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Forward Difference Approximation (1)

f ′(x) = lim
h→0

f (x +h)− f (x)

h

= lim
∆x→0

f (x + ∆x)− f (x)

∆x

for a finite ∆x > 0

f ′(x) ≈ f (x + ∆x)− f (x)

∆x
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Forward Difference Approximation (2)

Figure: forward difference approximation
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Forward Difference Approximation (3)

a forward difference approximation
as you are taking a point forward from x .

To find the value of f ′(x) at x = xi ,
we may choose another point ∆x forwad as x = xi+1 .

f ′(x) ≈ f (x + ∆x)− f (x)

∆x

f ′(xi ) ≈
f (xi+1)− f (xi )

∆x

=
f (xi+1)− f (xi )

xi+1−xi
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Backward Difference Approximation (1a)

forward difference approximation
for a finite ∆x>0,

f ′(x) ≈ f (x + ∆x)− f (x)

∆x

backward difference approximation
for a finite ∆x<0, then −∆x > 0,

f ′(x) ≈ f (x−∆x)− f (x)

−∆x

=
f (x)− f (x−∆x)

∆x
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Backward Difference Approximation (1b)

Figure: backward difference approximation (a)
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Backward Difference Approximation (2a)

forward difference approximation
for a finite ∆x>0,

f ′(x) ≈ f (x + ∆x)− f (x)

∆x

backward difference approximation
for a finite ∆x>0, then −∆x < 0,

f ′(x) ≈ f (x)− f (x−∆x)

x− (x−∆x)

=
f (x)− f (x−∆x)

∆x
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Backward Difference Approximation (2b)

Figure: backward difference approximation (b)
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Backward Difference Approximation (3)

a backward difference approximation
as you are taking a point backward from x .

To find the value of f ′(x) at x = xi ,
we may choose another point ∆x backwad as x = xi−1 .

f ′(x) ≈ f (x)− f (x−∆x)

∆x

f ′(xi ) ≈
f (xi )− f (xi−1)

∆x

=
f (xi )− f (xi−1)

xi −xi−1
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Taylor Series (1)

the Taylor series of a function f (x),
that is infinitely differentiable at a point a is the power series

f (a) + f ′(a)(x−a) +
f ′′(a)

2!
(x−a)2 + · · ·
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Taylor Series (2)

If f (x) is given by a convergent power series
in an open disk centred at a,
it is said to be analytic in this region.

Thus for x in this region,
f is given by a convergent power series

f (x) = f (a) + f ′(a)(x−a) +
f ′′(a)

2!
(x−a)2 + · · ·
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Deriving Forward Difference Approximation (1)

A Taylor expansion approximate f (x) using f (a), f ′(a), f ′′(a), · · · ,

f (x) = f (a) + f ′(a)(x−a) +
f ′′(a)

2!
(x−a)2 + · · ·

Let xi = a and xi+1 = x

f (xi+1) = f (xi ) + f ′(xi )(xi+1−xi ) +
f ′′(xi )

2!
(xi+1−xi )

2 + · · ·

Substituting for convenience ∆x = xi+1−xi

f (xi+1) = f (xi ) + f ′(xi )(∆x) +
f ′′(xi )

2!
(∆x)2 + · · ·
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Deriving Forward Difference Approximation (2)

f (xi+1) = f (xi ) + f ′(xi )(∆x) +
f ′′(xi )

2!
(∆x)2 + · · ·

f (xi+1)− f (xi )−
f ′′(xi )

2!
(∆x)2−·· ·= f ′(xi )(∆x)

f (xi+1)− f (xi )

∆x
− f ′′(xi )

2!
(∆x)−·· ·= f ′(xi )

f (xi+1)− f (xi )

∆x
+O(∆x)= f ′(xi )
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Deriving Forward Difference Approximation (3)

f ′(xi ) =
f (xi+1)− f (xi )

∆x
+O(∆x)

the O(∆x) term shows that
the error in the approximation is of the order of ∆x

now derive from Taylor series the formula
for backward divided difference approximation of the first derivative

both forward and backward divided difference approximation
of the first derivative are accurate on the order of O(∆x)

to get better approximations?
another method to approximate the first derivative is called
the Central divided difference approximation of the first derivative.
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Deriving Backward Difference Approximation (1)

f (x) = f (a) + f ′(a)(x−a) +
f ′′(a)

2!
(x−a)2 + · · ·

Let xi = a and xi−1 = x

f (xi−1) = f (xi ) + f ′(xi )(xi−1−xi ) +
f ′′(xi )

2!
(xi−1−xi )

2 + · · ·

Substituting for convenience ∆x = xi −xi+1

f (xi−1) = f (xi )− f ′(xi )(∆x) +
f ′′(xi )

2!
(∆x)2−·· ·
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Deriving Backward Difference Approximation (2)

f (xi−1) = f (xi )− f ′(xi )(∆x) +
f ′′(xi )

2!
(∆x)2−·· ·

f ′(xi )(∆x) = f (xi )− f (xi−1) +
f ′′(xi )

2!
(∆x)2−·· ·

f ′(xi ) =
f (xi )− f (xi−1)

∆x
+

f ′′(xi )

2!
(∆x)−·· ·

=

f ′(xi ) =
f (xi )− f (xi−1)

∆x
+O(∆x)
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Deriving Central Divide Difference Approximation (1)

f (x) = f (a) + f ′(a)(x−a) +
f ′′(a)

2!
(x−a)2 + · · ·

Let xi = a and xi+1 = x , and substitute ∆x = xi+1−xi

f (xi+1) = f (xi ) + f ′(xi )(xi+1−xi ) +
f ′′(xi )

2!
(xi+1−xi )

2 + · · ·

Let xi = a and xi−1 = x , and substitute ∆x = xi −xi−1

f (xi−1) = f (xi ) + f ′(xi )(xi−1−xi ) +
f ′′(xi )

2!
(xi−1−xi )

2 + · · ·
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Deriving Central Divide Approximation

f (xi+1) = f (xi ) + f ′(xi )(∆x) +
f ′′(xi )

2!
(∆x)2 +

f (3)(xi )

3!
(∆x)3 + · · ·

f (xi−1) = f (xi )− f ′(xi )(∆x) +
f ′′(xi )

2!
(∆x)2− f (3)(xi )

3!
(∆x)3 · · ·

subtracting eq(2) from eq(1)

f (xi+1)− f (xi−1) = 2f ′(xi )(∆x) +
2f (3)(xi )

3!
(∆x)3 + · · ·

2f ′(xi )(∆x) = f (xi+1)− f (xi−1)− 2f (3)(xi )

3!
(∆x)3−·· ·

f ′(xi ) =
f (xi+1)− f (xi−1)

2(∆x)
− f (3)(xi )

3!
(∆x)2−·· ·

f ′(xi ) =
f (xi+1)− f (xi−1)

2∆x
+O

(
(∆x)2

)
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Central Divided Approximation

Figure: central difference approximation
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Tangent Lines

as h→ 0, Q→ P
and the secant line → the tangent line
the slope of the tangent line

mtangent = lim
h→0

f (a+h)− f (a)

(a+h)−a

= lim
h→0

f (a+h)− f (a)

h
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