
Young Won Lim
9/29/21

● Loop
●

Reduction Clause (5A)



Young Won Lim
9/29/21

 Copyright (c)  2021 - 2020  Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com


Reduction Clause (5A) 3 Young Won Lim
9/29/21

Clauses (4)

reduction (operator: list)

Performs a reduction on all scalar variables in list 
using the specified operator. 
Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. 

At the end of the statement block, 
the final values of all private copies of the reduction variable 
are combined in a manner appropriate to the operator, 
and the result is placed back in the original value 
of the shared reduction variable. 

https://www.ibm.com/docs/en/xl-c-aix/13.1.2?topic=processing-pragma-omp-section-pragma-omp-sections



Reduction Clause (5A) 4 Young Won Lim
9/29/21

Reduction (1)

#include <stdio.h>
#include <omp.h>

int main(void)
{    
    int sum = 100;

    #pragma omp parallel for
    for (int i = 1; i <= 4; i++)
    {
        sum += i;
    }

    printf("sum is %d\n", sum);
    return 0;
}

https://nanxiao.gitbooks.io/openmp-little-book/content/posts/collapse-clause.html?q=



Reduction Clause (5A) 5 Young Won Lim
9/29/21

Reduction (2)

Because sum is a shared variable in threads, so we need to use synchronization 
to protect accessing it:

#pragma omp parallel for
for (int i = 1; i <= 4; i++)
{
    #pragma omp critical
    sum += i;
}

But this will cause losing the advantage of using parallelism. The other method is 
using reduction clause:

reduction(reduction-identifier : list)    

https://nanxiao.gitbooks.io/openmp-little-book/content/posts/collapse-clause.html?q=



Reduction Clause (5A) 6 Young Won Lim
9/29/21

Reduction (3)

#include <stdio.h>
#include <omp.h>

int main(void)
{    
    int sum = 100;

    printf("Before parallelism, sum's address is %p\n", &sum);

    #pragma omp parallel for reduction(+ : sum)
    for (int i = 1; i <= 4; i++)
    {
        printf("sum's address in thread %d is %p, value is %d\n", omp_get_thread_num(), &sum, sum);
        sum += i;
    }

    printf("After parallelism, sum's address is %p, and value is %d\n", &sum, sum);
    return 0;
} 

https://nanxiao.gitbooks.io/openmp-little-book/content/posts/collapse-clause.html?q=



Reduction Clause (5A) 7 Young Won Lim
9/29/21

Reduction (4)

https://nanxiao.gitbooks.io/openmp-little-book/content/posts/collapse-clause.html?q=

# gcc -fopenmp parallel.c
# ./a.out
Before parallelism, sum's address is 0x7ffcc880baf0
sum's address in thread 3 is 0x7f6baea5ee20, value is 0
sum's address in thread 2 is 0x7f6baf25fe20, value is 0
sum's address in thread 0 is 0x7ffcc880ba90, value is 0
sum's address in thread 1 is 0x7f6bafa60e20, value is 0
After parallelism, sum's address is 0x7ffcc880baf0, and value is 110



Reduction Clause (5A) 8 Young Won Lim
9/29/21

Clauses (5)

reduction (operator: list)

For example, when the max operator is specified, 
the original reduction variable value combines 
with the final values of the private copies 
by using the following expression:

original_reduction_variable = 
original_reduction_variable < private_copy 

? private_copy 
: original_reduction_variable; 

https://www.ibm.com/docs/en/xl-c-aix/13.1.2?topic=processing-pragma-omp-section-pragma-omp-sections



Reduction Clause (5A) 9 Young Won Lim
9/29/21

References

[1] en.wikipedia.org
[2] M Harris, http://beowulf.lcs.mit.edu/18.337-2008/lectslides/scan.pdf


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

