This represents the fact that Haskell programs are 

not guaranteed to terminate and can have exceptions. 

This is also true when you define your own type

-- the type contains every value you defined for it as well as ⊥.

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Lifted type



Non-terminating
Expressions (1E)

52 Young Won Lim
6/4/22

interestingly, since Haskell is non-strict, 

⊥ can exist in normal code. 

So you could have a value like Just ⊥, 

and everything will work fine, unless you evaluate it, 

A good example of this is const: 

const 1 ⊥ -- 1

 

this works for failed pattern matches as well:

const 1 (let Just x = Nothing in x) -- 1

https://stackoverflow.com/questions/14698414/haskell-pattern-match-diverge-and-%e2%8a%a5/14698510#14698510

Bottom value in normal code

constant function

const :: a -> b -> a

Input: const 12 3

Output: 12

Input: const 12 (3/0)

Output: 12

aaa x y = let r = 3 *x

              s = 6 *y

              in  r + s

Input: aaa 2 4

Output: 30 



Non-terminating
Expressions (1E)

53 Young Won Lim
6/4/22

let 

  Just x = (binom (n-1) (k-1))

  Just y = (binom (n-1) k)

in

  Just (x + y)

It is fine from the type-checking point of view

extracting the underlying values from the Just wrapper 

(these are x and y), adding them up and rewrapping them.

https://stackoverflow.com/questions/68240639/why-cant-you-use-just-syntax-without-let-in-block-in-haskell

Pattern match in let expression (1) 



Non-terminating
Expressions (1E)

54 Young Won Lim
6/4/22

pattern matches in the let... in expression 

assume that the results of binom (n-1) (k-1)

the results of the form Just x 

but they could also be Nothing - 

in which case your program will crash at runtime! 

The "assignment" Just x = ... 

matches ... against Just x, 

binding x to the wrapped value if the match succeeds. 

It doesn't apply Just to anything.

https://stackoverflow.com/questions/68240639/why-cant-you-use-just-syntax-without-let-in-block-in-haskell

Pattern match in let expression (2) 

let 

  Just x = (binom (n-1) (k-1))

  Just y = (binom (n-1) k)

in

  Just (x + y)



Non-terminating
Expressions (1E)

55 Young Won Lim
6/4/22

An expression language is said to have non-strict semantics 

if expressions can have a value 

even if some of their subexpressions do not 

Haskell is one of the few modern languages 

to have non-strict semantics by default: 

nearly every other language has strict semantics, 

if any subexpression fails to have a value, 

the whole expression fails with it.

https://wiki.haskell.org/Non-strict_semantics

Non-strict semantics (1)



Non-terminating
Expressions (1E)

56 Young Won Lim
6/4/22

non-strict semantics is one of the most important features in Haskell: 

it is what allows programs 

to work with conceptually infinite data structures, 

and it is why people say that 

Haskell lets you write your own control structures. 

It's also one of the motivations 

behind Haskell being a pure language 

(though there are several other good ones). 

https://wiki.haskell.org/Non-strict_semantics

Non-strict semantics (2)



Non-terminating
Expressions (1E)

57 Young Won Lim
6/4/22

A function is called pure 

if it corresponds to a function in the mathematical sense: 

it associates each possible input value with an output value, 

and does nothing else. In particular, it has no side effects

 

 that is to say, invoking it produces no observable effect 

other than the result it returns; 

it cannot also e.g. write to disk, or print to a screen.

https://wiki.haskell.org/Pure

Pure functions (1)



Non-terminating
Expressions (1E)

58 Young Won Lim
6/4/22

A pure function is trivially referentially transparent 

it does not depend on anything other than its parameters, 

so when invoked 

in a different context or 

at a different time 

with the same arguments, 

it will produce the same result.

