Angle Recoding CORDIC 2. Wu

20180723

Copyright (c) 2015 - 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Vector Rotational CORDIC

Conventional cordic Algorithm

MUR - CORDIC Algorithm

AR Technique

EEAS Scheme

Generalized EEAS Scheme

4						
	Vector	Selection of	Elementary	Micro	Angle Quantization	
	Rotation Alg	Rotation Segmence	Angle Set	Rotation	Oi	NA
	Convertional CORDIC	M= {-1, +1}	EAS S	complete	μ(i) a(i)	W Fixed
	Angle Recoding	M= {-1,0,+1}	EAS S _I	selective	tan [†] («(i)·2 ^{-s(i)})	N1 Variable
	MVR-cordic	a = {-1,0,+1}	EAS SI	selective	tan ¹ («(i)·2 ^{-s(i)})	2m Fixed
	EEAS	d, de = { +,0, +1}	EEAS \$,	selective	tan ¹ (<pre></pre>	2m Fixed
	Generalized	مريمير ١٠٠٠ ويلام	EEAS SJ	selective	tan (x,(i)·2 ^{-soli)}	Zm
	EEAS	= {-1,0,+1}	EEAS SJ d73	1 10 10 10 10	+ \(\lambda_1 (i) \cdot 2^{-5d-1(i)} \)	Fixed

Family of Vector Rotational CORDIC

AD process with vanious EAS and and suitable combinations of subangles

to decompose the tanget rotational angle
into several easy-to-implement subangles

minimizing the angle quantitation error ξ_m to obtain the best precision performance

EEAS covers MUR-CORDIC AR a subset of EAS S, EEAS S₂ MUR-CORDIC a subset of AR one constraint on the iteration number

Angle Quantization

Quantization process on the rotational angle O

de compose the original votational angle of into severales Oi's

sum up those subangles to approximate the original angle as cluse as possible

Minimize the angle quantization error

$$\xi_{\rm m} \triangleq 0 - \sum_{i=0}^{N_{\rm A}-1} o_i$$

Na : the number of sub-angles

design issues in the AQ process

- need to defermine the sub-angles

 each Oi needs to be easy-to-implement
 - D how to select and combine these sub-angles 5 m such that the angle quantization error 5 m can be suppressed.

Extended EAS (EEAS) - Wu

more flexible way of decomposing the rotation angle

better the number of iterations the error performance

$$S_{EAS} = \{ (0 \cdot tom^{-1}(2^{-1})) : 0 \in \{+1, 0, -1\}, r \in \{1, 2, ..., n-1\} \}$$

$$S_{EEAS} = \left\{ (0_{1} \cdot ton^{-1}(x^{-r_{1}}) + 0_{2} \cdot ton^{-1}(x^{-r_{2}})) : 0_{1}, 0_{3} \in \{+1, 0_{1}, -1\}, r_{1}, r_{2} \in \{1, 2, ..., n-1\} \right\}$$

The pse do -rotation

for i-th micro rotations

$$\chi_{i+1} = \chi_i - [\sigma_{r_i}(i) \cdot 2^{-r_i(i)} + \sigma_{r_i}(i) \cdot 2^{-r_i(i)}] y_i$$

$$y_{i+1} = y_i + [\sigma_{r_i}(i) \cdot 2^{-r_i(i)} + \sigma_{r_i}(i) \cdot 2^{-r_i(i)}] x_i$$

The pseudo-rotated vector [xkm, ykm]
after km (the required number of micro-votations)

Needs to be scaled by a factor
$$K = T Ki$$

$$Ki = \left[1 + \left(\sigma_{1}(i) \cdot 2^{-r_{1}(i)} + \sigma_{2}(i) \cdot 2^{-r_{2}(i)} \right)^{2} \right]^{-\frac{1}{2}}$$

$$\widetilde{\chi}_{i+1} = \widetilde{\chi}_i - [k_1(i) \cdot 2^{-s_1(i)} + k_2(i) \cdot 2^{-s_1(i)}] \widetilde{y}_i
\widetilde{y}_{i+1} = \widetilde{y}_i + [k_1(i) \cdot 2^{-s_1(i)} + k_2(i) \cdot 2^{-s_2(i)}] \widetilde{\chi}_i$$

$$\widetilde{\chi}_{0} = \chi_{R_{m}}$$
 $k_{1}, k_{2} \in \{-1, 0, 1\}$
 $\widetilde{\chi}_{3} = \chi_{R_{m}}$
 $S_{1}, S_{2} \in \{1, 2, ..., n-1\}$

