
ELF1 1E Symbol Table Section

Young W. Lim

2022-07-02 Sat

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 1 / 67

Outline

1 Based on

2 Weak and Common Symbols Background
Uninitialized global variable
Weak symbols
Common symbols
One object file examples
Two object file examples

3 Symbol table section
TOC: Symbol table section
Symbol table
Global and weak symbols

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 2 / 67

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 3 / 67

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 4 / 67

uninitialized global variable (1)

gcc, in C mode:
uninitialised globals which are not declared extern
are treated as common symbols, not weak symbols.
common symbols are merged at link time
so that they all refer to the same storage;

if more than one object attempts to initialise such a symbol,
you will get a link-time error
if they are not explicitly initialised anywhere,
they will be placed in the BSS, i.e. initialised to 0.

https://stackoverflow.com/questions/3691835/why-uninitialized-global-variable-is-weak-symbol

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 5 / 67

uninitialized global variable (2)

gcc, in C++ mode:
not the same as in c mode
there is no common symbols in C++

Uninitialised globals which are not declared extern
are implicitly initialised to a default value
(0 for simple types, or default constructor).

https://stackoverflow.com/questions/3691835/why-uninitialized-global-variable-is-weak-symbol

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 6 / 67

uninitialized global variable (3)

In either case,
a weak symbol allows an initialised symbol
to be overridden by a non-weak initialised symbol
of the same name at link time

https://stackoverflow.com/questions/3691835/why-uninitialized-global-variable-is-weak-symbol

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 7 / 67

uninitialized global variable (4)

1. init.c
int global = 999;

int main(void) { ... }

2. uninit.c
int global;

int main(void) { ... }

3. extern.c
extern int global;

int main(void) { ... }

4. weak.c
int global __attribute__((weak))

= 999;

int main(void) { ... }

5. another.c
int global = 1234;

https://stackoverflow.com/questions/3691835/why-uninitialized-global-variable-is-weak-symbol

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 8 / 67

uninitialized global variable (5)

1. init.c
#include <stdio.h>
int global = 999;
int main(void) {

printf("%d\n", global);
return 0;

}

2. uninit.c
#include <stdio.h>
int global;
int main(void) {

printf("%d\n", global);
return 0;

}

3. extern.c
#include <stdio.h>
extern int global;
int main(void) {

printf("%d\n", global);
return 0;

}

4. weak.c
#include <stdio.h>
int global __attribute__((weak))

= 999;
int main(void) {

printf("%d\n", global);
return 0; }

5. another.c
int global = 1234;

https://stackoverflow.com/questions/3691835/why-uninitialized-global-variable-is-weak-symbol

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 9 / 67

uninitialized global variable (6)

1. init.c int global=999;
2. uninit.c int global;
3. extern.c extern int global;
4. weak.c int global __attribute__((weak))=999;
5. another.c int global = 1234;

case 1 uninit.c 0
uninit.c another.c 1234

case 2 init.c another.c multiple definition
case 3 extern.c undefined reference

extern.c another.c 1234
case 4 weak.c 999

weak.c another.c 1234

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 10 / 67

Case 1 uninit

1. uninit
$ gcc -o test uninit.c && ./test
0

$ gcc -o test uninit.c another.c && ./test
1234

https://stackoverflow.com/questions/3691835/why-uninitialized-global-variable-is-weak-symbol

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 11 / 67

Case 2 init

2. init
$ gcc -o test init.c another.c && ./test
/tmp/cc5DQeaz.o:(.data+0x0): multiple definition of ‘global’
/tmp/ccgyz6rL.o:(.data+0x0): first defined here
collect2: ld returned 1 exit status

https://stackoverflow.com/questions/3691835/why-uninitialized-global-variable-is-weak-symbol

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 12 / 67

Case 3 extern

3. extern
$ gcc -o test extern.c && ./test
/tmp/ccqdYUIr.o: In function ‘main’:
main_uninit_extern.c:(.text+0x12): undefined reference to ‘global’
collect2: ld returned 1 exit status#+end_src