A programming language may be called purely functional 

if evaluation of expressions is pure. 

https://wiki.haskell.org/Pure

Pure functions (2)



Non-terminating
Expressions (1E)

59 Young Won Lim
6/4/22

Non-strictness means that 

reduction (the mathematical term for evaluation) 

proceeds from the outside in, 

(a+(b*c)) : first +, then (b*c) 

Strict languages work the other way around, 

from the inside out

(a+(b*c)) : first (b*c), then + 

https://wiki.haskell.org/Lazy_vs._non-strict

Non-strict vs. strict evaluation (1)

Non-strictness

from the outside in, 

(  (   (   )  )  )

Strict

from the inside out

(  (   (   )  )  )



Non-terminating
Expressions (1E)

60 Young Won Lim
6/4/22

With non-strictness

the outer reduction may eliminate some of the sub-expressions 

and does not evaluate them

so "bottom" can be eliminated and don’t get be evaluated 

With strictness

if any sub-expression evaluates to bottom 

then the bottom will propagate outwards. 

https://wiki.haskell.org/Lazy_vs._non-strict

Non-strict vs. strict evaluation (2)

Non-strictness

from the outside in, 

(  (   (   )  )  )

Strict

from the inside out

(  (   (   )  )  )



Non-terminating
Expressions (1E)

61 Young Won Lim
6/4/22

Technically, lazy evaluation means call-by-name plus Sharing. 

A kind of opposite is eager evaluation.

Lazy evaluation is part of operational semantics, i.e. 

how a Haskell program is evaluated. 

The counterpart in denotational semantics, i.e. 

what a Haskell program computes, is called Non-strict semantics. 

This semantics allows one to bypass undefined values 

(e.g. results of infinite loops) and in this way it also allows 

one to process formally infinite data.

https://wiki.haskell.org/Lazy_evaluation

Lazy evaluation (1) 



Non-terminating
Expressions (1E)

62 Young Won Lim
6/4/22

Lazy evaluation is a method to evaluate a Haskell program. 

It means that expressions are not evaluated 

when they are bound to variables, 

but their evaluation is deferred 

until their results are needed by other computations. 

In consequence, arguments are not evaluated 

before they are passed to a function, 

but only when their values are actually used. 

https://wiki.haskell.org/Lazy_evaluation

Lazy evaluation (2) 



Non-terminating
Expressions (1E)

63 Young Won Lim
6/4/22

While lazy evaluation has many advantages, 

its main drawback is that memory usage 

becomes hard to predict. 

The thing is that while two expressions, like 2+2 :: Int and 4 :: Int, 

may denote the same value 4, 

they may have very different sizes and 

hence use different amounts of memory.

https://wiki.haskell.org/Lazy_evaluation

Lazy evaluation (3) 



Non-terminating
Expressions (1E)

64 Young Won Lim
6/4/22

An extreme example would be the infinite list 1 : 1 : 1 … 

and the expression let x = 1:x in x. 

The latter is represented as a cyclic graph, 

and takes only finite memory, but its denotation is the former infinite list. 

https://wiki.haskell.org/Lazy_evaluation

Lazy evaluation (4) 



Non-terminating
Expressions (1E)

65 Young Won Lim
6/4/22

Call-by-value: 

arguments are evaluated before a function is entered

Call-by-name: 

arguments are passed unevaluated

Call-by-need: 

arguments are passed unevaluated 

but an expression is only evaluated once 

and shared upon subsequent references

http://dev.stephendiehl.com/fun/005_evaluation.html

Evaluation models of a function



Non-terminating
Expressions (1E)

66 Young Won Lim
6/4/22

Given an expression f x

Call-by-value:    Evaluate x to v

Evaluate f to λy.e

Evaluate [y/v]e

Call-by-name: Evaluate f to λy.e

Evaluate [y/x]e

Call-by-need: Allocate a thunk v for x

Evaluate f to λy.e

Evaluate [y/v]e

http://dev.stephendiehl.com/fun/005_evaluation.html

Reductions in the expression f x 



Non-terminating
Expressions (1E)

67 Young Won Lim
6/4/22

The central concept in the lambda calculus is 

an expression which we can think of as a program 

that when evaluated returns a result 

consisting of another lambda calculus expression.