[21] CS. Wu, AY. Wu, and CH. Lin, "A high-performance/low-latency vector rotational CORDIC architecture based on extended elementary angle set and trellis-based searching schemes," <i>IEEE Trans. Circuits Syst. II: Anal. Digital Signal Process.</i> , vol. 50, no. 9, pp. 589–601, Sep. 2003.						
A Unified View for Vector Rotational CORDIC Algorithms and Architectures Based on Angle Quantization Approach An-Yeu Wu and Cheng-Shing Wu						

AR: to approximate o

with the combination

of selected angle elements

from a pre-defined EAS

(Elementary Angle Set)

EAS: au possible values of O(j)

EAS $\hat{S}_1 = \{ tan^{-1} (x^* \cdot 2^{-s^*}) : x^* \in \{1, 0, +1\}, \\ s^* \in \{0, 1, ..., N+1\} \}$

EAS \$1 consists of tan-1 (Single Signed power of two)

tan-1 (Single SPT)

tan-1 (d* ·2-5*)

SPT-based digital filter design to increase the <u>coefficient resolution</u> 7 imploy more SPT terms to represent filter (oefficients) [12] H. Samueli, "An improved search algorithm for the design of multiplierless FIR filters with power-of-two coefficients," IEEE Trans. Circuits Syst., vol. 36, pp. 1044-1047, July 1989. [13] Y. C. Lim, R. Yang, D. Li, and J. Song, "Signed power-of-two term allocation scheme for the design of digital filters," IEEE Trans. Circuits Syst. II, vol. 46, pp. 577-584, May 1999. EAS Signed power of two tan-1 (Single Signed power of two) tan-1 (Single SPT) tan-1 (d* 2^{-5*})

EAS
$$3_2$$
 consists of $tan^{-1}(two signed power of two) $tan^{-1}(two spt)$ $tan^{-1}(d_0^* \cdot 2^{-so} + d_1^* \cdot 2^{-st})$$

Two Signed - Power - of - Two terms $S_2 = \{ tan^+ (x_0^* \cdot 2^{-s_0^*} + x_1^* \cdot 2^{-s_1^*}) :$ $d_{0}^{*}, d_{1}^{*} \in \{-1, 0, +1\}$ $S_{0}^{*}, S_{1}^{*} \in \{0, 1, \dots, W-1\}$

```
1 = 2 -0
                                                        tan+(2-0)
         \frac{1}{2} = 2^{-1}
\frac{1}{4} = 2^{-2}
                                                        tan+(2-1)
 0.5
                                                         tan+ (2-2)
 5٤.٥
 52
         |+| = 2^{-0} + 2^{-0} \pm tan^{-1}(2^{-0} + 2^{-0})
        \begin{aligned} |+\frac{1}{2} &= 2^{-0} + 2^{-1} & \pm \tan^{-1}(2^{-0} + 2^{-1}) \\ |+\frac{1}{4} &= 2^{-0} + 2^{-2} & \pm \tan^{-1}(2^{-0} + 2^{-2}) \\ |+\frac{1}{2} &= 2^{-1} & \pm \tan^{-1}(2^{-0}) \\ \pm \frac{1}{2} &= 2^{-1} & \pm \tan^{-1}(2^{-1} + 2^{-2}) \\ \pm \frac{1}{2} &= 2^{-1} & \pm \tan^{-1}(2^{-1}) \end{aligned}
0.75 1 + 2-2
         \frac{1}{2} = 2^{-1}
٥.5
                                                      ± tan+ (2-2)
 0.25
                      - | 2 |
- | 05 | .5 | 05 €
                                                                                                                   05 0.75
- 0.5
 0.5
                                                                   0.25 0.75
                              1.25
                                              5٤.٥
 ځ.۵
                                                                                       \{0, 1, 2\} = \{0, 1, W-1\}
                         2^{-0}, 2^{-1}, 2^{-2}
                                                                                           W=3
                          S_0^*, S_1^* \in \{0, 1, 2\}
                          2^{5}, 2^{5} \in \{2^{5}, 2^{4}, 2^{1}\}
```

the size of the set Sz increases exponentially

$$\theta_i = \tan^{-1} \left(\propto_0 (i) \cdot 2^{-S_0(i)} + \propto_1 (i) \cdot 2^{-S_1(i)} \right)$$

