
Link 6.A Loading

Young W. Lim

2019-05-01 Wed

Young W. Lim Link 6.A Loading 2019-05-01 Wed 1 / 35

Outline

1 Based on

2 Loading

3 the startup code

4 link script and startup code

Young W. Lim Link 6.A Loading 2019-05-01 Wed 2 / 35

Based on

"Self-service Linux: Mastering the Art of Problem Determination",
Mark Wilding
"Computer Architecture: A Programmer’s Perspective",
Bryant & O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Link 6.A Loading 2019-05-01 Wed 3 / 35

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Link 6.A Loading 2019-05-01 Wed 4 / 35

the memory image

1 invoking the loader
2 loading
3 run-time memory image
4 creating the memory image

Young W. Lim Link 6.A Loading 2019-05-01 Wed 5 / 35

invoking the loader

the shell runs an executable object file
by invoking some memory resident os code
known as the loader

any program can invoke the loader
by calling the execve function

Young W. Lim Link 6.A Loading 2019-05-01 Wed 6 / 35

loading

the process of copying the program into memory
and then running it, is known as loading

the loader copies the code and the data
in the executable object file from disk into memory

then runs the program by jumping
to its first instruction (entry point)

Young W. Lim Link 6.A Loading 2019-05-01 Wed 7 / 35

run-time memory image (1)

the code segment always starts
at address 0x08048000
the data segment follows
at the next 4-KB aligned address
the runtime heap follows
on the first 4-KB aligned address
past the read/write segment
grows up via calls to the malloc library
shared libraries starts
at address 0x40000000

Young W. Lim Link 6.A Loading 2019-05-01 Wed 8 / 35

run-time memory image (2)

the user stack always starts
at address 0xbfffffff
and grows down (towards lower memory addresses)
the segment starting above the stack
at address 0xc0000000
is reserved for the code and data
in the memory resident part of
the operating system (kernel)

Young W. Lim Link 6.A Loading 2019-05-01 Wed 9 / 35

Linux Run-time Memory Image (1)

Kernel 0xc0000000
User Stack %esp

Shared Libraries 0x40000000
Run-time Heap brk
Read/Write segment
Read-only segment 0x08048000
Unused 0x00000000

Young W. Lim Link 6.A Loading 2019-05-01 Wed 10 / 35

Linux Run-time Memory Image (2)

Kernel 0xc0000000
memory invisible to user code

User Stack %esp
created in run time
grows toward decreasing addresses

Shared Libraries 0x40000000
grow toward increasing addresses

Run-time Heap brk
created by malloc

Young W. Lim Link 6.A Loading 2019-05-01 Wed 11 / 35

Linux Run-time Memory Image (3)

Read/Write segment
.data and .bss

-loaded from the executable file
Read-only segment 0x08048000

.init, .text, .rodata

-loaded from the executable file
Unused 0x00000000

Young W. Lim Link 6.A Loading 2019-05-01 Wed 12 / 35

Linux Run-time Memory Image (4)

Kernel Virtual Memory Memory invisible to user code 0xc0000000
User Stack created at run time %esp

Shared Libraries 0x40000000

Run-time Heap created by malloc brk
Read/Write segment .data, .bss
Read-only segment .init, .text, .rodata 0x08048000
Unused 0x00000000

Young W. Lim Link 6.A Loading 2019-05-01 Wed 13 / 35

Linux Run-time Memory Image (5)

memory invisible
0xc000_0000 Kernel virtual memory to the user code

User stack
created at run time ← %esp stack ptr
↓ ↓ ↓
↑ ↑ ↑
memory mapped region

0x4000_0000 for shared libraries

↑ ↑ ↑
Run time heap ← brk
created by malloc
R/W segment
(.data, .bss)
RO segment

0x0804_8000 (.init, .text, .rodata)

0x0000_0000 Unused
Young W. Lim Link 6.A Loading 2019-05-01 Wed 14 / 35

default address

most of the time, the various sections do not need
to be placed in a specific location
what matters more is the layout.
noways, the stack top is actually randomised
Note that the start of the heap is also randomised.