Here is the grammar for lambda expressions:

        expr → λ variable . expr | expr expr | variable | ( expr ) | constant

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (1) 



Non-terminating
Expressions (1E)

68 Young Won Lim
6/4/22

Here is the grammar for lambda expressions:

        expr → λ variable . expr | expr expr | variable | ( expr ) | constant

A variable is an identifier.

A constant is a built-in function such as addition or multiplication, 

or a constant such as an integer or boolean. 

all programming language constructs can be represented 

as functions with the pure lambda calculus 

so these constants are unnecessary. 

However, we will use some constants for notational simplicity.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (2) 



Non-terminating
Expressions (1E)

69 Young Won Lim
6/4/22

A function abstraction, often called a lambda abstraction, 

is a lambda expression that defines a function.

A function abstraction consists of four parts: 

a lambda followed by a variable, a period, 

and then an expression as in λx.expr.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (3) – function abstraction 



Non-terminating
Expressions (1E)

70 Young Won Lim
6/4/22

For example, the function abstraction λx. + x 1 

defines a function of x that adds x to 1. 

Parentheses can be added to lambda expressions for clarity. 

Thus, we could have written this function abstraction 

as λx.(+ x 1) or even as (λx. (+ x 1)).

In C this function definition might be written as

        int addOne (int x) {

          return (x + 1);     }

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (4) – function abstraction 



Non-terminating
Expressions (1E)

71 Young Won Lim
6/4/22

the function abstraction λx. + x 1 

C function definition 

        int addOne (int x) {

          return (x + 1);     }

Note that unlike C the lambda abstraction 

does not give a name to the function. 

The lambda expression itself is the function.

We say that λx.expr binds the variable x in expr 

and that expr is the scope of the variable.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (4) – function abstraction 



Non-terminating
Expressions (1E)

72 Young Won Lim
6/4/22

A function application λx.e f is evaluated 

by substituting the argument f 

for all free occurrences of the formal parameter x 

in the body e of the function definition.

We will use the notation [f/x]e to indicate 

that f is to be substituted for all free occurrences of x 

in the expression e.

 

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (5) – beta reduction 

[f/x]e

x   x       x  

f     f       f  

e

e



Non-terminating
Expressions (1E)

73 Young Won Lim
6/4/22

Examples:

        (λx.x)y → [y/x]x = y.

        (λx.xzx)y → [y/x]xzx = yzy.

        (λx.z)y → [y/x]z = z 

since the formal parameter x does not appear in the body z.

This substitution in a function application is called 

a beta reduction and we use a right arrow to indicate it.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (5) – beta reduction 



Non-terminating
Expressions (1E)

74 Young Won Lim
6/4/22

   If expr1 → expr2, we say expr1 reduces to expr2 in one step.

    In general, (λx.e)f → [f/x]e means that applying the function (λx.e) to the argument expression 

f reduces to the expression [f/x]e where the argument expression f is substituted for the 

function's formal parameter x in the function body e.

 

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (5) – beta reduction 



Non-terminating
Expressions (1E)

75 Young Won Lim
6/4/22

   A lambda calculus expression (aka a "program") is "run" by computing a final result by repeatly 

applying beta reductions. We use →* to denote the reflexive and transitive closure of →; that is, 

zero or more applications of beta reductions.

    Examples:

        (λx.x)y → y (illustrating that λx.x is the identity function).

        (λx.xx)(λy.y) → (λy.y)(λy.y) → (λy.y); thus, we can write (λx.xx)(λy.y) →* (λy.y). Note that 

here we have applied a function to a function as an argument and the result is a function.

http://www.cs.columbia.edu/~aho/cs4115/Lectures/15-04-13.html

Lambda calculus (5) – beta reduction 



Non-terminating
Expressions (1E)

76 Young Won Lim
6/4/22

Call by value is an extremely common evaluation model. Many programming languages both 

imperative and functional use this evaluation strategy. The essence of call-by-value is that there 

are two categories of expressions: terms and values. Values are lambda expressions and other 

terms which are in normal form and cannot be reduced further. All arguments to a function will be 

reduced to normal form before they are bound inside the lambda and reduction only proceeds 

once the arguments are reduced.