$ gcc -o test extern.c another.c && ./test
1234

https://stackoverflow.com/questions/3691835/why-uninitialized-global-variable-is-weak-symbol

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 13 / 67

Case 4 weak

4. weak
$ gcc -o test weak.c && ./test
999

$ gcc -o test weak.c another.c && ./test
1234

https://stackoverflow.com/questions/3691835/why-uninitialized-global-variable-is-weak-symbol

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 14 / 67

Case 5 weak, strong

weak.c
#include <stdio.h>

int weak; /* global, weak, zero */

int main(void) {
printf("weak value is %d.\n", weak);
return 0;

}

strong.c
int weak = 42; /* global, strong, 42 */

running
$ gcc weak.c
$./a.out
weak value is 0.
$ gcc weak.c strong.c
$./a.out
weak value is 42.

https://stackoverflow.com/questions/3691835/why-uninitialized-global-variable-is-weak-symbol
Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 15 / 67

Weak symbols (1)

Weak symbol references that remain unresolved,
do not result in a fatal error condition,
no matter what output file type is being generated.

If a static executable is being generated,
the symbol is converted to an absolute symbol
with an assigned value of zero

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter2-11/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 16 / 67

Weak symbols (2)

If a dynamic executable or shared object is being produced,
the symbol is left as an undefined weak reference
with an assigned value of zero

During process execution, the runtime linker
searches for this symbol.

If the runtime linker does not find a match,
the reference is bound to an address of zero
instead of generating a fatal relocation error.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter2-11/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 17 / 67

Weak symbols (3)

Historically, these undefined weak referenced symbols
have been employed as a mechanism to test
for the existence of functionality.

For example, the following C code fragment
might have been used in the shared object libfoo.so.1

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter2-11/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 18 / 67

Weak symbols (4)

weak symbols
#pragma weak foo

extern void foo(char *);

void bar(char *path)
{

void (*fptr)(char *);

if ((fptr = foo) != 0)
(*fptr)(path);

}

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter2-11/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 19 / 67

Weak symbols (5)

When building an application that references libfoo.so.1,
the link-edit completes successfully
regardless of whether a definition for the symbol foo is found

If during execution of the application
the function address tests nonzero,
the function is called.

However, if the symbol definition is not found,
the function address tests zero
and therefore is not called.

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter2-11/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 20 / 67

Weak symbols (6)

Compilation systems view this address comparison technique
as having undefined semantics,
which can result in the test statement
being removed under optimization.

In addition, the runtime symbol binding mechanism places
other restrictions on the use of this technique.
These restrictions prevent a consistent model
from being made available for all dynamic objects

https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter2-11/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 21 / 67

Common symbols (1)

common symbols allow a programmer
to define several variables
of the same name in different source files

the other way is to define a variable
once in one source file, and
reference it everywhere else
in other source files,
using extern

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 22 / 67

Common symbols (2)

when common symbols are used,
the linker will merge all symbols of the same name
into a single memory location

the size of which is the largest type of
the individual common symbol definitions.

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 23 / 67

Common symbols (3)

fileA.c defines an uninitialized 32-bit integer myint
fileB.c defines an 8-bit character myint,

then in the final executable,
references to myint from both files
will point to the same memory location (common location),
and the linker will reserve 32 bits for that location.

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 24 / 67

Common symbols (4)

COMMON symbols are contained
only in relocatable object files,
not in executable object files.

they are generated by the compiler / assembler
when creating an object file from a single source file.

later, the linker will need to interpret these symbols.

