Hybrid CORDIC 2.A Sine/Cosine Generator

20171014

Copyright (c) 2015 - 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

The details moved to
https://en.wikiversity.org/wiki/Butterfly_Hardware_Implementations
•

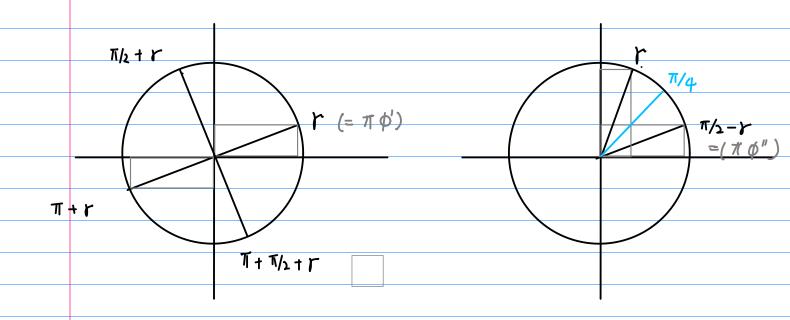
Wilson ROM based Sine/Cosine Generation

[24] Fu & Willson Sine / Cosine Generation

ROM-based

for high resolution, ROM size grows exponentially

quater-wave symmetry


 $\sin\theta = \cos\left(\frac{\pi}{2} - \theta\right)$

 \emptyset [0, 27] \longrightarrow [0, $\frac{\pi}{4}$]

conditionally interchanging inputs Xo & Yo
Conditionally interchanging and negating outputs X & Y

 $X = X_0 \cos \phi - Y_0 \sin \phi$ $Y = Y_0 \cos \phi + X_0 \sin \phi$

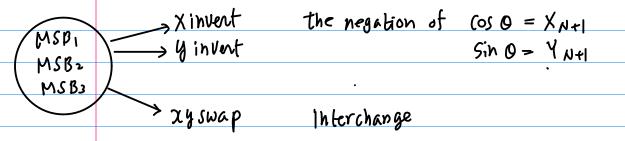
Madisetti VLSI arch

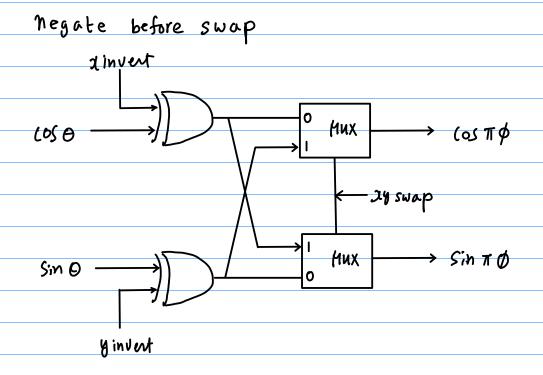
for frequency synthesis

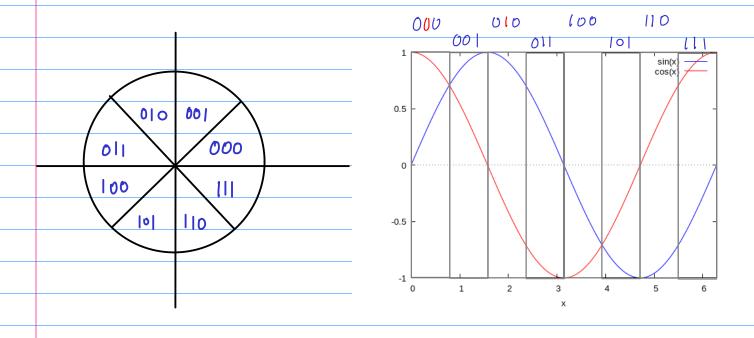
argument: Signed normalized by Π angle [-1, 1]binary representation of a radian angle required $[-1, 1] \rightarrow [0, \Pi/4] \rightarrow Sine/cosine$ generator ϕ $0 = \Pi \phi$

- (1) a phase accumulator \$ [+, 1]
- \bigcirc a radian converter $\bigcirc \bigcirc \bigcirc \bigcirc$
- 3 a sine/cosine generator Sin 0, cos o