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (2)



Non-terminating
Expressions (1E)

77 Young Won Lim
6/4/22

For a simple arithmetic expression, the reduction proceeds as follows. Notice how the 

subexpression (2 + 2) is evaluated to normal form before being bound.

(\x. \y. y x) (2 + 2) (\x. x + 1)

=> (\x. \y. y x) 4 (\x. x + 1)

=> (\y. y 4) (\x. x + 1)

=> (\x. x + 1) 4

=> 4 + 1

=> 5

http://dev.stephendiehl.com/fun/005_evaluation.html

Call by value (2)



Non-terminating
Expressions (1E)

78 Young Won Lim
6/4/22

It is one of the key properties of 

purely functional languages like Haskell 

that a direct mathematical interpretation like "1+9 denotes 10" 

carries over to functions, too: 

in essence, the denotation of a program of type Integer -> Integer 

is a mathematical function Z → Z between integers. 

https://en.wikibooks.org/wiki/Haskell/Denotational_semantics

Operational semantics (1)



Non-terminating
Expressions (1E)

79 Young Won Lim
6/4/22

While we will see that this expression needs refinement generally, 

to include non-termination, 

the situation for imperative languages is clearly worse: 

a procedure with that type denotes something 

that changes the state of a machine in possibly unintended ways. 

Imperative languages are tightly tied to operational semantics 

which describes their way of execution on a machine. 

https://en.wikibooks.org/wiki/Haskell/Denotational_semantics

Operational semantics (2)



Non-terminating
Expressions (1E)

80 Young Won Lim
6/4/22

It is possible to define a denotational semantics 

for imperative programs and to use it 

to reason about such programs, 

but the semantics often has operational nature 

and sometimes must be extended 

in comparison to the denotational semantics 

for functional languages.[

https://en.wikibooks.org/wiki/Haskell/Denotational_semantics

Operational semantics (3)



Non-terminating
Expressions (1E)

81 Young Won Lim
6/4/22

In contrast, the meaning of purely functional languages is 

by default completely independent from their way of execution. 

The Haskell98 standard even goes as far as to specify 

only Haskell's non-strict denotational semantics, 

leaving open how to implement them. 

https://en.wikibooks.org/wiki/Haskell/Denotational_semantics

Operational semantics (4)



Non-terminating
Expressions (1E)

82 Young Won Lim
6/4/22

The real quantity we're interested in formally describing is 

expressions in programming languages. 

A programming language semantics is described 

by the operational semantics of the language. 

The operational semantics can be thought of as 

a description of an abstract machine 

which operates over the abstract terms 

of the programming language in the same way 

that a virtual machine might operate over instructions.

http://dev.stephendiehl.com/fun/004_type_systems.html

Operational semantics (5)



Non-terminating
Expressions (1E)

83 Young Won Lim
6/4/22

Denotational semantics for a language provides a function

that translates from program syntax into mathematical objects 

like sets, functions, lists or even some other programming language

– a denotational semantics acts like a compiler

Operational semantics works 

by rewriting or executing programs step-by-step

– it uses only one program syntax to explain how a program runs

https://www.cs.princeton.edu/~dpw/cos441-11/notes/slides13-lambda-calc.pdf

Operational semantics (6)



Non-terminating
Expressions (1E)

84 Young Won Lim
6/4/22

As languages become more complicated, it is often easier to

define operational semantics than denotational semantics

– it requires less math to do so

– but you might not be able to prove particularly strong theorems

   using the semantics

https://www.cs.princeton.edu/~dpw/cos441-11/notes/slides13-lambda-calc.pdf

Operational semantics (7)



Non-terminating
Expressions (1E)

85 Young Won Lim
6/4/22

The operational library makes it easy to 

implement monads with tricky control flow.

This is very useful for: 

writing web applications in a sequential style, 

programming games with a uniform interface 

for human and AI players and easy replay, 

implementing fast parser monads, 

designing monadic DSLs, etc.

