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Clauses (4)

reduction (operator: list)

Performs a reduction on all scalar variables in list 
using the specified operator. 
Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. 

At the end of the statement block, 
the final values of all private copies of the reduction variable 
are combined in a manner appropriate to the operator, 
and the result is placed back in the original value 
of the shared reduction variable. 

https://www.ibm.com/docs/en/xl-c-aix/13.1.2?topic=processing-pragma-omp-section-pragma-omp-sections
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Reduction (1)

#include <stdio.h>
#include <omp.h>

int main(void)
{    
    int sum = 100;

    #pragma omp parallel for
    for (int i = 1; i <= 4; i++)
    {
        sum += i;
    }

    printf("sum is %d\n", sum);
    return 0;
}

https://nanxiao.gitbooks.io/openmp-little-book/content/posts/collapse-clause.html?q=
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Reduction (2)

Because sum is a shared variable in threads, so we need to use synchronization 
to protect accessing it:

#pragma omp parallel for
for (int i = 1; i <= 4; i++)
{
    #pragma omp critical
    sum += i;
}

But this will cause losing the advantage of using parallelism. The other method is 
using reduction clause:

reduction(reduction-identifier : list)    

https://nanxiao.gitbooks.io/openmp-little-book/content/posts/collapse-clause.html?q=
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Reduction (3)

#include <stdio.h>
#include <omp.h>

int main(void)
{    
    int sum = 100;

    printf("Before parallelism, sum's address is %p\n", &sum);

    #pragma omp parallel for reduction(+ : sum)
    for (int i = 1; i <= 4; i++)
    {
        printf("sum's address in thread %d is %p, value is %d\n", omp_get_thread_num(), &sum, sum);
        sum += i;
    }

    printf("After parallelism, sum's address is %p, and value is %d\n", &sum, sum);
    return 0;
} 

https://nanxiao.gitbooks.io/openmp-little-book/content/posts/collapse-clause.html?q=
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Reduction (4)

https://nanxiao.gitbooks.io/openmp-little-book/content/posts/collapse-clause.html?q=

# gcc -fopenmp parallel.c
# ./a.out
Before parallelism, sum's address is 0x7ffcc880baf0
sum's address in thread 3 is 0x7f6baea5ee20, value is 0
sum's address in thread 2 is 0x7f6baf25fe20, value is 0
sum's address in thread 0 is 0x7ffcc880ba90, value is 0
sum's address in thread 1 is 0x7f6bafa60e20, value is 0
After parallelism, sum's address is 0x7ffcc880baf0, and value is 110
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Clauses (5)

reduction (operator: list)

For example, when the max operator is specified, 
the original reduction variable value combines 
with the final values of the private copies 
by using the following expression:

original_reduction_variable = 
original_reduction_variable < private_copy 

? private_copy 
: original_reduction_variable; 

https://www.ibm.com/docs/en/xl-c-aix/13.1.2?topic=processing-pragma-omp-section-pragma-omp-sections
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