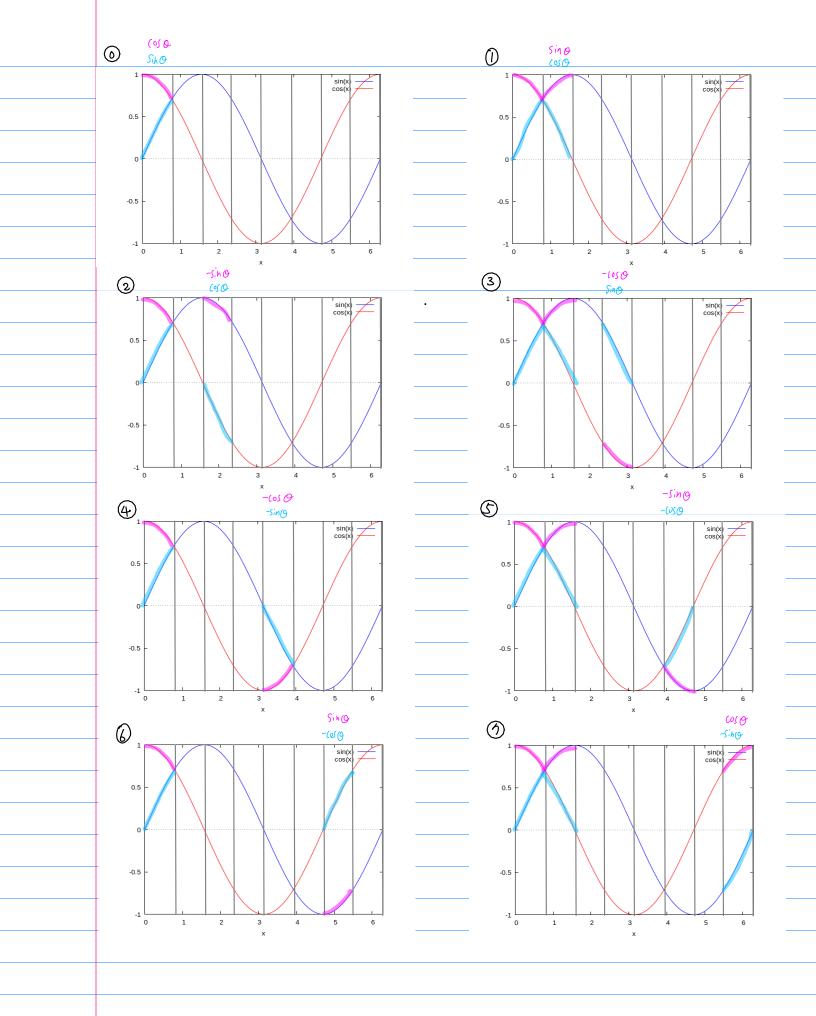
 an output stage Sin 0, cos o

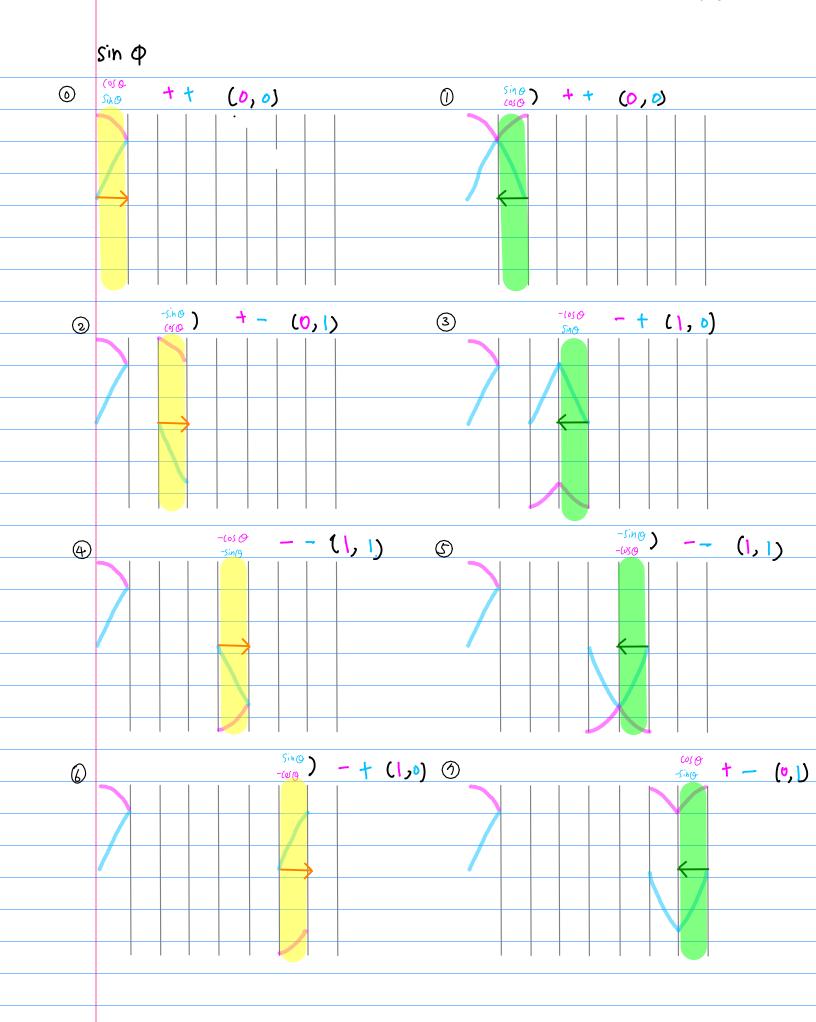

 Sin 70 cos o

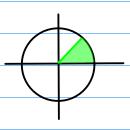

 Sin 70 cos o


Madisetti & Willson, DDS Freq synthesizer
•

output stage
$$\sin Q \rightarrow \sin \pi \phi$$
 [- π , + π] $\cos Q \rightarrow \cos \pi \phi$


negation/interchange





		Cos	_			
		ws	ડામ.			
		Xinu	9 in U	swap	(OSTO	Sin 71 \$
	000	0	එ	0	(00	Siho
	001	0	0	1	sino	८०८०
	0 10	O			-sin O	COSO
	0		0	O	-1050	Sino
	1 00	1	l	0	-(os O	-sin(9
	0	(-sing	-6050
	L 1 0	l	0	1	Sino	-(016)
		0		D	coso	-sing

		<i>d</i>		(-(+ 1	C. 7.1	
000	Xinv O	9 in U	Swap	(°ST Ø	Sin 71 p	1
001	0	0		(os o Sin o	Sih O COS O	