Rm: the number of the subangle NA

$$S_{2} = \left\{ tan^{+} \left(\propto_{0}^{*} \cdot 2^{-5} + \propto_{1}^{*} \cdot 2^{-5} \right) : \\ \alpha_{0}^{*}, \alpha_{1}^{*} \in \left\{ -1, 0, +1 \right\} \right\}$$

$$S_{0}^{*}, S_{1}^{*} \in \left\{ 0, 1, ..., W-1 \right\} \right\}$$

the optimization problem of the EEAS-based CORDIC algorithm

given 0 and Rm

find
$$\alpha_0(j)$$
, $\alpha_1(j)$, $S_0(j)$, and $S_1(j)$

the combination of elementary angles

from EEAS β_2

Minimize the angle quantization error

$$\left| \xi_{m}, \text{EEAS} \right| \stackrel{\text{left}}{=} \theta - \sum_{j=0}^{k_{m}-1} \tan^{-1} \left(\alpha_{\circ}(j) 2^{-s_{\circ}(j)} + \alpha_{j}(j) 2^{-s_{j}(j)} \right)$$

$$\begin{bmatrix} \chi(j+1) \\ y(j+1) \end{bmatrix} = \begin{bmatrix} 1 & \alpha_o(j) 2^{-S_o(j)} + \alpha_1(j) 2^{-S_o(j)} \\ \alpha_o(j) 2^{-S_o(j)} + \alpha_1(j) 2^{-S_o(j)} \end{bmatrix} \begin{bmatrix} \chi(j) \\ y(j) \end{bmatrix}$$

Micro Potation procedure the scaling operation

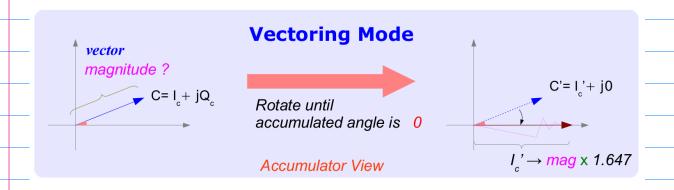
4 additions

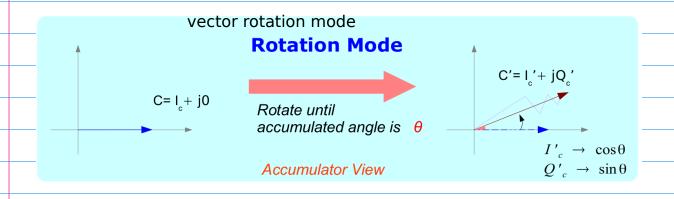
increased hardware reduced iteration steps

MVR (Modified Vector Rotation)

- 1) Repeat of Elementary Angles Oi, Oi
- 2) fixed total micro-rotation Number Rm

- * Vector Rotation Mode
- * and the rotation angles are known in advance





Modified Vector Rotational MUR CORDIC

- reduce the iteration number
- maintaining the SQNR performance
- modifying the basic microrotation procedure

Three Sewiching Algorithm

- The selective prerotation
- 1 the selective scaling
- 3 iteration trade off scheme

Angle Quantization

the angle quantization error

$$\xi_{\mathsf{m}} \triangleq 0 - \sum_{i=0}^{N_{\mathsf{A}}-1} \theta_{i}$$

$$\mathcal{N}_{A}$$
 the number of subangles θ_0 , θ_1 , ..., $\theta_{\nu_{A}-1}$

$$0 = 0_0 + 0_1 + \cdots + 0_{N_A-1} + \xi_m$$

data: W-bit word length

the iteration number: N $N \leqslant W$ the restricted iteration number: $Rm \leqslant W$