0x08048000 is the default address on which
ld starts the first PT_LOAD segment on Linux/x86

On Linux/amd64 the default is 0x400000

https://stackoverflow.com/questions/14795164/why-do-linux-program-text-sections-start-at-0x0804800-and-stack-tops-start-at-0

Young W. Lim Link 6.A Loading 2019-05-01 Wed 15 / 35

changing default address

you can change the default by using a custom linker script
also can change where .text section starts
with the Wl,-Ttext,0xNNNNNNNN flag

https://stackoverflow.com/questions/14795164/why-do-linux-program-text-sections-start-at-0x0804800-and-stack-tops-start-at-0

Young W. Lim Link 6.A Loading 2019-05-01 Wed 16 / 35

the start address is not zero

.text is not mapped at address 0

the NULL pointer is usually mapped to ((void *) 0) for convenience
It is useful that the zero page is mapped inaccessible
to trap uses of NULL pointers.
The memory before the start of .text is actually
used by a lot of things;
cat /proc/self/maps as an example:
C library, the dynamic loader ld.so and
the kernel VDSO (kernel mapped dynamic code library that provides
some interfaces to the kernel).

https://stackoverflow.com/questions/14795164/why-do-linux-program-text-sections-start-at-0x0804800-and-stack-tops-start-at-0

Young W. Lim Link 6.A Loading 2019-05-01 Wed 17 / 35

the startup code

1 creating the memory image
2 jumping to the entry point
3 the crt1.o startup routine
4 Startup code
5 forking child process
6 invoking the loader
7 deferring copying

Young W. Lim Link 6.A Loading 2019-05-01 Wed 18 / 35

creating the memory image

when the loader runs, it creates the memory image
guided by the segment header table in the executable
it copies chunks of the executable
into the code and data segments

Young W. Lim Link 6.A Loading 2019-05-01 Wed 19 / 35

jumping to the entry point

after copying the executable, the loader
jumps to the program’s entry point
the address of the _start symbol
the start-up code at the _start address
is defined in the object file crt1.o and
is the same for all C programs

Young W. Lim Link 6.A Loading 2019-05-01 Wed 20 / 35

the crt1.o startup routine

0x080480c0 <_start> // entry point in .text
call __libc_init_first // startup code in .text
call _init // startup code in .init
call atexit // startup code in .text
call main // application main routine
call _exit // returns control to OS

Young W. Lim Link 6.A Loading 2019-05-01 Wed 21 / 35

Startup code (1)

after calling initialization routines
from the .text and .init sections
the startup code calls the atexit routine
the atexit routine registers
a list of routines to be called
when the application (main)
calls the exit function
the exit function runs
those functions registered by atexit
then returns control to the os
by callying _exit

Young W. Lim Link 6.A Loading 2019-05-01 Wed 22 / 35

Startup code (2)

when the startup code calls
the application’s main routine,
the C code begins to execute

after the application returns
(exit is called),
the startup code calls
the _exit routine,
which returns control to the os

Young W. Lim Link 6.A Loading 2019-05-01 Wed 23 / 35

forking child process

each program runs in the context of a process
with its own virtual address space
the parent shell process forks a child process
that is a duplicate of the parent
the child process invokes the loader
via execve system call
the loader deletes the child’s
initial virtual memory segments
that are copied from the parent process
and creates a new set of
code, data, heap, and stack segments

Young W. Lim Link 6.A Loading 2019-05-01 Wed 24 / 35

invoking the loader

the new stack and heap segments are
initialized to zero
the new code and data segments are
initilialized to the contents of the executable file
by mapping pages in the virtual address space
to page-sized chunks of the executable file
finally the loader jumps to the _start address
which eventually calls the application’s main routine

Young W. Lim Link 6.A Loading 2019-05-01 Wed 25 / 35

deferring copying

during the loading process,
there is no copying of data from disk to memory
except some header information

the copying is deferred until the CPU references
a mapped virtual page, at which point the os
automatically transfers the page from disk to memory
during it’s paging mechanism

Young W. Lim Link 6.A Loading 2019-05-01 Wed 26 / 35

execve

#include <unistd.h>

int execve(const char *filename,~
char *const argv[],~
char *const envp[]);