0 1 0	0		<u>,</u> I	-sin O	(હિં	
011		0	0	-los O	Sino	
100	<u> </u>	(0	-(os O	-sin(9	
10			<u> </u>	-sing	-(050	
110	1	0	i	Sino	-(2)	+
1 1	0		0	COSO	-sing	
	0	ð				
	C) 0				
	0	1				
		. 0				
	1	ı				
		1				
	l	0				
	0 (0 ()			
	0 1	1 (
		<u> </u>)			
	\ (O C	1			
		0 0	-			

$$0 = \sum_{k=1}^{N} b_k \theta_k$$

Binary Representation

$$0k = 2^{-k}$$

$$(N+1)$$
 bit fractional binary
Sign + Nbit \Rightarrow S b_1 b_2 b_N

 θ is constrained to be positive $b_0 = 0$ S=0

$$0 = \sum_{k=1}^{N} b_{k} 2^{-k} = \phi_{0} + \sum_{k=2}^{NH} r_{k} 2^{-k}$$

F subrotation by 2-k

2 equal F half rotations by 2-k-1

O subrotation

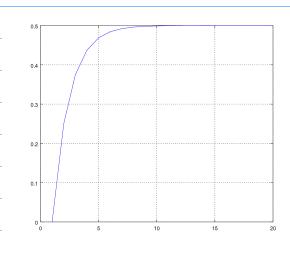
2 equal opposite half rotations by 12-k-1

