Summary & Conclusion

Lecture 10

Survey Research & Design in Psychology

James Neill, 2018

Creative Commons Attribution 4.0

Overview

- Unit outcomes
 - o M1: Survey research and design
 - o M2: Univariate & bivariate descriptives & graphs
 - M3: Psychometrics
 - M4: Multiple linear regression
 - M5: Power & effect sizes
- Feedback
- Questions

Unit outcomes

Learning outcomes

To what extent have you learnt to:

- 1.design and conduct survey-based research in psychology?
- 2.use SPSS to conduct and interpret correlational statistics, including factor analysis and multiple linear regression?
- 3.communicate the results of surveybased psychological research in writing?

Graduate attributes

To what extent have you learnt to:

- 1. Display initiative and drive?
- 2. Make effective use of organisation skills to plan & manage workload?
- 3. Employ up-to-date and relevant knowledge and skills?
- 4. Take pride in professional and personal integrity?
- 5. Solve theoretical and real-world problems using creativity, critical thinking, analysis and research skills?

Modules and lectures

Module 1: Survey research and design

- 1 Survey research
- 2 Survey design

Module 2: Univariate and bivariate

- 1 Descriptives & graphing
- 2 Correlation

Module 3: Psychometrics

- 1 Exploratory factor analysis
- 2 Psychometric instrument development

Module 4: Multiple linear regression

- 1 MLR I
- 2 MLR II

Module 5: Power & summary

- 1 Power & effect sizes
- 2 Summary and conclusion

Survey research

(Lecture 1)

Types of research

- Survey research relies on the scientific paradigm that assumes a positivistic view of knowledge
- Surveys are used in all types of social science research:
 - Experimental
 - Quasi-experimental
 - Non-experimental

۰

What is a survey?

What is a survey?

 A standardised stimulus designed to convert fuzzy psychological phenomenon into hard data.

History

 Survey research has developed into a popular research method since the 1920s.

Purposes of research

Information gathering

- Exploratory
- Descriptive

Theory testing/building

- Explanatory
- Predictive

10

Survey research - Pros and cons

Pros:

- Ecological validity
- Cost efficiency
- Can obtain lots of data

Cons:

- Low compliance
- Reliance on self-report

Survey design

(Lecture 2)

Survey administration methods

Self-administered Pros:

Opposite for interviewadministered surveys

- cost
- demand characteristics
- · access to representative sample
- · anonymity

Cons:

- · non-response
- adjustment to cultural differences, special needs

12

Survey construction

- Survey design is science and art
- Survey development involves:
 - o Stages
 - Pre-test
 - Pilot test
 - o Structure, layout, order, flow
 - Participant info about the study
 - Informed consent
 - Instructions
 - Background info
 - End

14

Types of questions

Objective vs. subjective

- Objective verifiably true answer
- Subjective perspective of respondent

Open vs. closed

- Open empty space for answer
- Closed pre-set response options

Closed response formats

- Di- and multi-chotomous
- Multiple response
- Verbal frequency
- Ranking
- Likert
- Semantic differential
- Graphical
- Non-verbal

16

Level of measurement

Categorical/Nominal

- Arbitrary numerical labels
- Could be in any order

Ordinal

- Ordered numerical labels
- Intervals may not be equal

Interval

- Ordered numerical labels
- Equal intervals

Ratio

- Continuous
- Meaningful 0

17

15

Sampling

Key terms

- (Target) population
- Sampling frame
- Sample

Probability (random)

- Simple
- Systematic
- Stratified

Non-probability

- Convenience
- Purposive
- Snowball

Biases

Sampling biases

Sample doesn't represent target population

Non-sampling biases

- Measurement tool (reliability and validity)
- Response biases
 - Acquiescence
 - Order effects
 - · Demand characteristics
 - Self-serving bias
 - Social desirability
 - · Hawthorne effect