CSD (Canonical Signed Digit) Quantization

digital filter de signs

coefficients are recoded

in terms of SPT (Signed Power of Two) terms

multiplication can be easily realized with Shift-and-add operations

 $h_2 = (-0.156249)_{10} \Rightarrow (0.07011)_2$ W=8, 3 non-zero digits

- O CSD quantization decomposes

 (oefficients into several SPT terms

 (sub-coefficients)
- 2) the multiplication of a coefficient

 can be reformed

 through the combination of

 the non-zero SPT Sub-coefficients

guantite the rotation angle O

decompose the votation angle 0 into several sub-angles dis

the rotational Operation of each Oi Should be easily realized

If each Oi can be realized

Using only shift-and-add operations

the rotation of 0 can be performed through successive applications of Sub-angle rotations

in a cost-effective way

opproximation	(oefficient	Rotation angle
target	hi	9
Basic	Non-zero digit	Sub-angle
Element	2 ⁻ⁱ	$a(i) = tan^{-1}(2^{-i})$
Basic	shift-and-add	2 shift-and-add
Operation	operation	Operations
Approximation		' '
Equation	$hi \approx \sum_{j=0}^{N_{b}-1} g_{j} \cdot 2^{-d_{j}}$	$0 \approx \sum_{j=0}^{k_m-1} \alpha(ij) \cdot \alpha(s(ij))$
	J=0	j=0
	gi ∈ {-1,0,+1}	
	d; ∈ { 0, 1, ···, w-1}	
	No= the number of	Ng= the number of
	Non-Zero digits	Sub-angles

Vector	Rotation	CORDIC	Famil y	
(b) Conve	entional	CORDIC		
(1) AR				
2 MUR	•			
3 EEA	S			

© Conventional CORDIC

elementary angle
$$a(i) = tan^{-1}(2^{-i})$$

the number of elementary angles N

the rotation sequence
$$\mu(i) = \{-1, +1\}$$

the i-the rotation angle a(i)

the W-bit word length

the iteration number $N \leq W$

the angle quantization error

$$\xi_{m, corple} \equiv \theta - \sum_{i=0}^{NH} \mu(i) \alpha(i)$$

(1) AR [Hu]

skip certain micro rotations

the notation sequence $\mu(i) = \{-1, 0, +1\}$

desire to minimize

$$\sum_{i=0}^{N} |\mu(i)|$$

so that the total number of Corpic iterations can be minimized

Angle Recoding - Multiplier Recoding

angle recoding method for efficient implementation of the CORDIC algorithm Hu & Naganathan, ISCAS 89

Greedy algorithm

the angle quantization error

$$\xi_{m,AR} \equiv \theta - \sum_{i=0}^{N-1} \mu(i) \alpha(i)$$

Choose ik, 0≤ik≤N-1

$$|O(k)| - a(ik)| = Min |O(k)| - a(ik)$$

$$O(k+1) = O(k) - \mu(ik) \alpha(ik)$$

try to approach the target rotation angle O Step by Step

decisions are made in each step by choosing the best combination of a(i) a(s(i))

So as to minimize $|\xi_m|$

 $\alpha(i)$, $\alpha(i)$ are determined such that the error function is minimized $J(i) = |\theta(i) - \alpha(i)\alpha(s(i))|$

$$0(i) = 0 - \sum_{m=0}^{i-1} \alpha(m) \alpha(s(m))$$

terminated if no further improvement can be found $J(i) \geqslant J(i-1)$

or $\alpha(Rm-1)$ and $\beta(Rm-1)$ are determined at the end

$$\xi_{m, corpic} \equiv \theta - \sum_{i=0}^{N-1} \mu(i) \alpha(i) \qquad \mu(i) = \{-1, 0, +1\}$$

$$= \theta - \sum_{j=0}^{N'} \widetilde{\theta}(j)$$

$$N' \equiv \sum_{i=0}^{N-1} |\mu(i)| \qquad \{ |+1|, |0|, |+1| \}$$

the effective iteration number N'