Binary Representation

 $b_k = 1$: rotation by 2-k $b_k = 0$; Zero rotation

b-th rotation

Fixed rotation by 2^{-k-1} Light Position of bk = 1Meg rotation of bk = 0


Combining all the fixed rotations

initial fixed rotation

		bi	b2	þ3		bn			
		2-1	2-2	2 ⁻³		2 ^{-N}			
C		·							
tixed	\Rightarrow	+ 2 ⁻²	+ 2 ⁻³	+ 2 ⁻⁴		+ 2-4-1			
		(b ₁ =1)	(b2=1)	(b3=1)		(pn=1)			
		(b1=1) +2-5	+2-3	+2-4		(b _N =1) +2-N-1			
				_					
		(b1=0)	$(b_2 = 0)$	(b ₃ =0)		$(b_N = 0)$			
		ر - ع ع	-2-3	-2-4		$\begin{pmatrix} b_{N} = 0 \end{pmatrix}$ -2^{-N+}			
			~	~					
	•								

$$\phi_{v} = \frac{1}{2^{v}} + \frac{1}{2^{3}} + \cdots + \frac{1}{2^{n+1}}$$

$$= \frac{\frac{1}{2^2}\left(\left|-\frac{1}{2}y\right|\right)}{\left(\left|-\frac{1}{2}y\right|\right)} = \frac{1}{2}\left(\left|-\frac{1}{2}y\right|\right) = \frac{2}{2} - \frac{2y+1}{2}$$

Signed Digit Recoding

the rotation after recoding

— a fixed initial rotation ϕ_o

a sequence of \oplus/\ominus rotations

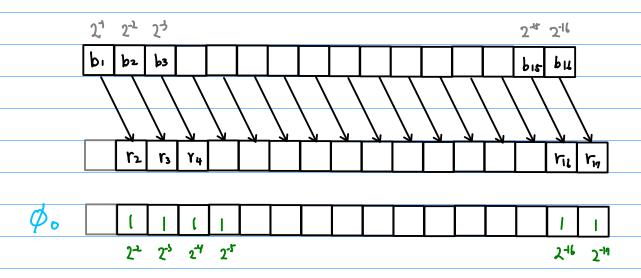
$$bk = 1$$
 + 2^{-k-1} rotation
 $bk = 0$ - 2^{-k-1} rotation

$$Y_{R} = (2b_{R-1} - 1)$$

$$2 \cdot | -1 = + | b_{R-1} = 1 \longrightarrow Y_{R} = + |$$

$$2 \cdot | -1 = - | b_{R-1} = 0 \longrightarrow Y_{R} = - |$$

The recoding need not be explicitly penformed


Simply replacing be = 0 with -1

This recoding maintains

a constant saling factor |

$$0 = \sum_{k=1}^{N} b_{k} 2^{-k} = \phi_{0} + \sum_{k=2}^{N+1} r_{k} 2^{-k}$$

Binary Representation { be }

Signed Digit Recoding { Tk }

The Scaling K.

The initial rotation ϕ .

rotation Starting point $(X_0, Y_0) = (K \cos \phi_0, K \sin \phi)$

- fixed
- no error buildup
- rotation direction

immediately obtained from the binary representation immediately obtained from the binary representation

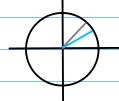
the subangles $\Theta_k = 2^{-k}$ used in recoding the subangles $\Theta_k = \tan^2(2^{-k})$ used in CORDIC

tan Ok multipliers used

in the first few subrotation stages

Cannot be implemented

OS a Simple Shift-and-add Operations


-> ROM Implementation

Veduced Chip area higher operating Speed.