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 25 / 67

Common symbols (5)

Remember that ELF reserves
a special section header table index
for referring to a COMMON section:

the index COM
just like the special indices ABS and UND,
these sections do not physically exist in the file

common symbols defined in the symbol table
of relocatable object files
have their section index member set to COM

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 26 / 67

Common symbols (6)

common symbols first appeared
as a feature of the FORTRAN language.

common symbols are present only
for backward-compatibility
with old source files
where extern is not used

nowadays, the best practice is to make use of
only one definition of a variable,
and use extern in all other source files
that reference it

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 27 / 67

Common symbols (7)

if a global variable is not initialized
in a C source file,

after compiling, we would expect the variable to go to
the .bss section in the relocatable object file

However, by default, GCC will put the symbol
in the COMMON section of the file;

that is, the option -fcommon is the default behaviour.

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 28 / 67

(1a) COMMON

by default, the uninitialized variable un_a
is put in the common section.
int un_a → COM un_a (common)

when compile with -fno-common,
the section of un_a is now at index 3,
which is the .bss section
of the main.o relocatable object file
int un_a, -fno-common → 3 un_a (.bss)

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 29 / 67

(1b) COMMON

main.c
int un_a; // common

int main() {
return 0;

}

script
gcc -c -o main.o main.c
readelf -s main.o

gcc -c -o main.o main.c -fno-common
readelf -s main.o

results
$> gcc -c -o main.o main.c
$> readelf -s main.o
Symbol table ’.symtab’ contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name
8: 0000000000000004 4 OBJECT GLOBAL DEFAULT COM un_a

$> gcc -c -o main.o main.c -fno-common
$> readelf -s main.o
Symbol table ’.symtab’ contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name
8: 0000000000000000 4 OBJECT GLOBAL DEFAULT 3 un_a

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 30 / 67

(2a) .data

if the variable is initialized to a certain value,
then it is placed in the .data section in the output file
by the compiler (actually the assembler)

note that section index 2 corresponds
to the .data section here:
int un_a=9 → 2 un_a (.data)
use -SW options to readelf to list all sections

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 31 / 67

(2b) .data

main.c
int un_a = 9; // .data

int main() {
return 0;

}

script
$> gcc -c -o main.o main.c

$> readelf -s main.o

results
$> gcc -c -o main.o main.c
$> readelf -s main.o
Symbol table ’.symtab’ contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name
8: 0000000000000000 4 OBJECT GLOBAL DEFAULT 2 un_a

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 32 / 67

(3a) .bss

If we define a global variable,
and explicitly initialise it to zero,
then it will be put in the .bss section
int un_a=0 → 2 un_a (.bss)

although it is initialized and
logically should go into .data,
the compiler knows it is optimal to put it in the .bss,
as in any case it will become initialized to zero at runtime,
and in .bss will not consume file space

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 33 / 67

(3b) .bss

main.c
int un_a = 0; // .bss

int main() {
return 0;

}

script
$> gcc -c -o main.o main.c

$> readelf -s main.o

results
$> gcc -c -o main.o main.c
$> readelf -s main.o
Symbol table ’.symtab’ contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name
8: 0000000000000000 4 OBJECT GLOBAL DEFAULT 3 un_a

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 34 / 67

Two object files defining the same symbol

main.c swap.c
main.o swap.o prog

case 1 int un_a int un_a=0
COM .bss .bss

case 2 int un_a extern int un_a
COM UND .bss

case 3 int un_a int un_a
COM COM .bss

case 4 int un_a=0 int un_a=9
.bss .data multiple definition

case 5 int un_a=10 extern int un_a
.data UND .data

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 35 / 67

(1a) COMMON, .bss

1 int un_a;, int un_a=0; (COMMON, .bss)

main.c
int un_a; // common

int main() {
return 0;

}

swap.c
int un_a=0; // .bss

int swap() {
return 108;

}

script
$> gcc -c -o main.o main.c
$> gcc -c -o swap.o swap.c
$> gcc -o prog main.o swap.o