19

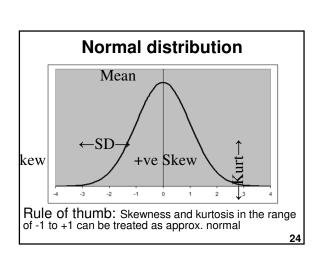
Descriptives & graphing

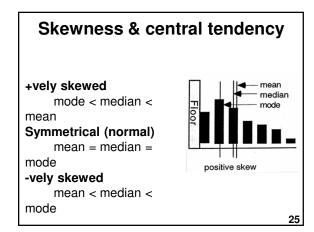
(Lecture 3)

Getting to know data

- Play with data get to know it
- Don't be afraid you can't break data
- Screen & clean data reduce noise, maximise signal
- Explore data look around & note key features
- Get intimate with data
- Describe the main features depict the "true story" in the data
- Test hypotheses to answer research questions

21


LOM & statistics


- If a normal distribution can be assumed, use parametric statistics (more powerful)
- If not, use non-parametric statistics (less power, but less sensitive to violations of assumptions)

22

Descriptive statistics

- What is the central tendency?
 - -Frequencies, Percentages (Non-para)
 - -Mode, Median, Mean (Para)
- What is the variability?
 - -Min, Max, Range, Quartiles (Non-para)
 - -Standard Deviation, Variance (Para)

Principles of graphing

- Clear purpose
- Maximise clarity
- Minimise clutter
- · Allow visual comparison

26

Univariate graphs Bar graph Pie chart Histogram Stem & leaf plot Data plot / Error bar Box plot Parametric i.e., normally distributed interval or ratio

Correlation

(Lecture 4)

Covariation and correlation

- The world is made of covariations.
- Covariations are the building blocks of more complex multivariate relationships.
- Correlation is a standardised measure of the covariance (extent to which two phenomenon co-relate) - ranges between -1 and 1, with more extreme values indicating stronger relationships.
- Correlation does not prove causation may be opposite causality, bi-directional, or due to other variables.

Purpose of correlation

The underlying purpose of correlation is to help address the question:

What is the

- relationship or
- · association or
- shared variance or
- co-relation

29

between two variables?

Types of correlation

- Nominal by nominal:
 Phi (Φ) / Cramer's V, Chi-square
- Ordinal by ordinal: Spearman's rank / Kendall's Tau b
- Dichotomous by interval/ratio: Point bi-serial r_{pb}
- Interval/ratio by interval/ratio:
 Product-moment or Pearson's r

Correlation steps

- 1 Choose correlation and graph type based on levels of measurement.
- 2 Check graphs (e.g., scatterplot):
 - -Linear or non-linear?
 - -Outliers?
 - -Homoscedasticity?
 - -Range restriction?
 - -Sub-samples to consider?

32

Correlation steps

- 3 Consider
 - -Effect size (e.g., Φ , Cramer's V, r, r^2)
 - -Direction
 - -Inferential test (p)
- 4 Interpret/Discuss
 - -Relate back to hypothesis
 - -Size, direction, significance
 - -Limitations e.g.,
 - Heterogeneity (sub-samples)
 - Range restriction
 - Causality?

-Indicates % of shared variance

· Coefficient of determination

-Correlation squared

Interpreting correlation

Strength

<u>r</u>2

Weak: .1 - .3 1 - 10% Moderate: .3 - .5 10 - 25%

Strong:

> .5

<u>r</u>

25%

34

Assumptions & limitations

- Levels of measurement
- Normality
- Linearity
 - o Effects of outliers
 - o Non-linearity
- Homoscedasticity
- No range restriction
- Homogenous samples
- Correlation is not causation

Exploratory factor analysis

(Lecture 5)

35

What is factor analysis?

- Factor analysis is a family of multivariate correlational data analysis methods for summarising clusters of covariance.
- FA summarises correlations amongst items.
- The common clusters (called factors) indicate underlying fuzzy constructs.