Architecture

- $\phi \in [1,+1]$ phase accumulator
- 2 radian converter $\phi \rightarrow \theta \in [0, \frac{\pi}{4}]$
- 3 Sine/cosine generator Sin(9) (05(0)
- 4 Output Stage $S_{ih}(\pi \phi)$ (0) $(\pi \phi)$

$$\phi \in [1,+1]$$
 normalized angle

$$\phi \in [-T, +T] \rightarrow \phi \in [0, 4]$$
 1st half quadrant

$$Sin(\Theta)$$
 (0)(Θ)

 $S_{ih}(\pi\phi)$ (0) $(\pi\phi)$

Overflowing 2's complement accumulator

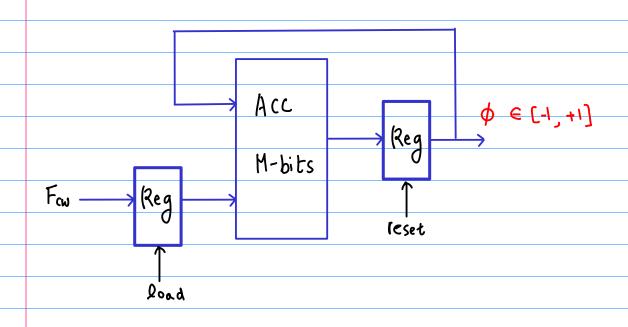
normalized by TI angle ϕ

need radian angle 0 ∈ [0,]