S(j) the rotational sequence

determines the micro-rotation angle in the j-th iteration

in dex
$$0,1,...,N'$$
 (reduced number)

$$\mu(i) = \begin{cases} \mu(s(i)) & i = s(i) \\ 0 & i \neq s(i) - \text{reduced in all } \end{cases}$$
 er

$$i = 0, 1, 2, 3, \dots, N-1$$

$$S(j) = 0, 1, 2, 3, \dots, N+1 \quad \text{rotational Sequence}$$

$$\alpha(j) = 1, 0, 0, +1, \dots, -1 \quad \text{directional Sequence}$$

$$j = 0, -, -, 1, \dots, N+1 \quad \text{effective iteration number}$$

$$N' = N-2$$

the j-th micro-rotation of a (scj))

elementary angle

$$A(i) = \tan^{7}(2^{-i})$$

 $A(sij) = \tan^{7}(2^{-sij})$

$$\alpha(j)\alpha(s(j)) = \alpha(j) \tan^{-1}(2^{-s(j)})$$

 $\alpha(i) \in \{1,+1\}$

$$\Leftrightarrow$$
 μ (i) α (l)

 $\mu(i) \in \{-1, 0, +1\}$

$$\xi_{m, corpic} = \theta - \sum_{i=0}^{N-1} \mu(i) \alpha(i)$$

$$= \theta - \left[\sum_{j=0}^{N'} \widetilde{\theta}(j) \right]$$

$$= \theta - \left[\sum_{j=0}^{N'} \tan^{-1} (\alpha(j) \cdot 2^{-s(j)}) \right] \alpha(j) \in \{+, +1\}$$

$$\widetilde{\Theta}(j) = \alpha(j) \tan^{-1}(2^{-s(j)})
= \tan^{-1}(\alpha(j) \cdot 2^{-s(j)})$$

$$S_1 = \{ tam^{-1}(\alpha \cdot 2^{-1}) | \alpha \in \{1, 0, +1\}, S \in \{0, 1, 2, \dots N-1\} \}$$

2 MVR (Modified Vector Rotational)

two modifications

- (1) repeatition of elementary angles
 - each micro-rotation of elementary angle can be performed repeatedly
 - more possible combinations
 - smaller &m
- 2 confinement of total micro-rotation number

(on fine the iteration number in the micro-rotation phase to Rm (Rm << W)

to the number of non-zero digit

No in CSD recoding scheme

the angle quantization error

$$\xi_{\text{m,MVR}} \triangleq \Theta - \sum_{i=0}^{\text{Rm-1}} \alpha(i) \alpha(s(i))$$

the rotational sequence $S(i) \in \{0, 1, \dots, W-1\}$

the micro-rotation angle in the i-th iteration

the directional sequence $(i) \in \{-1, 0, +1\}$

the direction of the i-th micro-rotation of a (S(i))

$$\propto$$
 (i) α (\sim (\sim) = $\tilde{\theta}$ (\tilde{i})

$$\xi_{m,MVR} \triangleq \Theta - \sum_{j=0}^{Rm-1} \alpha(j) \alpha(S(j))$$

the rotational sequence S(j)

$$j = 0, |, 2, \dots, |_{m-1}$$

 $S(j) \in \{0, 1, \dots, |W-1\}$

determines the micro-rotation angle $\alpha(S(\frac{1}{2}))$ in the j-th j-theretion

the directional sequence (3) (3) (4) (4) (5) (4) (5) (4)

controls the direction of the j-th micro-rotation of a (S(j))

$$\alpha(i) \alpha(s(i)) = \tilde{\theta}(i)$$

$$i = 0, 1, 2, 3, \dots, W-1$$
 $S(i) = 0, 1, 2, 3, \dots, W-1$ rotational Sequence
$$X(i) = 1, 0, 0, +1, \dots, -1$$
 directional Sequence
$$j = 0, -, -, 1, \dots, Rm-1$$
 effective iteration number
$$R_m \ll W$$

sub-angle
$$(\alpha(i) \alpha(s(i))) \sim \widehat{\theta}(i)$$

$$\xi_{\mathsf{m},\mathsf{AR}} = \Theta - \left[\sum_{j=0}^{\mathsf{N}^{\mathsf{I}_{-}}} \mathsf{ton}^{\mathsf{T}} \left(\alpha(i) \cdot 2^{-\mathsf{S}(i)} \right) \right]$$

$$= \Theta - \left[\sum_{j=0}^{\mathsf{N}^{\mathsf{I}_{-}}} \widehat{\Theta} (i) \right] , \qquad \widehat{\Theta} (i) = \mathsf{ton}^{\mathsf{T}} \left(\alpha(i) \cdot 2^{-\mathsf{S}(i)} \right)$$

$$N' riangleq \sum_{j=0}^{N-1} |\mu(j)|$$
 the effective iteration number

The major difference

- 1) the total number of Sub-angles Na

 the total iteration number

 in the micro-votation phase
 is kept fixed to a pre-defined value of Rm

 Na = Rm
- 2) the sub-angle Θ_i (orresponds to $\propto (\dot{j}) \propto (s(\dot{j}))$ $\Theta_j = \propto (\dot{j}) \propto (s(\dot{j})) = \widetilde{\Theta}_j$