Steps / process

- 1 Examine assumptions
- 2 Choose extraction method and rotation
- 3 Determine # of factors

(Eigen Values, Scree plot, % variance explained)

4 Select items

(check factor loadings to identify which items belong in which factor; drop items one by one; repeat)

- 5 Name and describe factors
- 6 Examine correlations amongst factors
- 7 Analyse internal reliability

Lecture

8 Compute composite scores

6 3

Assumptions

- Sample size
 - Min: 5+ cases per variables
 Ideal: 20+ cases per variable)
 - Or N > 200
- · Bivariate & multivariate outliers
- Factorability of correlation matrix (Measures of Sampling Adequacy)
- · Normality enhances the solution

Types of FA

- PAF (Principal Axis Factoring): For theoretical data exploration
 - -uses shared variance
- PC (Principal Components):

For data reduction

-uses all variance

40

Rotation

- Orthogonal (Varimax)
 - perpendicular (uncorrelated) factors
- Oblique (Oblimin)
 - angled (correlated) factors
- Consider trying both ways
 - Are solutions different? Why?

Factor extraction

How many factors to extract?

- Inspect EVs
 - look for EVs > 1 or sudden drop (inspect scree plot)
- % of variance explained
 - aim for 50 to 75%
- Interpretability
 - does each factor "make sense"?
- Theory
 - do the factors fit with theory?

42

41

Item selection

An EFA of a good measurement instrument ideally has:

- a simple factor structure (each variable loads strongly (> +.50) on only one factor)
- each factor has multiple loading variables (more loadings → greater reliability)
- target factor loadings are high (> .5) and cross-loadings are low (< .3), with few intermediate values (.3 to .5).

43

Psychometric instrument development

(Lecture 6)

Psychometrics

- Science of psychological measurement
- Goal: Validly measure individual psychosocial differences
- Design and test psychological measures e.g., using
 - oFactor analysis
 - Reliability and validity

45

Concepts & their measurement

- 1 Concepts name common elements
- 2 Hypotheses identify relations between concepts
- 3 Brainstorm indicators of a concept
- 4 Define the concept
- 5 Draft measurement items
- 6 Pre-test and pilot test
- 7 Examine psychometric properties
- 8 Redraft/refine and re-test

46

Measurement error

- Deviation of measure from true score
- Sources:
 - Non-sampling (e.g., paradigm, respondent bias, researcher bias)
 - o Sampling (e.g., non-representativeness)
- How to minimise:
 - Well-designed measures
 - o Representative sampling
 - Reduce demand effects
 - Maximise response rate
 - Ensure administrative accuracy

Reliability

- Consistency or reproducibility
- Types
 - o Internal consistency
 - o Test-retest reliability
- Rule of thumb
 - > .6 OK
 - o > .8 Very good
- Internal consistency
 - Split-half
 - o Odd-even
 - o Cronbach's Alpha

48

Validity

- Extent to which a measure measures what it is intended to measure
- Multifaceted
 - o Compare with theory and expert opinion
 - o Correlations with similar and dissimilar measures
 - o Predicts future

49

Composite scores

Ways of creating composite (factor) scores:

- Unit weighting
 - o Total of items or
 - Average of items (recommended for lab report)
- Regression weighting
 - Each item is weighted by its importance to measuring the underlying factor (based on regression weights)

50

Writing up instrument development

- 1. Introduction
 - 1. Review constructs & previous structures
 - 2. Generate research question or hypothesis
- 2. Method
 - 1. Explain measures and their development
- 3. Results
 - 1. Factor analysis
 - 2. Reliability of factors
 - 3. Descriptive statistics for composite scores
 - 4. Correlations between factors
- 4. Discussion
 - 1. Theory? / Measure? / Recommendations?

51

Multiple linear regression

(Lectures 7 & 8)

General steps

- 1 Develop model and hypotheses
- 2Check assumptions
- 3 Choose type
- 4 Interpret output
- 5 Develop a regression equation (if needed)

Linear regression

- 1 Best-fitting straight line for a scatterplot of two variables
- 2Y = bX + a + e
 - 1 Predictor (X; IV)
 - 2 Outcome (Y; DV)
- 3 Least squares criterion
- 4 Residuals are the vertical distance between actual and predicted values

54

MLR assumptions

- Level of measurement
- Sample size
- Normality
- Linearity
- Homoscedasticity
- Collinearity
- Multivariate outliers
- Residuals should be normally distributed

55

Level of measurement and dummy coding

- Level of measurement
 - DV = Interval or ratio
 - IV = Interval or ratio or dichotomous
- Dummy coding
 - Convert complex variables into series of dichotomous IVs