Embedded Domain Specific Language means 

that you embed a Domain specific language in a language like Haskell.

https://apfelmus.nfshost.com/articles/operational-monad.html

Operational semantics (8)



Non-terminating
Expressions (1E)

86 Young Won Lim
6/4/22

For instance, to write a web application 

where the user is guided through a sequence of tasks ("wizard"). 

To structure your application, you can use a custom monad 

that supports an instruction askUserInput :: CustomMonad UserInput. 

This command sends a web form to the user 

and returns a result when he submits the form. 

However, you don't want your server to block 

while waiting for the user, so you have to suspend the computation 

and resume it at some later point. 

tricky to implement

This library makes it easy. 

https://apfelmus.nfshost.com/articles/operational-monad.html

Operational semantics (9)



Non-terminating
Expressions (1E)

87 Young Won Lim
6/4/22

The idea is to identify a set of primitive instructions 

and to specify their operational semantics. 

Then, the library makes sure that the monad laws hold automatically. 

In the web application example, 

the primitive instruction would be AskUserInput.

Any monad can be implemented in this way. 

Ditto for monad transformers. 

https://apfelmus.nfshost.com/articles/operational-monad.html

Operational semantics (10)



Non-terminating
Expressions (1E)

88 Young Won Lim
6/4/22

Sharing means that temporary data is physically stored, 

if it is used multiple times.

let x = sin 2

in  x*x

x is used twice as factor in the product x*x. 

Due to referential transparency, it does not play a role, 

whether sin 2 is computed twice or 

whether it is computed once and the result is stored and reused. 

https://wiki.haskell.org/Lazy_evaluation

Sharing (1)



Non-terminating
Expressions (1E)

89 Young Won Lim
6/4/22

However, when you write let expression, 

the Haskell compiler will certainly decide to store the result. 

This can be the wrong way, 

if a computation is cheap but its result is huge. 

[0..1000000] ++ [0..1000000]

where it is much cheaper to compute the list of numbers 

than to store it with full length.

https://wiki.haskell.org/Lazy_evaluation

Sharing (2)



Non-terminating
Expressions (1E)

90 Young Won Lim
6/4/22

Because the sharing property cannot be observed in Haskell, 

it is hard to transfer the sharing property to foreign programs 

when you use Haskell as an Embedded domain specific language. 

You must design a monad or 

use unsafePerformIO hacks, which should be avoided. 

https://wiki.haskell.org/Lazy_evaluation

Sharing (3)



Non-terminating
Expressions (1E)

91 Young Won Lim
6/4/22

only evaluating an expression when its results are needed 

(note the shift from "reduction" to "evaluation"). 

when the evaluation engine sees an expression 

it builds a thunk data structure containing 

whatever values are needed to evaluate the expression, 

plus a pointer to the expression itself. 

when the result is actually needed 

the evaluation engine calls the expression and 

then replaces the thunk with the result for future reference.

https://wiki.haskell.org/Lazy_vs._non-strict

Lazy vs. non-strict (1) 



Non-terminating
Expressions (1E)

92 Young Won Lim
6/4/22

Obviously there is a strong correspondence 

between a thunk and a partly-evaluated expression. 

in most cases the terms "lazy" and "non-strict" 

seem  to be synonyms. 

but not quite, for instance

imagine an evaluation engine 

on highly parallel hardware 

that fires off sub-expression evaluation eagerly, 

but then throws away results that are not needed. 

https://wiki.haskell.org/Lazy_vs._non-strict

Lazy vs. non-strict (2) 

With non-strictness

if you start from the outside and

work in, then some of the 

sub-expressions are eliminated 

by the outer reductions, 

so they don't get evaluated 

and you don't get "bottom". 

Non-strictness

from the outside in, 

(  (   (   )  )  )



Non-terminating
Expressions (1E)

93 Young Won Lim
6/4/22

In practice Haskell is not a purely lazy language: 

for instance pattern matching is usually strict 

So trying a pattern match forces evaluation to happen 

at least far enough to accept or reject the match. 

You can prepend a ~ in order 

to make pattern matches lazy

https://wiki.haskell.org/Lazy_vs._non-strict

Lazy vs. non-strict (3) 



Non-terminating
Expressions (1E)

94 Young Won Lim
6/4/22

The strictness analyzer also looks for cases 

where sub-expressions are always 

required by the outer expression, 

and converts those into eager evaluation. 