Optimization Problem

EAS point of view

Given 0, find the combination of Rm elementary angles from EAS S,, such that the angle quantitation error | Em, nur | is minimized.

Semi-greedy algorithm

traduoffs between computational complexities

and performance

key issue in the MUR-corpic

is to find the best sequences of

s(i) and d(i) to minimize |\(\xi_m\)|

subject to the constraint that

the total iteration number is confined to Rm

- 1) Greedy Algorithm
- 2) Exhaustive Algorithm
- 3) Semigreedy Algorithm

1) Greedy Algorithm

try to approach the target rotation angle, Θ , step by step in each step, decisions are made on $\alpha(i)$ and s(i) by choosing the best combination of $\alpha(i)$ also so as to minimize $|E_m|$

 $\alpha(i)$ and s(i) are determined such that the error function $J(i) = | \Theta(i) - \alpha(c) \Omega(s(i)) |$ is minimited

O(1): the <u>residue</u> angle in the i-th step

$$O(i) = O - \sum_{n=0}^{i-1} \alpha(m) \alpha(s(m))$$

the searching is terminated

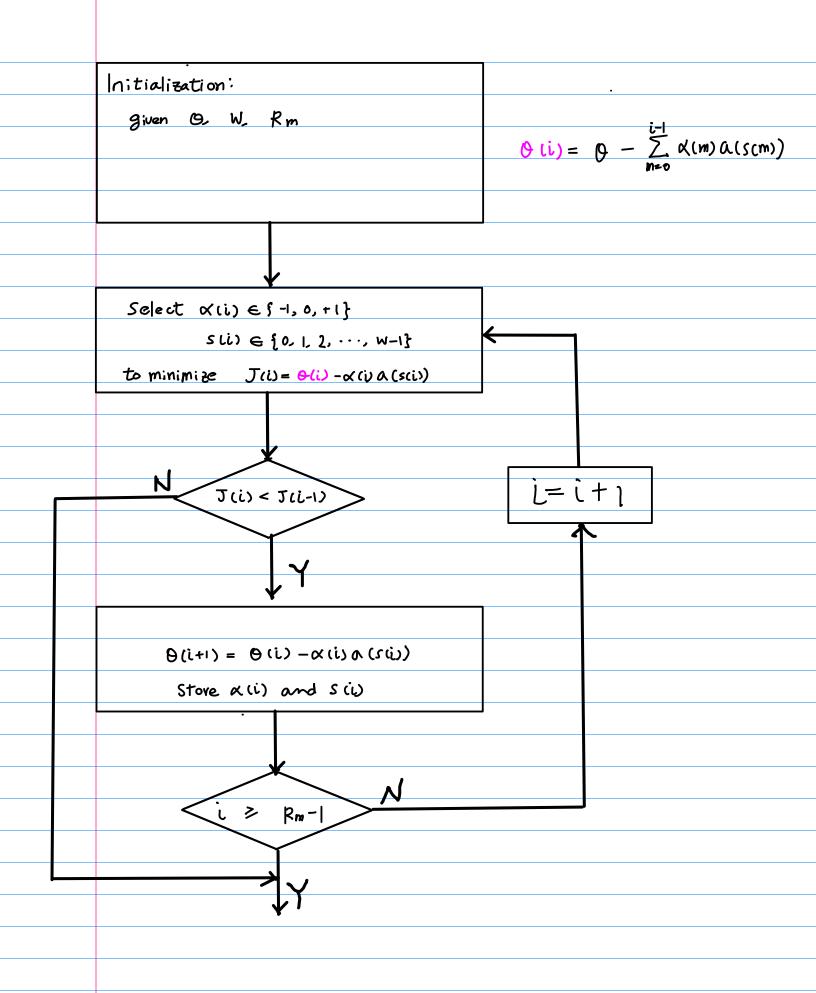
if no further improvements can be found $J(i) \geqslant J(i-1)$

X(Rm-1) and S(Rm-1) are determined at the end of the searching

the greedy algorithm terminates

Only when the residue angle error

cannot be further reduced.