56

Multiple linear regression

1 Multiple IVs to predict a single DV: $Y = b_1x_1 + b_2x_2 + \dots + b_ix_i + a + e$

2 Overall fit: R, R^2 , and Adjusted R^2

3 Coefficients

1 Relation between each IV and the DV, adjusted for the other IVs 2B, β, t, p, and sr2

4 Types

1 Standard

2 Hierarchical

3 Stepwise / Forward / Backward

57

59

Semi-partial correlation

- In MLR, *sr* is labelled "part" in the SPSS regression coefficients table
- Square sr values to obtain sr², the unique % of DV variance explained by each IV
- Discuss the extent to which the explained variance in the DV is due to unique or shared contributions of the IVs

58

Residual analysis

- Residuals are the difference between predicted and observed Y values
- MLR assumption is that residuals are normally distributed.
- Examining residuals also helps to assess:
 - Linearity
 - Homoscedasticity

Interactions

- In MLR, IVs may interact to:
 - Have no effect
 - o Increase the IVs' effect on the DV
 - o Decrease the IVs' effect on the DV
- Model interactions using hierarchical MLR:
 - Step 1: Enter IVs
 - Step 2: Enter cross-product of IVs
 - \circ Examine change in R^2

Analysis of change

Analysis of changes over time can be assessed by either:

- Standard regression
 - Calculate difference scores
 (Post-score minus Pre-score) and use as a DV
- Hierarchical MLR
 - Step 1: "Partial out" baseline scores
 - Step 2: Enter other IVs to help predict variance in changes over time.

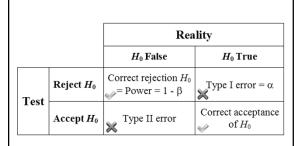
61

Writing up an MLR

- 1. Introduction
 - 1. Establish purpose
 - 2. Describe model and hypotheses
- 2. Results
 - 1. Univariate descriptive statistics
 - 2. Correlations
 - 3. Type of MLR and assumptions
 - 4. Regression coefficients
- 3. Discussion
 - 1. Summarise and interpret, with limitations
 - 2. Implications and recommendations

62

Power & effect size


(Lecture 9)

Significance testing

- Logic At what point do you reject H₀?
- History Started in 1920s & became very popular through 2nd half of 20th century
- Criticisms Binary, dependent on N, ES, and critical α
- Practical significance
 - o Is an effect noticeable?
 - o Is it valued?
 - O How does it compare with benchmarks?

64

Inferential decision making

Statistical power

- Power = probability of detecting a real effect as statistically significant
- Increase by:
 - $\circ \uparrow N$
 - \circ \uparrow critical α
 - o ↑ ES
- Power
 - o > .8 "desirable"
 - ~ .6 is more typical
- Can be calculated prospectively and retrospectively

Effect size

- ES = Standardised difference or strength of relationship
- Inferential tests should be accompanied by ESs and CIs
- Common bivariate ESs include:
 - Cohen's d
 - Correlation r
- Cohen's d not in SPSS use an effect size calculator

Confidence interval

- Gives "range of certainty" when generalising from a sample to a target population
- Cls be used for M, B, ES
- Can be examined
 - Statistically (upper and lower limits)
 - Graphically (e.g., error-bar graphs)

68

Publication bias

- Tendency for statistically significant studies to be published over nonsignificant studies
- Indicated by gap in funnel plot → file-drawer effect
- Counteracting biases in scientific publishing; tendency:
 - o towards low-power studies which underestimate effects
 - o to publish sig. effects over non-sig. effects69

Academic integrity

- Violations of academic integrity are most prevalent amongst those with incentives to cheat: e.g.,
 - Students
 - Competitively-funded researchers
 - Commercially-sponsored researchers
- Adopt a balanced, critical approach, striving for objectivity and academic integrity

70

Feedback

Feedback

- Direct feedback welcome (e.g., f2f, discussion forum, email)
 - What worked well?
 - What could be improved?
- Interface Student Experience Questionnaire (ISEQ)
- Results released Fri 1 June
- Grade Review Day Mon 4 June

Questions?