It can do this because the semantics 

(in terms of "bottom") don't change. 

Programmers can also use the seq primitive 

to force an expression to evaluate 

regardless of whether the result will ever be used. 

$! is defined in terms of seq. 

https://wiki.haskell.org/Lazy_vs._non-strict

Lazy vs. non-strict (4) 

Non-strictness

from the outside in, 

(  (   (   )  )  )

Strict

from the inside out

(  (   (   )  )  )

With non-strictness

reduction from the outside in 

then some sub-expressions 

are eliminated by the outer reductions, 

so they don't get evaluated and you 

don't get "bottom". 



Non-terminating
Expressions (1E)

95 Young Won Lim
6/4/22

Intuitively,

a specific function evaluation is terminating,

where the value of every argument is supplied

if the Haskell evaluation strategy needs 

finite number of steps to compute the result completely. 

http://termination-portal.org/wiki/Functional_Programming

Terminating expression 



Non-terminating
Expressions (1E)

96 Young Won Lim
6/4/22

the function zeros is considered non-terminating. 

zeros :: [Integer]

zeros = 0:  zeros

the evaluation does not stop 

when reaching a term headed by a constructor: 

it will continue evaluating the arguments of this constructor. 

http://termination-portal.org/wiki/Functional_Programming

Non-terminating expression 

RHS is to be evaluated

recursively, infinitely

zeros = 0:  zeros

 0:  zeros

0:  zeros

0:  zeros



Non-terminating
Expressions (1E)

97 Young Won Lim
6/4/22

repeat :: a -> [a]

it creates an infinite list where all items are the first argument 

take 4 (repeat 3)

[3,3,3,3]

take 6 (repeat 'A')

"AAAAAA"

take 6 (repeat "A")

["A","A","A","A","A","A"]

http://zvon.org/other/haskell/Outputprelude/repeat_f.html

repeat 



Non-terminating
Expressions (1E)

98 Young Won Lim
6/4/22

foldr will execute the callback function once 

for each element in the structure. 

The result will be passed 

to the next invocation of the callback. 

For the initial call to callback, 

previousValue will be initialValue, 

currentValue will be the last element of the structure. 

https://wiki.haskell.org/Data.Foldable.foldr

foldr (1)



Non-terminating
Expressions (1E)

99 Young Won Lim
6/4/22

foldr (+) 4 [0, 1, 2, 3]

-- alternatively written without syntactic sugar for lists:

foldr (+) 4 (0 : (1 : (2 : (3 : []))))

would be equivalent to:

0 + (1 + (2 + (3 + 4)))

PreviousValue = initValue = 4

CurrentValue = last value = 3

https://wiki.haskell.org/Data.Foldable.foldr

foldr (2)

0 + (1 + (2 + (3 + 4)))

0 + (1 + (2 + 7))

0 + (1 + 9)

0 + 10

prevcurr

prevcurr

prevcurr

prevcurr



Non-terminating
Expressions (1E)

100 Young Won Lim
6/4/22

foldr :: (a -> b -> b) -> b -> [a] -> b

it takes the second argument b

and the last item of the list a in [a]

and applies the function, (a -> b -> b)

then it takes the penultimate item from the end 

and the result, and so on. 

last but one in a series of things; second last.

http://zvon.org/other/haskell/Outputprelude/foldr_f.html

foldr (3)



Non-terminating
Expressions (1E)

101 Young Won Lim
6/4/22

foldr :: (a -> b -> b) -> b -> [a] -> b

Input: foldr (+) 5 [1,2,3,4] 1 + (2 + (3 + (4 + 5)))

Output: 15

Input: foldr (/) 2 [8,12,24,4]   8 / (12 / (24 / (4 / 2)))  

Output: 8.0

http://zvon.org/other/haskell/Outputprelude/foldr_f.html

foldr (4)

1 + (2 + (3 + (4 + 5)))