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 36 / 67

(1b) COMMON, .bss

1 int un_a;, int un_a=0; (COMMON, .bss)

script and results
$> gcc -c -o main.o main.c
$> readelf -s main.o
Symbol table ’.symtab’ contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name
8: 0000000000000004 4 OBJECT GLOBAL DEFAULT COM un_a

$> gcc -c -o swap.o swap.c
$> readelf -s swap.o

8: 0000000000000000 4 OBJECT GLOBAL DEFAULT 3 un_a

$> gcc -o prog main.o swap.o
$> readelf -s prog | grep ’un_a’

49: 0000000000601030 4 OBJECT GLOBAL DEFAULT 25 un_a

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 37 / 67

(1c) COMMON, .bss

1 int un_a;, int un_a=0; (COMMON, .bss)
the linker creates the final variable un_a
in the .bss section of the executable object file
(index 25 is the index of .bss as shown by readelf -SW)
In the file swap.c, un_a were initialised with a non-zero value,
the variable would have been in the .data of the relocatable swap.o,
and the linker would have then placed it
in the .data section of the executable.

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 38 / 67

(2a) COMMON, undefined

2 int un_a;, extern int un_a; (COMMON, undefined)

main.c
int un_a;

int main() {

return 0;
}

swap.c
extern int un_a;

int swap() {
int a = un_a;
return 108;

}

script
$> gcc -c -o main.o main.c
$> gcc -c -o swap.o swap.c
$> gcc -o prog main.o swap.o

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 39 / 67

(2b) COMMON, undefined

2 int un_a;, extern int un_a; (COMMON, undefined)

script and results
$> gcc -c -o main.o main.c
$> readelf -s main.o
Symbol table ’.symtab’ contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name
8: 0000000000000004 4 OBJECT GLOBAL DEFAULT COM un_a

$> gcc -c -o swap.o swap.c
$> readelf -s swap.o

9: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND un_a

$> gcc -o prog main.o swap.o
$> readelf -s prog | grep ’un_a’

49: 0000000000601030 4 OBJECT GLOBAL DEFAULT 25 un_a

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 40 / 67

(2c) COMMON, undefined

2 int un_a;, extern int un_a; (COMMON, undefined)
As we see, in the final executable, our variable is located
in the .bss section.

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 41 / 67

(3a) COMMON, COMMON

3 int un_a;, int un_a; (COMMON, COMMON)

main.c
int un_a;

int main() {
return 0;

}

swap.c
int un_a;

int swap() {
return 108;

}

script
$> gcc -c -o main.o main.c
$> gcc -c -o swap.o swap.c
$> gcc -o prog main.o swap.o

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 42 / 67

(3b) COMMON, COMMON

3 int un_a;, int un_a; (COMMON, COMMON)

script and results
$> gcc -c -o main.o main.c
$> readelf -s main.o
Symbol table ’.symtab’ contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name
8: 0000000000000004 4 OBJECT GLOBAL DEFAULT COM un_a

$> gcc -c -o swap.o swap.c
$> readelf -s swap.o

8: 0000000000000004 4 OBJECT GLOBAL DEFAULT COM un_a

$> gcc -o prog main.o swap.o
$> readelf -s prog | grep ’un_a’

49: 0000000000601030 4 OBJECT GLOBAL DEFAULT 25 un_a

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 43 / 67

(3c) COMMON, COMMON

3 int un_a;, int un_a; (COMMON, COMMON)
We see here also, the variable is located in .bss of final executable.

