Row Reduction (B)

Copyright (c) 2012 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Leading and Free Variables

$$
\begin{aligned}
& \left(\begin{array}{lll|l}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & 9
\end{array}\right) \quad\left(\begin{array}{lll|l}
1 & 0 & 3 & -1 \\
0 & 1 & -4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll|l}
1 & -5 & 1 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& 1\left(x_{1}\right)+0 \cdot x_{2}+0 \cdot x_{3}=5 \\
& 0 \cdot x_{1}+1\left(x_{2}\right)+0 \cdot x_{3}=7 \\
& 0 \cdot x_{1}+0 \cdot x_{2}+1 \cdot x_{3}=9 \\
& 0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=1 \\
& \text { with a leading } 1 \\
& \text { leading variables }
\end{aligned}
$$

Pulse

(\%i27) myline:parametric(-1-3*t, $2+4 * t, t, t, 0,5)$;
(\%027) parametric(-3t-1, $4 t+2, t, t, 0,5)$
(\%i28) wxdraw3d(nticks=200, myline) \$

Pulse

(\%i29) myplane:parametric_surface (
4+5*s-1*t, s, t, s, -1, +1, t, -1, +1);
(\%o29) parametric_surface $(-t+5 s+4, s, t, s,-1,1, t,-1,1)$
(\%i30) wXdraw3d(nticks=200, myplane) \$

Free Variables as Parameters (1)

$$
\begin{array}{lrr}
1\left(x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=5\right. & 1\left(x_{1}\right) \\
0 \cdot x_{1}+1\left(x_{2}+0 \cdot x_{3}=7\right. & 1\left(x_{2}\right)-4 \cdot x_{3}=2 & 1\left(x_{1}\right)-5 \cdot x_{2}+1 \cdot x_{3}=4 \\
0 \cdot x_{1}+0 \cdot x_{2}+1\left(x_{3}\right)=9 & &
\end{array}
$$

Solve for a leading variable

$$
\begin{aligned}
& x_{1}=5 \\
& x_{2}=7 \\
& x_{3}=9
\end{aligned}
$$

$$
x_{1}=-1-3 \cdot x_{3}
$$

$$
x_{1}=4+5 \cdot x_{2}-1 \cdot x_{3}
$$

Treat a free variable as a parameter

$$
\begin{aligned}
& x_{1}=5 \\
& x_{2}=7 \\
& x_{3}=9
\end{aligned}
$$

$$
x_{3}=t
$$

$$
\begin{aligned}
& x_{1}=-1-3 t \\
& x_{2}=2+4 t \\
& x_{3}=t
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=s \quad x_{3}=t \\
& x_{1}=4+5 \cdot s-1 \cdot t \\
& x_{2}=s \\
& x_{3}=t
\end{aligned}
$$

Parametric Solutions (2)

$$
\begin{aligned}
& 1 \widehat{x_{1}}+0 \cdot x_{2}+0 \cdot x_{3}=5 \\
& 0 \cdot x_{1}+1\left(x_{2}\right)+0 \cdot x_{3}=7 \\
& 0 \cdot x_{1}+0 \cdot x_{2}+1 \cdot x_{3}=9 \\
& \begin{aligned}
+3 \cdot x_{3} & =-1 \\
1\left(x_{2}\right)-4 \cdot x_{3} & =2
\end{aligned} \\
& 1 \cdot\left(x_{1}-5 \cdot x_{2}+1 \cdot x_{3}=4\right. \\
& x_{1}=5 \\
& x_{2}=7 \\
& x_{3}=9 \\
& \left\{\begin{array}{l}
x_{1}=t \\
x_{2}=\frac{1}{3}(-4 t+2) \\
x_{3}=\frac{1}{3}(-t-1)
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{1}=\frac{1}{4}(-3 t+2) \\
x_{2}=t \\
x_{3}=\frac{1}{4}(t-2)
\end{array}\right. \\
& x_{1}=-1-3 t \\
& x_{2}=2+4 t \\
& x_{3}=t \\
& \int x_{1}=s \\
& x_{2}=t \\
& x_{3}=-s+5 t+4 \\
& \left\{\begin{array}{l}
x_{1}=s \\
x_{2}=\frac{1}{5}(s+t-4) \\
x_{3}=t
\end{array}\right. \\
& x_{1}=4+5 \cdot s-1 \cdot t \\
& x_{2}=s \\
& x_{3}=t
\end{aligned}
$$

Many Solutions (3)

$$
\begin{aligned}
& \begin{array}{l}
1\left(x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=5\right. \\
0 \cdot x_{1}+1\left(x_{2}\right)+0 \cdot x_{3}=7
\end{array} \\
& 0 \cdot x_{1}+0 \cdot x_{2}+1 \cdot x_{3}=9 \\
& 1\left(x_{1}\right) \begin{aligned}
+3 \cdot x_{3} & =-1 \\
1\left(x_{2}\right)-4 \cdot x_{3} & =2
\end{aligned} \\
& 1 \cdot x_{1}-5 \cdot x_{2}+1 \cdot x_{3}=4 \\
& x_{1}=5 \\
& x_{2}=7 \\
& x_{3}=9 \\
& x_{1}=-1-3 t \\
& x_{2}=2+4 t \\
& x_{3}=t \\
& x_{1}=4+5 \cdot s-1 \cdot t \\
& x_{2}=s \\
& x_{3}=t \\
& (-1,+2,0) \\
& (-4,+6,1) \\
& (-7,+10,2) \\
& (-10,+14,2) \\
& x_{2}=-\frac{4}{3} x_{1}+\frac{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=-1-3 t \\
& x_{2}=2+4 t \\
& x_{3}=t \quad \text { free variable }
\end{aligned}
$$

$$
4 x_{1}+3 x_{2}=2
$$

$$
\begin{aligned}
& x_{1}=4+5 \cdot s-1 \cdot t \\
& x_{2}=s \quad \text { free variable } \\
& x_{3}=t \quad \text { free variable }
\end{aligned}
$$

$$
x_{1}-5 x_{2}+x_{3}=4
$$

infinitely many solutions

infinitely many solutions

Solutions in R^{3} and No of Free Variables (5)

$\left(\begin{array}{lll|l}1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 9\end{array}\right]$
$\left(\begin{array}{ccc|c}1 & 0 & 3 & -1 \\ 0 & 1 & -4 & 2 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\left(\begin{array}{ccc|c}1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

$$
\begin{aligned}
& x_{1}=5 \\
& x_{2}=7 \\
& x_{3}=9
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=-1-3 t \\
& x_{2}=2+4 t \\
& x_{3}=t \quad \text { free variable }
\end{aligned}
$$

a line in R^{3}

$$
\begin{aligned}
& x_{1}=4+5 \cdot s-1 \cdot t \\
& x_{2}=s \quad \text { free variable } \\
& x_{3}=t \quad \text { free variable }
\end{aligned}
$$

a plane in R^{3}

Pulse

References

[1] http://en.wikipedia.org/
[2] Anton \& Busby, "Contemporary Linear Algebra"
[3] Anton \& Rorres, "Elementary Linear Algebra"