0 < 0 < 1 rad

N-bit binary representation of O

controls the direction of subrotation


N-bit precision of cos 0 & sin 0

Out put stage $\Theta \rightarrow \Pi \Phi$

 $\sin \Theta \rightarrow \sin \pi \phi$

 $\phi \Gamma z \circ j \leftarrow 0 z \circ j$

1) phase accumulator

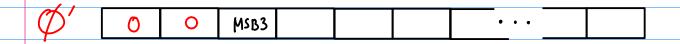
M-bit adder

repeatedly increments the phase angle

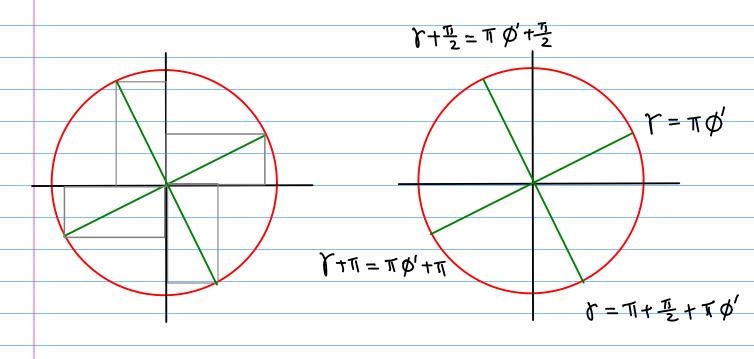
by Fow at each clock cycle

frequency control word

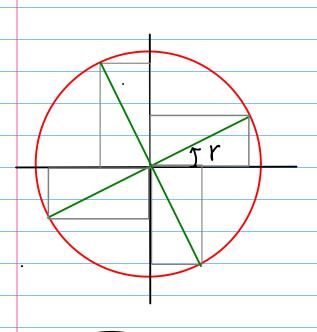
at time n, $\varphi = n F_{cw}/2^{M}$


$$Cos \phi = Cos (nFcw/2^{m})$$

 $sin \phi = Sin (nFcw/2^{m})$


 $-1 < \phi < +1$ normalized angle

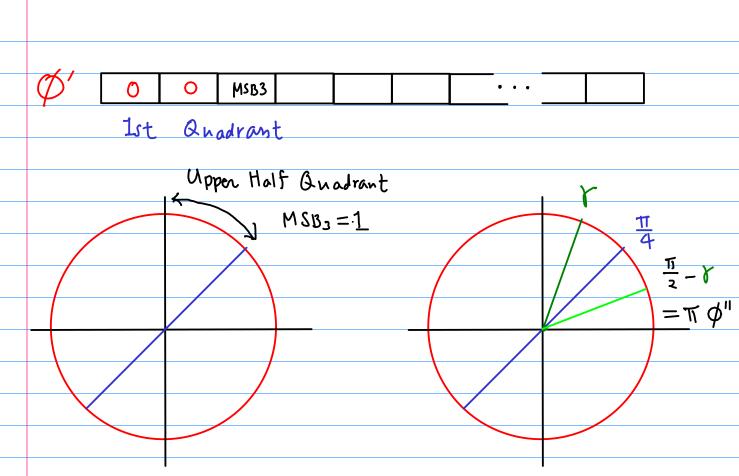
2) Radian Converter


normalized angle \$

Quadrant Symmetry

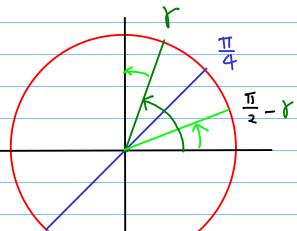
 $\uparrow + \pi = \qquad \qquad \uparrow + \frac{3\pi}{2} =$ $\pi \phi' + \pi \qquad \qquad \pi \phi' + \frac{3\pi}{2}$