2) Exhaustive Algorithm

Search for the entire solution space

all possible combinations of

$$R_{n-1}$$
 $\sum_{i=0}^{R_{n-1}} \alpha(i) \alpha(s(i))$

in a single step

decisions for
$$\propto (i)$$
 and $s(i)$, $0 \le i \le Rm-1$
by minimizing the error function

$$\mathcal{J} = 0 - \sum_{i=0}^{R_m-1} \alpha(i) \alpha(s(i))$$

global optimal solution

Initialization:

Select $\alpha(i) \in \{-1, 0, +1\}$ $s(i) \in \{0, 1, 2, \dots, w-1\}$ for $0 \le i \le R_m - 1$ to minimize $J(i) = 0 - \sum_{i=0}^{R_m - 1} \alpha(i) \alpha(s(i))$

$$= 3_{\text{km}} \cdot M_{\text{km}}$$

$$= 3_{\text{km}} \cdot M_{\text{km}}$$

store &(i) and S(i)
for 0≤i≤ Rm-1

3) Semi-greedy Algorithm

a combination of greedy and exhaustive algorithm

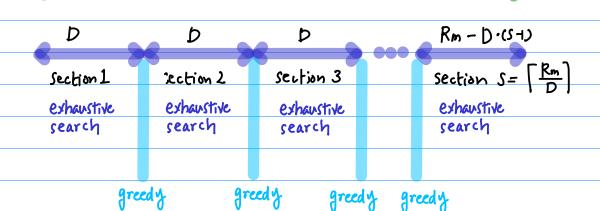
the search space of $\alpha(i)$ and s(i) for $0 \le i \le R_m - 1$ are divided into several sections

with D iterations as a segment

block length block

the segmentation scheme

total iteration (Rm)



decision of
$$\alpha(k)$$
 and $\beta(k)$ for $iD \leq k \leq liti)D-1$

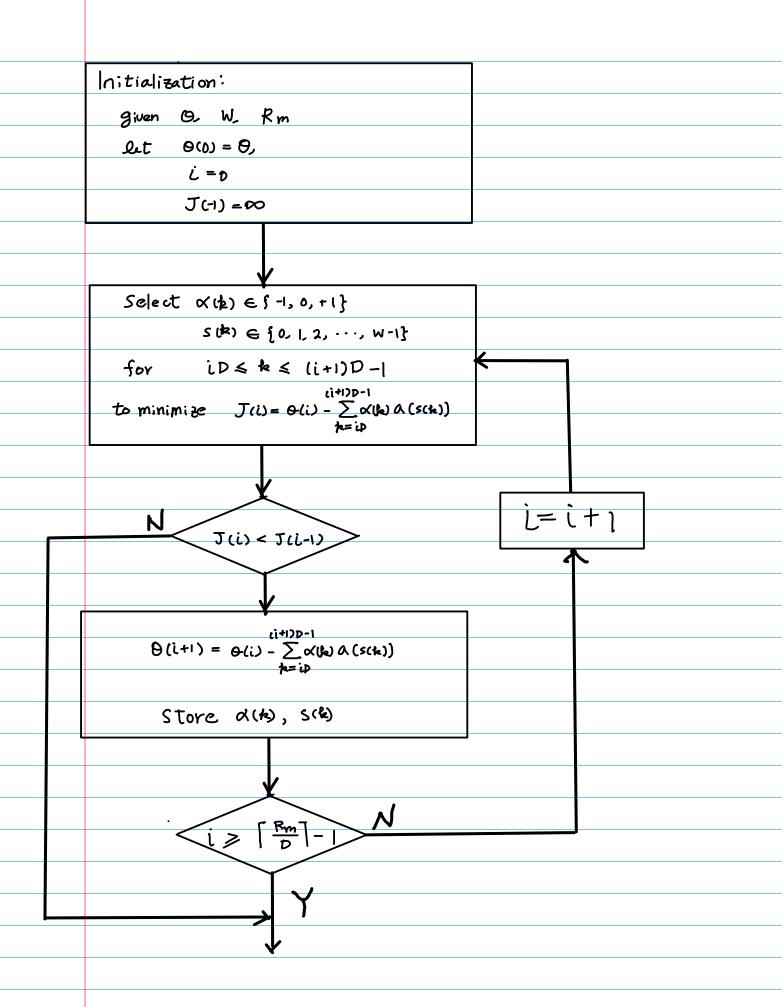
minimizes
$$J = \frac{(i+1)D-1}{0(i) - \sum_{k=i}^{n} 0(k) (k) (s(k))}$$

