Sampling and Quantization (10A)

Copyright (c) 2011-2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Quantization

The simplest way to quantize a signal is to choose the digital amplitude value closest to the original analog amplitude. This example shows the original analog signal (green), the quantized signal (black dots), the signal reconstructed from the quantized signal (yellow) and the difference between the original signal and the reconstructed signal (red). The difference between the original signal and the reconstructed signal is the quantization error and, in this simple quantization scheme, is a deterministic function of the input signal.

Quantization Levels

2-bit resolution with four levels \square of quantization compared to analog. ${ }^{[1]}$

http://en.wikipedia.org/wiki/

Quantization Noise

Signal Sampling

Signal sampling representation. The continuous signal is represented with a green colored line while the discrete samples are indicated by the blue vertical lines.

Sampling and Quantization

http://en.wikipedia.org/wiki/

Analog to Digital Conversion

$$
\begin{array}{|c}
\hline x[0] \\
\hline x[1] \\
\hline x[2] \\
\hline x[3] \\
\hline \ldots \\
\hline \ldots \\
\hline
\end{array}
$$

http://en.wikipedia.org/wiki/

Sample and Hold

A simplified sample and hold circuit \square diagram. AI is an analog input, AO an analog output, C - a control signal.

Digital to Analog Conversion

\square

Digital Signal Processing

$$
y[n]=\sum_{m=0}^{n} h[m] x[n-m]=\sum_{m=0}^{n}(0.75)^{m}
$$

http://en.wikipedia.org/wiki/

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"