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 44 / 67

(4a) .bss, .data

4 int un_a=0;, int un_a=9; (.bss, .data)

main.c
int un_a=0;

int main() {
return 0;

}

swap.c
int un_a=9;

int swap() {
return 108;

}

script
$> gcc -c -o main.o main.c
$> gcc -c -o swap.o swap.c
$> gcc -o prog main.o swap.o

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 45 / 67

(4b) .bss, .data

4 int un_a=0;, int un_a=9; (.bss, .data)

script and results
$> gcc -c -o main.o main.c
$> readelf -s main.o
Symbol table ’.symtab’ contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name
8: 0000000000000000 4 OBJECT GLOBAL DEFAULT 3 un_a

$> gcc -c -o swap.o swap.c
$> readelf -s swap.o

8: 0000000000000000 4 OBJECT GLOBAL DEFAULT 2 un_a
$> gcc -o prog main.o swap.o
swap.o:(.data+0x0): multiple definition of ‘un_a’
main.o:(.bss+0x0): first defined here
collect2: error: ld returned 1 exit status

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 46 / 67

(4c) .bss, .data

4 int un_a=0;, int un_a=9; (.bss, .data)
a linking error.
The codes from both files each reference
their own data location, initialized differently.

if it takes the value 9 and puts it in the .data section
for symbol un_a, then the code in main.c may behave incorrectly
as it was written assuming the initial value of un_a to be 0.
if it were to choose to put un_a in .bss,
such that at runtime the initial value of un_a will be 0,
the code in main.c will work correctly
but code from swap.c will likely not function well.

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 47 / 67

(5a) .data, undefined

5 int un_a=10;, extern int un_a; (.data, undefined)

main.c
int un_a=10; // .data

int main() {
return 0;

}

swap.c
extern int un_a; // undefined

int swap() {
int a = un_a;
return 108;

}

script
$> gcc -c -o main.o main.c
$> gcc -c -o swap.o swap.c
$> gcc -o prog main.o swap.o

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 48 / 67

(5b) .data, undefined

5 int un_a=10;, extern int un_a; (.data, undefined)

script and results
$> gcc -c -o main.o main.c
$> readelf -s main.o
Symbol table ’.symtab’ contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name
8: 0000000000000000 4 OBJECT GLOBAL DEFAULT 2 un_a

$> gcc -c -o swap.o swap.c
$> readelf -s swap.o

9: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND un_a

$> gcc -o prog main.o swap.o
$> readelf -s prog | grep ’un_a’

49: 000000000060102c 4 OBJECT GLOBAL DEFAULT 24 un_a

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 49 / 67

(5c) .data, undefined

5 int un_a=10;, extern int un_a; (.data, undefined)
this example shows a normal and common case.
We see that finally the variable is defined
in the .data of the executable (section index 24).

https://binarydodo.wordpress.com/2016/05/09/investigating-linking-with-common-symbols-in-elf/

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 50 / 67

TOC: Symbol table section

uninitialized global variables
Symbol table
Global and weak symbols

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 51 / 67

TOC: Symbol table section

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 52 / 67

Symbol table (1)

An object file’s symbol table holds
information needed to locate and relocate
a program’s symbolic definitions and references

A symbol table index is
a subscript into this array.

Index 0 both designates
the first entry in the table and
serves as the undefined symbol index

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 53 / 67

Symbol table (2)

the first byte is index zero,
holds a null character (\0)
the last byte holds a null character (\0)
ensuring null termination for all strings.
A string with zero index specifies
either no name or a null name,
depending on the context.

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 54 / 67

Elf32_Sym structure type

typedef struct {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;

} Elf32_Sym;

st_name :
An index into the object
file’s symbol string table

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 55 / 67

Elf32_Sym field types (1) st_name, st_value

st_name
an index into the object file’s symbol string table,
which holds the character representations of the symbol names.
if the value is nonzero, the value represents a string table index
that gives the symbol name.
otherwise, the symbol table entry has no name.

st_value
the value of the associated symbol.
the value can be an absolute value or an address,
depending on the context. See Symbol Values.