10

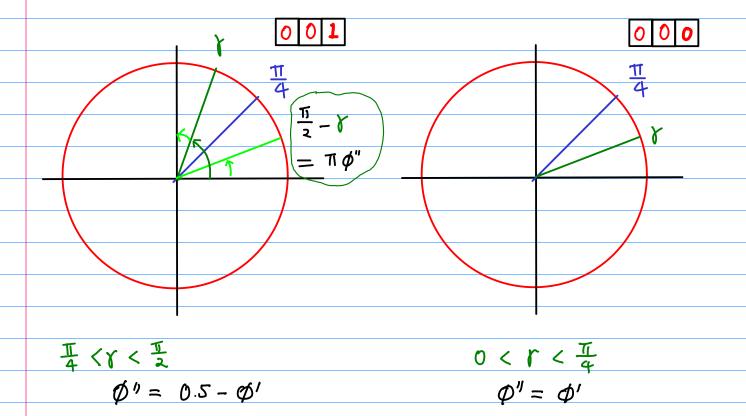

1 1

0 0

$$0 = \pi \phi \longrightarrow 0' = \pi \phi'$$


$$\varphi \in [-\pi, +\pi] \longrightarrow \varphi = [0, \frac{\pi}{2}]$$

$$\varphi \in [-1, +1] \longrightarrow \varphi' = [0, 0.5]$$



$$(OS r = Sin(\frac{\pi}{2} - r))$$

$$Sin r = cos(\frac{\pi}{2} - r)$$

T/4 Mirror

* radian converter

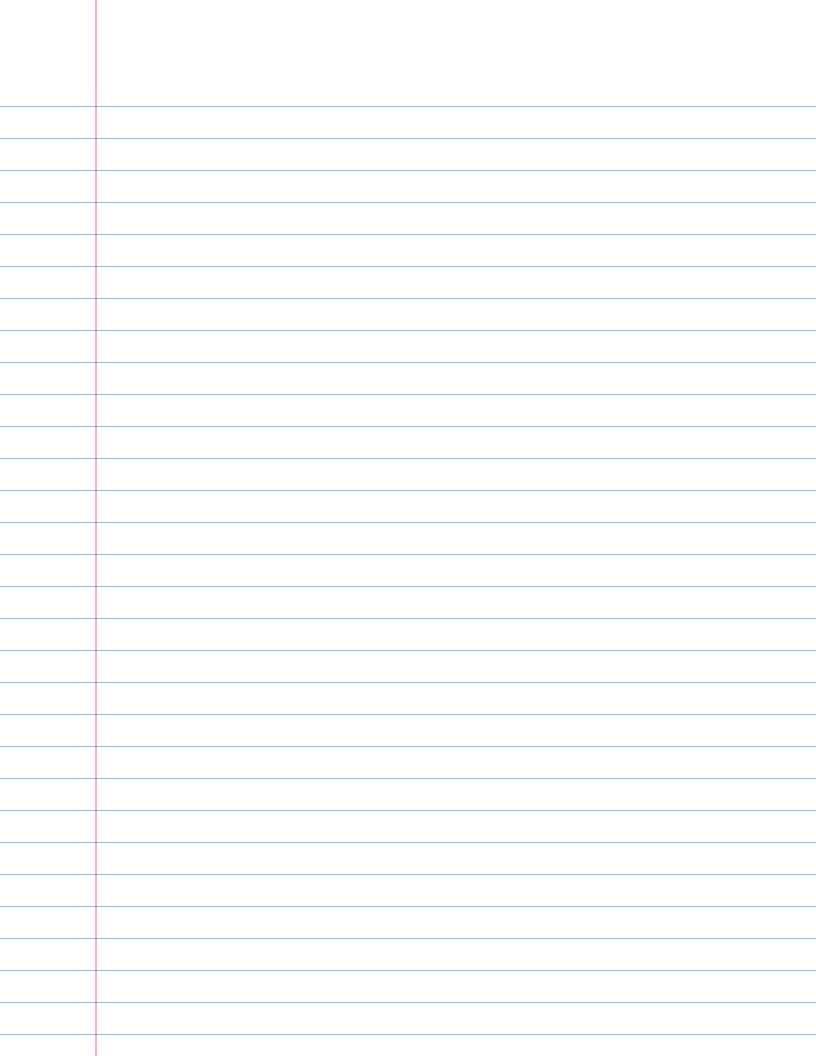
$$9'' = \pi \phi''$$

radian

normalized

angle angle

O < O" < T/4 O < Ø" < 0.25


The multiplication by TT

- > could have used a hardwired multiplier
- > but don't have to use a multiplier at all
 - 1) in table lookup DDFS architecture

 There, the multiplication by T is implicit
 - 1) In CORDIC architecture the elementary angle one divided by T $\theta_{k} = \tan^{-1}(2^{-k})/2\pi$

direction of subvotations one the determined by the sign of angle difference

therefore the multiplication by it is not necessary

3 Sine / Cosine Generator

given angle
$$O$$
 (in radian)
$$0 \le O \le \pi/4 < 1$$

$$0.785398163$$

Compute
$$[OSO]$$
, $[SinO]$?
$$\begin{bmatrix} X_0 \\ Y_0 \end{bmatrix} = \begin{bmatrix} (OSO - SinO) \\ SinO & (OSO) \end{bmatrix} \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}$$

$$= (OSO) \begin{bmatrix} 1 & -tonO \\ tonO & 1 \end{bmatrix} \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}$$

$$(X_0, Y_0) = (1, 0)$$

$$\begin{bmatrix} \chi_0 \\ \gamma_0 \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \chi_0 \\ \gamma_0 \end{bmatrix}$$

$$= \cos \theta \left[\begin{array}{cc} 1 & -\tan \theta \\ \tan \theta & \end{array} \right] \left[\begin{array}{c} X_0 \\ Y_0 \end{array} \right]$$

$$= \cos \theta \left[\begin{array}{c|c} I & -\tan \theta \\ \tan \theta & \end{array} \right] \left[\begin{array}{c} I \\ 0 \end{array} \right]$$

a sequence of subrotations of the priori known angle

Suppose: O as a sequence of sub-rotation

{ by } the subrotation angles are <u>known</u> a priori

then
$$\theta = \sigma_0 \theta_0 + \sigma_1 \theta_1 + \cdots + \sigma_n \theta_n$$

$$\begin{array}{c}
\bullet = \sigma_{0} \Theta_{0} + \sigma_{1} \Theta_{1} + \cdots + \sigma_{M} \Theta_{M} \\
\hline
\sigma_{0} = \{-1, 0, +1\} \\
\hline
\sigma_{0} \Theta_{0} \qquad \qquad \cos(\sigma_{0} \Theta_{0}) \begin{bmatrix} 1 & -\tan(\sigma_{0} \Theta_{0}) \\ \tan(\sigma_{0} \Theta_{0}) \end{bmatrix} \\
\hline
\sigma_{1} \Theta_{1} \qquad \qquad \cos(\sigma_{0} \Theta_{0}) \begin{bmatrix} 1 & -\tan(\sigma_{0} \Theta_{0}) \\ \tan(\sigma_{1} \Theta_{1}) \end{bmatrix}
\end{array}$$