1 + (2 + (3 + 9))

1 + (2 + 12)

1 + 14

15

8 / (12 / (24 / (4 / 2)))

8 / (12 / (24 / 2))

8 / (12 / 12)

8 / 1

8



Non-terminating
Expressions (1E)

102 Young Won Lim
6/4/22

foldr (||) True $ repeat False -- never terminates

False || (False || (False || …  ))

|| True

foldr (||) False $ repeat True -- terminates with True

True || (True || (True || …  ))

|| False

`

https://stackoverflow.com/questions/7960543/why-does-this-haskell-code-not-terminate

Non-terminating expression (1)

Infinitely check if there is any True,

But never reach the end

There is at least one True,

Therefore return with true 



Non-terminating
Expressions (1E)

103 Young Won Lim
6/4/22

foldr (||) True $ repeat False -- never terminates

foldr (||) False $ repeat True -- terminates with True

The first expands to False || (False || (False || ...)), 

while the second expands to True || (True || (True || ...)). 

The second argument to foldr is a red herring - 

it occurs in the innermost application of ||, not the outermost, 

so it can never actually be reached.

https://stackoverflow.com/questions/7960543/why-does-this-haskell-code-not-terminate

Non-terminating expression (2)

The 2nd argument True is occurs 

In the innermost application of ||

The 2nd argument False is occurs 

In the innermost application of ||

A red herring is something that misleads or 

distracts from a relevant or important 

question.



Non-terminating
Expressions (1E)

104 Young Won Lim
6/4/22

bot                     = bot

bot is a non-terminating expression. 

Abstractly, we denote the value 

of a non-terminating expression 

as _|_ (read "bottom"). 

https://www.haskell.org/tutorial/functions.html

Non-terminating expression (2)

bot  = bot

 bot  = bot

   bot  = bot



Non-terminating
Expressions (1E)

105 Young Won Lim
6/4/22

Does function f terminate?

A) {Yes, Don’t know}

Typically look for decreasing size

● Primitive recursive

● Walther recursion

● Size change termination

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Termination Checkers



Non-terminating
Expressions (1E)

106 Young Won Lim
6/4/22

fib :: Integer -> Integer

fib(1) = 1

fib(2) = 1

fib(n) = fib(n-1) + fib(n-2)

fib(0) = ⊥NT

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Termination Checkers



Non-terminating
Expressions (1E)

107 Young Won Lim
6/4/22

● A function only stops terminating 

when  its given a value

● Perhaps the question is wrong:

Q) Given a function f and a value x,

Does f(x) terminate?

Q) Given a function f, for what values of x does

f(x) terminate?

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Values



Non-terminating
Expressions (1E)

108 Young Won Lim
6/4/22

fib n | n <= 0 =

error “bad programmer!”

● A function should never non-terminate

● It should give an helpful error message

● There may be a few exceptions

● But probably things that can’t be proved

● i.e. A Turing machine simulator

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Non-terminate



Non-terminating
Expressions (1E)

109 Young Won Lim
6/4/22

Haskell is:

● A functional programming language

● Lazy – not strict

● Only evaluates what is required

● Lazy allows:

● Infinite data structures

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Laziness



Non-terminating
Expressions (1E)

110 Young Won Lim
6/4/22

[1..] = [1,2,3,4,5,6, ...

● Not terminating

● But is productive

● Always another element

● Time to generate “next result” is always finite

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Productivity



Non-terminating
Expressions (1E)

111 Young Won Lim
6/4/22

The blame game

● last [1..] is NT⊥
● last is a useful function

● [1..] is a useful value

● Who is at fault?

● The caller of last

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

Evaluation 



Non-terminating
Expressions (1E)

112 Young Won Lim
6/4/22

● All data/functions must be productive

● Can easily encode termination

isTerm :: [a] -> Bool

isTerm [] = True

isTerm (x:xs) = isTerm xs

https://ndmitchell.com/downloads/slides-catch-16_mar_2006.pdf

A lazy termination checker



Non-terminating
Expressions (1E)

113 Young Won Lim
6/4/22

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2]  https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113