Young W. Lim Link 6.A Loading 2019-05-01 Wed 27 / 35

execve example

#include <unistd.h>
#include <stdio.h>

int main(void)
{

char *argv[] = { "/bin/sh", "-c", "env", 0 };
char *envp[] =
{ "HOME=/",

"PATH=/bin:/usr/bin",
"TZ=UTC0",
"USER=beelzebub",
"LOGNAME=tarzan",
0 };

execve(argv[0], &argv[0], envp);
fprintf(stderr, "Oops!\n");
return -1;

}

https://stackoverflow.com/questions/7656549/
understanding-requirements-for-execve-and-setting-environment-vars

Young W. Lim Link 6.A Loading 2019-05-01 Wed 28 / 35

.data section

the .data section contains variables
Variables change at run time
the variables need to be in RAM
Flash, unlike RAM, is not easily changed at run time.
the flash contains the initial values of
the variables in the .data section.
the startup code copies the .data section
from flash to RAM to initialize the run-time variables in RAM.

https://stackoverflow.com/questions/41365110/why-need-linker-script-and-startup-code

Young W. Lim Link 6.A Loading 2019-05-01 Wed 29 / 35

linker script

the object code created by your compiler has not been
located into the microcontroller’s memory map.
the linker will do this task and
that is why you need a linker script
the linker script is input to the linker
and provides some commands
on the location and extent of the system’s memory.

https://stackoverflow.com/questions/41365110/why-need-linker-script-and-startup-code

Young W. Lim Link 6.A Loading 2019-05-01 Wed 30 / 35

startup code

a C program that begins at main does not run in a vacuum
but makes some assumptions about the environment
assumes that some variables are already initialized
the startup code is necessary to put in place all the things
that are assumed to be in place when main executes
(the "run-time environment").
The stack pointer
the constructors of static objects in C++

https://stackoverflow.com/questions/41365110/why-need-linker-script-and-startup-code

Young W. Lim Link 6.A Loading 2019-05-01 Wed 31 / 35

load address and run-time address (1)

When you load a program on an operating system
your .data section basically non-zero globals are loaded
from the "binary" into the right offset in memory,
so that when your program starts those memory locations
that represent your variables have those values.

https://stackoverflow.com/questions/41365110/why-need-linker-script-and-startup-code

Young W. Lim Link 6.A Loading 2019-05-01 Wed 32 / 35

load address and run-time address (2)

unsigned int x=5;
unsigned int y;

in the above code, you expect x to be 5 when you first start
if are booting from flash, bare metal,
you dont have an operating system to copy that value into ram,
it has to be copied manualy.
all of the .data stuff has to be in flash,
that number 5 has to be somewhere in flash
so that it can be copied to RAM.
So you need a flash address for it
and a ram address for it.

https://stackoverflow.com/questions/41365110/why-need-linker-script-and-startup-code

Young W. Lim Link 6.A Loading 2019-05-01 Wed 33 / 35

startup code

any function can call any other function
a local variable x to be 5 and y will be assumed to be zero
the startup code at a minimum for generic C sets up

the stack pointer
local variables
.bss to zero
initialize variables

if you dont have an operating system
then you have to code the above
cannot use system calls (printf, fopen, . . .)
but depending on toolchain,
you don’t have to write the linker script nor the bootstrap

https://stackoverflow.com/questions/41365110/why-need-linker-script-and-startup-code

Young W. Lim Link 6.A Loading 2019-05-01 Wed 34 / 35

linker scripts

the linker script defines the memory layout of
your target and application.
in the bare-metal programming, there is no OS
to handle that for you.
the start-up code is required to at least set
an initial stack-pointer, initialise static data,
and jump to main.
On an embedded system it is also necessary to
initialise various hardware such as the PLL, memory controllers etc.

https://stackoverflow.com/questions/41365110/why-need-linker-script-and-startup-code

Young W. Lim Link 6.A Loading 2019-05-01 Wed 35 / 35

	Based on
	Loading
	the startup code
	link script and startup code