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 56 / 67

Elf32_Sym fields type (2) st_size, st_info

st_size
Many symbols have associated sizes.
For example, a data object’s size is the number of bytes
that are contained in the object.
This member holds the value zero
if the symbol has no size or an unknown size.

st_info
The symbol’s type and binding attributes.
A list of the values and meanings appears in Table

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 57 / 67

Elf32_Sym fiedls type (3) st_shndx

st_shndx
every symbol table entry is defined in relation to some section
st_shndx member holds the relevant section header table index

Some section indexes indicate special meanings
If this member contains SHN_XINDEX,
then the actual section header index is
too large to fit in this member.
The actual value is contained in the associated section
of type SHT_SYMTAB_SHNDX

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 58 / 67

Elf32_Sym fiedls type (4) st_other

st_other
A symbol’s visibility
Other bits are set to zero, and have no defined meaning.

symbol binding

STB_LOCAL 0
STB_GLOBAL 1
STB_WEAK 2
STB_LOOS 10
STB_HIOS 12
STB_LOPROC 13
STB_HIPROC 15

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 59 / 67

ELF Symbol binding (1)

STB_LOCAL: Local symbol.
These symbols are not visible outside the object file
containing their definition.
Local symbols of the same name can exist in multiple files
without interfering with each other.

STB_GLOBAL: Global symbols.
These symbols are visible to all object files being combined.
One file’s definition of a global symbol satisfies another
file’s undefined reference to the same global symbol.

STB_WEAK: Weak symbols.
These symbols resemble global symbols,
but their definitions have lower precedence.

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 60 / 67

ELF Symbol binding (2)

STB_LOOS - STB_HIOS
Values in this inclusive range are reserved
for operating system-specific semantics.

STB_LOPROC - STB_HIPROC
Values in this inclusive range are reserved
for processor-specific semantics.

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 61 / 67

Global and weak symbols (1)

When the link-editor combines several relocatable object files,
it does not allow multiple definitions of
STB_GLOBAL symbols with the same name.

On the other hand, if a defined global symbol exists,
the appearance of a weak symbol with the same name
will not cause an error

The link-editor honors the global definition
and ignores the weak ones.

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 62 / 67

Global and weak symbols (2)

Similarly, if a common symbol exists,
the appearance of a weak symbol with the same name
does not cause an error

The link-editor uses the common definition
and ignores the weak one.

A common symbol has the st_shndx field holding SHN_COMMON

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 63 / 67

Global and weak symbols (3)

When the link-editor searches archive libraries
it extracts archive members that contain
definitions of undefined or tentative global symbols.

The member’s definition can be either a global or a weak symbol.

The link-editor, by default, does not extract archive members
to resolve undefined weak symbols.
Unresolved weak symbols have a zero value.

The use of -z weakextract overrides this default behavior.
It enables weak references to cause the extraction of archive members.

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 64 / 67

Section of type SHT_SYMTAB, SHT_DYNSYM (1)

sh_type = SHT_SYMTAB, SHT_DYNSYM

identifies a symbol table
typically a SHT_SYMTAB section
provides symbols for link-editing
as a complete symbol table, it can contain
many symbols unnecessary for dynamic linking
Consequently, an object file can also contain
a SHT_DYNSYM section, which holds
a minimal set of dynamic linking symbols,
to save space

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 65 / 67

Section of type SHT_SYMTAB, SHT_DYNSYM (2)

sh_type = SHT_SYMTAB, SHT_DYNSYM

sh_link
The section header index of
the associated string table

sh_info
One greater than the symbol table index of
the last local symbol (binding STB_LOCAL) .

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 66 / 67

the section header index of the associated symbol table

sh_type =
SHT_HASH

SHT_REL, SHT_RELA
SHT_GROUP

in these sections, sh_link represents
the section header index of the associated symbol table

https://docs.oracle.com/cd/E19683-01/816-1386/6m7qcoblh/index.html

Young W. Lim ELF1 1E Symbol Table Section 2022-07-02 Sat 67 / 67

	Based on
	Weak and Common Symbols Background
	Uninitialized global variable
	Weak symbols
	Common symbols
	One object file examples
	Two object file examples

	Symbol table section
	TOC: Symbol table section
	Symbol table
	Global and weak symbols