$$\begin{array}{l}
\mathbf{O} = \sigma_0 \Theta_0 + \sigma_1 \Theta_1 + \cdots + \sigma_d \Theta_d \\
\mathbf{O}_{\mathbb{R}} = \{-1, 0, +1\} \\
\begin{bmatrix}
X_0 \\
SinO_1 & cosO_2
\end{bmatrix} \begin{bmatrix}
X_0 \\
SinO_2 & cosO_2
\end{bmatrix} \begin{bmatrix}
1 & -tan(\sigma_1 \Theta_2) \\
tan(\sigma_2 \Theta_2)
\end{bmatrix} \begin{bmatrix}
1 & -tan(\sigma_1 \Theta_2) \\
tan(\sigma_2 \Theta_2)
\end{bmatrix} \begin{bmatrix}
1 & -tan(\sigma_1 \Theta_2) \\
tan(\sigma_2 \Theta_2)
\end{bmatrix} \begin{bmatrix}
1 & -tan(\sigma_1 \Theta_2) \\
tan(\sigma_2 \Theta_2)
\end{bmatrix} \begin{bmatrix}
1 & -tan(\sigma_2 \Theta_2) \\
tan(\sigma_2 \Theta_2)
\end{bmatrix} \begin{bmatrix}
1 & -tan(\sigma_2 \Theta_2) \\
tan(\sigma_2 \Theta_2)
\end{bmatrix} \begin{bmatrix}
1 & -tan(\sigma_2 \Theta_2) \\
tan(\sigma_2 \Theta_2)
\end{bmatrix} \end{bmatrix}$$

$$\begin{array}{l}
K = \cos(\sigma_2 \Theta_2) \cos(\sigma_1 \Theta_1) \cdots \cos(\sigma_2 \Theta_2) \\
\delta_R = +1 & \text{positive angle rotation} \\
\delta_R = -1 & \text{negative angle rotation}
\end{array}$$

$$\mathbf{O} = \mathbf{O}_0 \mathbf{O}_0 + \mathbf{O}_1 \mathbf{O}_1 + \cdots + \mathbf{O}_N \mathbf{O}_N$$

CORDIC Algorithm

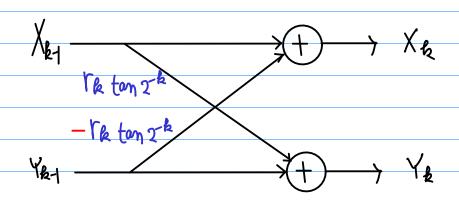
$$\theta_{R} = \tan^{-1} 2^{-k}$$

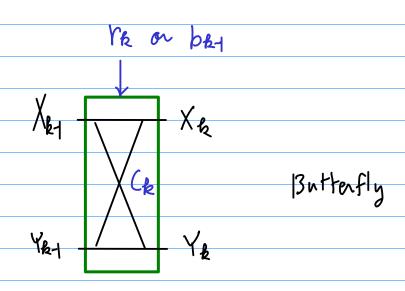
$$tan \theta_{R} = 2^{-R}$$

$$\tan \theta_{R} = 2^{-k}$$

$$\tan \theta_{R} \theta_{R} = \theta_{R} 2^{-k}$$

$$K = \cos(\sigma_0 \cdot \theta_0) \cos(\sigma_1 \cdot \theta_1) \cdot \cdot \cdot \cos(\sigma_0 \cdot \theta_0)$$
 scale factor


$$K = \cos(\Theta_0) \cos(\Theta_1) \cdot \cdot \cdot \cos(\Theta_0)$$


$$0 = \sigma_0 \theta_0 + \sigma_1 \theta_1 + \cdots + \sigma_N \theta_N$$

$$\sigma_R = \{-1, 0, +1\}$$

$$\begin{bmatrix} X_0 \\ -t_{0} & V_{0} \\ Y_{0} \end{bmatrix} = \begin{bmatrix} 1 & -t_{0} & V_{0} \\ t_{0} & V_{0} \\ -t_{0} & V_{0} \end{bmatrix} \begin{bmatrix} 1 & -t_{0} & V_{0} \\ -t_{0} & V_{0} \\ -t_{0} & V_{0} \end{bmatrix} \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}$$

Subrotation