where
$$\frac{0(i)}{m=0} = \frac{i-1}{m=0} \left[\frac{(m+1)D-1}{\sum_{k=m} D} \alpha(k) \alpha(s(k)) \right]$$

the residue angle in the i-th step

$$S = \left\lceil \frac{R_m}{D} \right\rceil$$

$$\frac{0(i)}{b} = 0 - \left[\sum_{k=0:D}^{1:D+1} \alpha(k) \alpha(s(k)) + \sum_{k=1:D}^{2:D+1} \alpha(k) \alpha(s(k)) + \dots + \sum_{k=2:D}^{3:D+1} \alpha(k) \alpha(s(k)) \right]$$



$$\int_{2} = \{ tan^{-1} (x_{0}^{*} \cdot 2^{-st} + x_{1}^{*} \cdot 2^{-st}) : \\ x_{0}^{*}, x_{1}^{*} \in \{1, 0, +1\}, \quad S_{0}^{*}, S_{1}^{*} \in \{0, 1, \cdots, W1\} \}$$

$$O_i = \tan^{-1}(\alpha_{\circ}(j) \cdot 2^{-S_0(j)} + \alpha_{\circ}(j) \cdot 2^{-S_1(j)})$$

the angle quantization error

$$|\xi_{m,EAAS}| \triangleq \left| \Theta - \sum_{j=0}^{Rm-1} \tan^{-1} \left(\alpha_{\circ}(j) \cdot 2^{-S_{\circ}(j)} + \alpha_{\circ}(j) \cdot 2^{-S_{1}(j)} \right) \right|$$

Generalized EEAS Scheme

$$\int_{\mathbf{d}} = \left\{ tan^{-1} \left(x_{0}^{*} \cdot 2^{-s_{0}^{*}} + x_{1}^{*} \cdot 2^{-s_{1}^{*}} \right) : x_{d-1}^{*} \cdot 2^{-s_{d-1}^{*}} \right) : x_{d-1}^{*} \cdot x_{$$

Rotation Angle 0 = 1311

Conventional CORDIC

Angle Recoding - Greedy

[100-100-1-10001]

$$MVR - COPPIC - Greedy$$

$$\widehat{x} = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}$$

$$\overline{s} = \begin{bmatrix} 0 & 3 & 6 & 7 \end{bmatrix}$$

$$MVR - CORDIC - Semi Greedy (D = 2)$$

$$\widehat{\alpha} = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}$$

$$\overline{S} = \begin{bmatrix} 0 & 3 & 5 & 4 \end{bmatrix}$$

$$MVR-CORDIC-TBS$$

$$\vec{x}=[1 1 -1 -1]$$

$$\vec{s}=[1 2 4 1]$$

Efgs - Greedy
$$\overline{\alpha}_{0} = [1 + 1] \qquad \overline{\alpha}_{1} = [-1 + 1]$$

$$\overline{5}_{0} = [0 \ 2] \qquad \overline{5}_{1} = [8 \ 10]$$

$$EEAS-TBS$$
 $Rm=2$ $\overline{\alpha}_{0}=[1]$ $\overline{\alpha}_{1}=[1]$ $\overline{\alpha}_{1}=[1]$ $\overline{\beta}_{1}=[3]$

$$EEAS-TBS$$
 $Rm=3$
 $\bar{\alpha}_{0}=[1-|1]$ $\bar{\alpha}_{1}=[+|1-|]$
 $\bar{S}_{0}=[0.3.1]$ $\bar{S}_{1}=[15.6.2]$

